import json import pickle from pathlib import Path import epitran import pandas as pd from aip_trainer import PROJECT_ROOT_FOLDER, app_logger from aip_trainer.models import RuleBasedModels class TextDataset: def __init__(self, table, language='-'): self.table_dataframe = table self.number_of_samples = len(table) self.language = language def __getitem__(self, idx): language_sentence = f"{self.language}_sentence" if self.language != '-' else 'sentence' language_series = self.table_dataframe[language_sentence] return [language_series.iloc[idx]] def __len__(self): return self.number_of_samples def get_category_from_df_by_language(self, language: str, category_value:int): selector = self.table_dataframe[f"{language}_category"] == category_value df_by_category = self.table_dataframe[selector] return df_by_category def get_random_sample_from_df(self, language: str, category_value:int): app_logger.info(f"language={language}, category_value={category_value}.") choice = self.table_dataframe.sample(n=1) if category_value !=0: df_language_filtered_by_category_and_language = self.get_category_from_df_by_language(language, category_value) choice = df_language_filtered_by_category_and_language.sample(n=1) return [choice[f"{language}_sentence"].iloc[0]] sample_folder = Path(PROJECT_ROOT_FOLDER / "aip_trainer" / "lambdas") lambda_database = {} lambda_ipa_converter = {} with open(sample_folder / 'data_de_en_with_categories.json', 'r') as src: df = pd.read_json(src) lambda_database['de'] = TextDataset(df, 'de') lambda_database['en'] = TextDataset(df, 'en') lambda_translate_new_sample = False lambda_ipa_converter['de'] = RuleBasedModels.EpitranPhonemConverter( epitran.Epitran('deu-Latn')) lambda_ipa_converter['en'] = RuleBasedModels.EngPhonemConverter() def lambda_handler(event, context): body = json.loads(event['body']) try: category = int(body['category']) except KeyError: category = 0 language = body['language'] try: current_transcript = str(body["transcript"]) except KeyError: current_transcript = get_random_selection(language, category, is_gradio_output=False) current_transcript = current_transcript if isinstance(current_transcript, str) else current_transcript[0] current_ipa = lambda_ipa_converter[language].convertToPhonem(current_transcript) app_logger.info(f"real_transcript='{current_transcript}', ipa_transcript='{current_ipa}'.") result = { 'real_transcript': current_transcript, 'ipa_transcript': current_ipa, 'transcript_translation': "" } return json.dumps(result) def get_random_selection(language: str, category: int, is_gradio_output=True): lambda_df_lang = lambda_database[language] current_transcript = lambda_df_lang.get_random_sample_from_df(language, category) app_logger.info(f"category={category}, language={language}, current_transcript={current_transcript}.") return current_transcript[0] if is_gradio_output else current_transcript def getSentenceCategory(sentence) -> int: number_of_words = len(sentence.split()) categories_word_limits = [0, 8, 20, 100000] for category in range(len(categories_word_limits) - 1): if categories_word_limits[category] < number_of_words <= categories_word_limits[category + 1]: return category + 1 def get_pickle2json_dataframe( custom_pickle_filename_no_ext: Path | str = 'data_de_en_2', custom_folder: Path = sample_folder ): custom_folder = Path(custom_folder) with open(custom_folder / f'{custom_pickle_filename_no_ext}.pickle', 'rb') as handle: df2 = pickle.load(handle) pass df2["de_category"] = df2["de_sentence"].apply(getSentenceCategory) print("de_category added") df2["en_category"] = df2["en_sentence"].apply(getSentenceCategory) print("en_category added") df_json = df2.to_json() with open(custom_folder / f'{custom_pickle_filename_no_ext}.json', 'w') as dst: dst.write(df_json) print("data_de_en_with_categories.json written")