import math import torch import torch.nn as nn import torch.nn.functional as F # import open_clip def conv_layer(in_dim, out_dim, kernel_size=1, padding=0, stride=1): return nn.Sequential( nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False), nn.BatchNorm2d(out_dim), nn.ReLU(True)) # return nn.Sequential( # nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False), # nn.LayerNorm(out_dim), nn.ReLU(True)) # def conv_layer_1(in_dim, out_dim, kernel_size=1, padding=0, stride=1): # return nn.Sequential( # nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False), # nn.LayerNorm(out_dim), nn.ReLU(True)) def linear_layer(in_dim, out_dim,bias=False): return nn.Sequential(nn.Linear(in_dim, out_dim, bias), nn.BatchNorm1d(out_dim), nn.ReLU(True)) # return nn.Sequential(nn.Linear(in_dim, out_dim, bias), # nn.LayerNorm(out_dim), nn.ReLU(True)) class AttentionPool2d(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x): x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC x, _ = F.multi_head_attention_forward( query=x[:1], key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False ) return x.squeeze(0) # class AttentionPool2d(nn.Module): # def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): # super().__init__() # self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) # self.k_proj = nn.Linear(embed_dim, embed_dim) # self.q_proj = nn.Linear(embed_dim, embed_dim) # self.v_proj = nn.Linear(embed_dim, embed_dim) # self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) # self.num_heads = num_heads # # def forward(self, x): # x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC # x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC # x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC # x, _ = F.multi_head_attention_forward( # query=x, key=x, value=x, # embed_dim_to_check=x.shape[-1], # num_heads=self.num_heads, # q_proj_weight=self.q_proj.weight, # k_proj_weight=self.k_proj.weight, # v_proj_weight=self.v_proj.weight, # in_proj_weight=None, # in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), # bias_k=None, # bias_v=None, # add_zero_attn=False, # dropout_p=0, # out_proj_weight=self.c_proj.weight, # out_proj_bias=self.c_proj.bias, # use_separate_proj_weight=True, # training=self.training, # need_weights=False # ) # # return x[0] class CoordConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, padding=1, stride=1): super().__init__() self.conv1 = conv_layer(in_channels + 2, out_channels, kernel_size, padding, stride) def add_coord(self, input): b, _, h, w = input.size() x_range = torch.linspace(-1, 1, w, device=input.device) y_range = torch.linspace(-1, 1, h, device=input.device) y, x = torch.meshgrid(y_range, x_range) y = y.expand([b, 1, -1, -1]) x = x.expand([b, 1, -1, -1]) coord_feat = torch.cat([x, y], 1) input = torch.cat([input, coord_feat], 1) return input def forward(self, x): x = self.add_coord(x) x = self.conv1(x) return x class TransformerDecoder(nn.Module): def __init__(self, num_layers, d_model, nhead, dim_ffn, dropout, return_intermediate=False): super().__init__() self.layers = nn.ModuleList([ TransformerDecoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_ffn, dropout=dropout) for _ in range(num_layers) ]) self.num_layers = num_layers self.norm = nn.LayerNorm(d_model) self.return_intermediate = return_intermediate @staticmethod def pos1d(d_model, length): """ :param d_model: dimension of the model :param length: length of positions :return: length*d_model position matrix """ if d_model % 2 != 0: raise ValueError("Cannot use sin/cos positional encoding with " "odd dim (got dim={:d})".format(d_model)) pe = torch.zeros(length, d_model) position = torch.arange(0, length).unsqueeze(1) div_term = torch.exp((torch.arange(0, d_model, 2, dtype=torch.float) * -(math.log(10000.0) / d_model))) pe[:, 0::2] = torch.sin(position.float() * div_term) pe[:, 1::2] = torch.cos(position.float() * div_term) return pe.unsqueeze(1) # n, 1, 512 @staticmethod def pos2d(d_model, height, width): """ :param d_model: dimension of the model :param height: height of the positions :param width: width of the positions :return: d_model*height*width position matrix """ if d_model % 4 != 0: raise ValueError("Cannot use sin/cos positional encoding with " "odd dimension (got dim={:d})".format(d_model)) pe = torch.zeros(d_model, height, width) # Each dimension use half of d_model d_model = int(d_model / 2) div_term = torch.exp( torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model)) pos_w = torch.arange(0., width).unsqueeze(1) pos_h = torch.arange(0., height).unsqueeze(1) pe[0:d_model:2, :, :] = torch.sin(pos_w * div_term).transpose( 0, 1).unsqueeze(1).repeat(1, height, 1) pe[1:d_model:2, :, :] = torch.cos(pos_w * div_term).transpose( 0, 1).unsqueeze(1).repeat(1, height, 1) pe[d_model::2, :, :] = torch.sin(pos_h * div_term).transpose( 0, 1).unsqueeze(2).repeat(1, 1, width) pe[d_model + 1::2, :, :] = torch.cos(pos_h * div_term).transpose( 0, 1).unsqueeze(2).repeat(1, 1, width) return pe.reshape(-1, 1, height * width).permute(2, 1, 0) # hw, 1, 512 def forward(self, vis, txt, pad_mask): ''' vis: b, 512, h, w txt: b, L, 512 pad_mask: b, L ''' B, C, H, W = vis.size() _, L, D = txt.size() # position encoding vis_pos = self.pos2d(C, H, W) txt_pos = self.pos1d(D, L) # reshape & permute vis = vis.reshape(B, C, -1).permute(2, 0, 1) txt = txt.permute(1, 0, 2) # forward output = vis intermediate = [] for layer in self.layers: output = layer(output, txt, vis_pos, txt_pos, pad_mask) if self.return_intermediate: # HW, b, 512 -> b, 512, HW intermediate.append(self.norm(output).permute(1, 2, 0)) if self.norm is not None: # HW, b, 512 -> b, 512, HW output = self.norm(output).permute(1, 2, 0) if self.return_intermediate: intermediate.pop() intermediate.append(output) # [output1, output2, ..., output_n] return intermediate else: # b, 512, HW return output return output class TransformerDecoderLayer(nn.Module): def __init__(self, d_model=512, nhead=9, dim_feedforward=2048, dropout=0.1): super().__init__() # Normalization Layer self.self_attn_norm = nn.LayerNorm(d_model) self.cross_attn_norm = nn.LayerNorm(d_model) # Attention Layer self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, kdim=d_model, vdim=d_model) # FFN self.ffn = nn.Sequential(nn.Linear(d_model, dim_feedforward), nn.ReLU(True), nn.Dropout(dropout), nn.LayerNorm(dim_feedforward), nn.Linear(dim_feedforward, d_model)) # LayerNorm & Dropout self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) def with_pos_embed(self, tensor, pos): return tensor if pos is None else tensor + pos.to(tensor.device) def forward(self, vis, txt, vis_pos, txt_pos, pad_mask): ''' vis: 26*26, b, 512 txt: L, b, 512 vis_pos: 26*26, 1, 512 txt_pos: L, 1, 512 pad_mask: b, L ''' # Self-Attention vis2 = self.norm1(vis) q = k = self.with_pos_embed(vis2, vis_pos) vis2 = self.self_attn(q, k, value=vis2)[0] vis2 = self.self_attn_norm(vis2) vis = vis + self.dropout1(vis2) # Cross-Attention vis2 = self.norm2(vis) vis2 = self.multihead_attn(query=self.with_pos_embed(vis2, vis_pos), key=self.with_pos_embed(txt, txt_pos), value=txt, key_padding_mask=pad_mask)[0] vis2 = self.cross_attn_norm(vis2) vis = vis + self.dropout2(vis2) # FFN vis2 = self.norm3(vis) vis2 = self.ffn(vis2) vis = vis + self.dropout3(vis2) return vis class Text_Projector(nn.Module): def __init__(self, args, in_channels=[512, 1024, 1024], out_channels=[256, 512, 1024]): super(Text_Projector, self).__init__() self.proj = linear_layer(args, in_channels[2], out_channels[2]) self.ReLU = nn.ReLU(True) def forward(self, text): text = self.ReLU(text + self.proj(text)) return text class Image_Projector(nn.Module): def __init__(self, args, in_channels=[512, 1024, 1024], out_channels=[256, 512, 1024]): super(Image_Projector, self).__init__() self.proj = linear_layer(args, in_channels[0], out_channels[2]) self.ReLU = nn.ReLU(True) def forward(self, image): image = self.ReLU(image + self.proj(image)) return image class Adapter(nn.Module): def __init__(self, c_in, reduction=4): super(Adapter, self).__init__() self.fc = nn.Sequential( nn.Linear(c_in, c_in // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(c_in // reduction, c_in, bias=False), nn.ReLU(inplace=True) ) def forward(self, x): x = self.fc(x) return x class GAP(nn.Module): def __init__(self, kernel): super(GAP, self).__init__() self.k = kernel # self.fc = nn.Linear(512, 1024) def forward(self, x): x = F.adaptive_avg_pool2d(x, self.k) return x.squeeze(-1).squeeze(-1) class AdaptiveSpatialFeatureFusion(nn.Module): def __init__(self, args, in_channels=[512, 1024, 1024], out_channels=[256, 512, 1024]): super(AdaptiveSpatialFeatureFusion, self).__init__() self.weight = nn.LayerNorm(out_channels[2]) self.proj = linear_layer(args, in_channels[0], out_channels[2]) def forward(self, feature_map1, feature_map2): # feature_map1 : b, 1024, 1, 1 # feature_map2 : b, 512, 1, 1 feature_map2 = self.proj(feature_map2.squeeze(-1).squeeze(-1)) feature_map1 = feature_map1.squeeze(-1).squeeze(-1) weights1 = torch.norm(feature_map1, dim=1).unsqueeze(-1) weights2 = torch.norm(feature_map2, dim=1).unsqueeze(-1) weights1 = weights1 / (weights1 + weights2) weights2 = 1 - weights1 fused_feature_map = weights1 * feature_map1 + weights2 * feature_map2 # b, 1024 return fused_feature_map class ModifiedAttentionPool2d(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.spacial_dim = spacial_dim self.positional_embedding = nn.Parameter( torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads # residual self.connect = nn.Sequential( nn.Conv2d(embed_dim, output_dim, 1, stride=1, bias=False), nn.BatchNorm2d(output_dim)) def resize_pos_embed(self, pos_embed, input_shpae): """Resize pos_embed weights. Resize pos_embed using bicubic interpolate method. Args: pos_embed (torch.Tensor): Position embedding weights. input_shpae (tuple): Tuple for (downsampled input image height, downsampled input image width). pos_shape (tuple): The resolution of downsampled origin training image. mode (str): Algorithm used for upsampling: ``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` | ``'trilinear'``. Default: ``'nearest'`` Return: torch.Tensor: The resized pos_embed of shape [B, C, L_new] """ assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]' pos_h = pos_w = self.spacial_dim cls_token_weight = pos_embed[:, 0] pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):] pos_embed_weight = pos_embed_weight.reshape( 1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2) pos_embed_weight = F.interpolate(pos_embed_weight, size=input_shpae, align_corners=False, mode='bicubic') cls_token_weight = cls_token_weight.unsqueeze(1) pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2) # pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1) return pos_embed_weight.transpose(-2, -1) def forward(self, x): B, C, H, W = x.size() res = self.connect(x) x = x.reshape(B, C, -1) # NC(HW) # x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(1+HW) pos_embed = self.positional_embedding.unsqueeze(0) pos_embed = self.resize_pos_embed(pos_embed, (H, W)) # NC(HW) x = x + pos_embed.to(x.dtype) # NC(HW) x = x.permute(2, 0, 1) # (HW)NC x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat( [self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False) xt = x[0] x = x.permute(1, 2, 0).reshape(B, -1, H, W) x = x + res x = F.relu(x, True) return x, xt # modified class FPN(nn.Module): def __init__(self, args, in_channels=[512, 1024, 1024], out_channels=[256, 512, 1024, 1024]): super(FPN, self).__init__() input_resolution = args.input_size heads = args.heads output_dim = args.output_dim embed_dim = args.emb_dim # image projection self.attn = ModifiedAttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) # text projection self.txt_proj = linear_layer(args, in_channels[2], out_channels[2]) # fusion 1: v5 & seq -> f_5: b, 1024, 13, 13 self.f1_v_proj = conv_layer(in_channels[2], out_channels[2], 1, 0) self.norm_layer = nn.Sequential(nn.BatchNorm2d(out_channels[2]), nn.ReLU(True)) # fusion 2: v4 & fm -> f_4: b, 512, 26, 26 self.f2_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1) self.f2_cat = conv_layer(out_channels[2] + out_channels[1], out_channels[1], 1, 0) # fusion 3: v3 & fm_mid -> f_3: b, 512, 52, 52 self.f3_v_proj = conv_layer(in_channels[0], out_channels[0], 3, 1) self.f3_cat = conv_layer(out_channels[0] + out_channels[1], out_channels[1], 1, 0) # fusion 4: f_3 & f_4 & f_5 -> fq: b, 256, 26, 26 self.f4_proj5 = conv_layer(out_channels[2], out_channels[1], 3, 1) self.f4_proj4 = conv_layer(out_channels[1], out_channels[1], 3, 1) self.f4_proj3 = conv_layer(out_channels[1], out_channels[1], 3, 1) # aggregation self.aggr = conv_layer(3 * out_channels[1], out_channels[1], 1, 0) self.coordconv = nn.Sequential( CoordConv(out_channels[1], out_channels[1], 3, 1), conv_layer(out_channels[1], out_channels[3], 3, 1)) def forward(self, imgs, text): # v3, v4, v5: 256, 52, 52 / 512, 26, 26 / 1024, 13, 13 v3, v4, v5 = imgs # fusion 1: b, 1024, 13, 13 # text projection: b, 1024 -> b, 1024 v5, _ = self.attn(v5) text_ = self.txt_proj(text) state = text_.unsqueeze(-1).unsqueeze( -1)# b, 1024, 1, 1 f5 = self.f1_v_proj(v5) # b, 1024, 7, 7 f5 = self.norm_layer(f5 * state) # fusion 2: b, 512, 26, 26 f4 = self.f2_v_proj(v4) # f4 = f4.repeat(w2,1,1,1) f5_ = F.interpolate(f5, scale_factor=2, mode='bilinear') f4 = self.f2_cat(torch.cat([f4, f5_], dim=1)) # fusion 3: b, 256, 26, 26 f3 = self.f3_v_proj(v3) f3 = F.avg_pool2d(f3, 2, 2) # f3 = f3.repeat(w2, 1, 1, 1) f3 = self.f3_cat(torch.cat([f3, f4], dim=1)) # fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26 fq5 = self.f4_proj5(f5) fq4 = self.f4_proj4(f4) fq3 = self.f4_proj3(f3) # query fq5 = F.interpolate(fq5, scale_factor=2, mode='bilinear') fq = torch.cat([fq3, fq4, fq5], dim=1) fq = self.aggr(fq) fq = self.coordconv(fq) # fqq = fq.reshape(w1, w2, fq.shape[1], fq.shape[2], fq.shape[3]) # b, 512, 26, 26 # elif text.shape[0] != v3.shape[0]: # # text = self.txt_proj(text) # state = text.unsqueeze(-1).unsqueeze( # -1) # b, 1024, 1, 1 # state = state.view(v5.shape[0], int(text.shape[0] / v5.shape[0]), state.shape[1], state.shape[2], state.shape[3]) # # f5 = self.f1_v_proj(v5) # b, 1024, 7, 7 # f5 = f5.unsqueeze(1) # f5_ = f5 * state # f5_ = f5_.view(-1, f5.shape[2], f5.shape[3], f5.shape[4]) # f5 = self.norm_layer(f5_) # # fusion 2: b, 512, 26, 26 # f4 = self.f2_v_proj(v4) # # f4 = f4.repeat(w2,1,1,1) # # f5_ = F.interpolate(f5, scale_factor=2, mode='bilinear') # f4 = f4.repeat(int(f5_.shape[0] / f4.shape[0]), 1, 1, 1) # f4 = self.f2_cat(torch.cat([f4, f5_], dim=1)) # # # fusion 3: b, 256, 26, 26 # f3 = self.f3_v_proj(v3) # f3 = F.avg_pool2d(f3, 2, 2) # # f3 = f3.repeat(w2, 1, 1, 1) # f3 = f3.repeat(int(f5_.shape[0] / f3.shape[0]), 1, 1, 1) # f3 = self.f3_cat(torch.cat([f3, f4], dim=1)) # # fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26 # fq5 = self.f4_proj5(f5) # fq4 = self.f4_proj4(f4) # fq3 = self.f4_proj3(f3) # # query # fq5 = F.interpolate(fq5, scale_factor=2, mode='bilinear') # fq = torch.cat([fq3, fq4, fq5], dim=1) # fq = self.aggr(fq) # fq = self.coordconv(fq) return fq class ViTFPN(nn.Module): def __init__(self, image_resolution, in_channels=[512, 768, 768], out_channels=[768, 768, 768, 512]): super(ViTFPN, self).__init__() # text projection self.txt_proj = linear_layer(in_channels[0], out_channels[1]) # fusion 1: v5 & seq -> f_5: b, 1024, 13, 13 self.f1_v_proj = conv_layer(in_channels[1], out_channels[1], 1, 0) self.norm_layer = nn.Sequential(nn.BatchNorm2d(out_channels[1]), nn.ReLU(True)) # fusion 2: v4 & fm -> f_4: b, 512, 26, 26 self.f2_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1) self.f2_cat = conv_layer(out_channels[0] + out_channels[0], out_channels[0], 1, 0) # fusion 3: v3 & fm_mid -> f_3: b, 512, 52, 52 self.f3_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1) self.f3_cat = conv_layer(out_channels[0] + out_channels[1], out_channels[1], 1, 0) # fusion 4: f_3 & f_4 & f_5 -> fq: b, 256, 26, 26 self.f4_proj5 = conv_layer(out_channels[1], out_channels[0], 3, 1) self.f4_proj4 = conv_layer(out_channels[0], out_channels[0], 3, 1) self.f4_proj3 = conv_layer(out_channels[1], out_channels[1], 3, 1) # aggregation self.aggr = conv_layer(3 * out_channels[0], out_channels[0], 1, 0) self.coordconv = nn.Sequential( CoordConv(out_channels[0], out_channels[0], 3, 1), conv_layer(out_channels[0], out_channels[-1], 3, 1)) self.attnpool = AttentionPool2d(image_resolution // 32, out_channels[-1], 8, out_channels[-1]) def forward(self, imgs, state, vis): # v1 / v2 / b, 49, 1024/ b, 196, 512 v3, v4, v5 = imgs # fusion 1: b, 1024, 13, 13 # text projection: b, 1024 -> b, 1024 state = self.txt_proj(state) state = state.unsqueeze(-1).unsqueeze( -1)# b, 1024, 1, 1 f5 = self.f1_v_proj(v5) f5 = self.norm_layer(f5 * state) # fusion 2: b, 512, 26, 26 f4 = self.f2_v_proj(v4) b, c, h, w = f4.size() f5_ = F.interpolate(f5, (h, w), mode='bilinear') f4 = self.f2_cat(torch.cat([f4, f5_], dim=1)) # fusion 3: b, 256, 26, 26 f3 = self.f3_v_proj(v3) f3 = F.avg_pool2d(f3, 2, 2) # f3 = f3.repeat(w2, 1, 1, 1) f3 = self.f3_cat(torch.cat([f3, f4], dim=1)) # fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26 fq5 = self.f4_proj5(f5) fq4 = self.f4_proj4(f4) fq3 = self.f4_proj3(f3) # query fq5 = F.interpolate(fq5, (h, w), mode='bilinear') fq = torch.cat([fq3, fq4, fq5], dim=1) fq = self.aggr(fq) if not vis: fq = self.coordconv(fq) fq = self.attnpool(fq) # b, 512, 26, 26 return fq