--- title: lisa + gradio + fastapi + ZeroGPU emoji: ⚡ colorFrom: red colorTo: purple sdk: gradio sdk_version: 4.37.2 app_file: app.py pinned: true --- # LISA (Reasoning Segmentation via Large Language Model) on cuda, now with huggingface ZeroGPU support! ## Exec jupyter on the remote server with port forwarding on localhost 1. checkout repo, install venv with jupyter 2. port forwarding in localhost wiht private key: `ssh -i /path/to/private_key name@endpoint.com -L 8889:localhost:8889 -N -f` 3. start the jupyter-lab server 4. connect to page in localhost ## Commands to work on remote virtual machines (e.g. SaturnCloud) after clone and git lfs install ```bash cd ~/workspace/lisa-on-cuda/ rm -rf lisa_venv python3 -m venv lisa_venv ln -s lisa_venv/ venv source venv/bin/activate pip --version which python python -m pip install pip wheel --upgrade python -m pip install pytest pytest-cov jupyterlab python -m pip install -r requirements.txt nohup jupyter-lab & tail -F nohup.out ``` # Jupyterlab Howto To run the `test.ipynb` notebook you should already: - cloned project https://huggingface.co/spaces/aletrn/lisa-on-cuda with active git lfs - created and activated a virtualenv - installed jupyterlab dependencies from requirements_jupyter.txt - installed dependencies from requirements.txt ## Hardware requirements for local usage - an nvidia gpu with 10 or 12GB of memory (a T4 should suffice) - at least 16GB of system ram ## Hardware requirements on huggingface ZeroGPU Right now (July 2024) huggingface let use ZeroGPU Nvidia A100 GPUs. [![Gradio](https://img.shields.io/badge/Gradio-Online%20Demo-blue)](http://103.170.5.190:7860/) [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg)](https://openxlab.org.cn/apps/detail/openxlab-app/LISA) See [LISA](https://github.com/dvlab-research/LISA) for details on the original project. Note that the authors don't keep the project updated anymore.