import random import tempfile from pathlib import Path from aip_trainer import app_logger def get_tts(text: str, language: str, tmp_prefix="audio_", tmp_suffix=".wav") -> str: from aip_trainer.models import models if text is None or len(text) == 0: raise ValueError(f"cannot read an empty/None text: '{text}'...") if language is None or len(language) == 0: raise NotImplementedError(f"Not tested/supported with '{language}' language...") tmp_dir = Path(tempfile.gettempdir()) try: model, _, speaker, sample_rate = models.silero_tts( language, output_folder=tmp_dir ) except ValueError: model, _, sample_rate, _, _, speaker = models.silero_tts( language, output_folder=tmp_dir ) app_logger.info(f"model speaker #0: {speaker} ...") with tempfile.NamedTemporaryFile(prefix=tmp_prefix, suffix=tmp_suffix, delete=False) as tmp_audio_file: app_logger.info(f"tmp_audio_file output: {tmp_audio_file.name} ...") audio_paths = model.save_wav(text=text, speaker=speaker, sample_rate=sample_rate, audio_path=str(tmp_audio_file.name)) app_logger.info(f"audio_paths output: {audio_paths} ...") return audio_paths