import json import os import sys import time import copy import re from pathlib import Path from typing import List, Literal, Optional, Tuple, TypedDict, Dict import numpy as np from tqdm import tqdm # Get the path from environment variable prj_root_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(prj_root_path) from code_interpreter.JuypyterClient import JupyterNotebook from code_interpreter.BaseCodeInterpreter import BaseCodeInterpreter from utils.const import * from prompt.gpt4_prompt import CODE_INTERPRETER_SYSTEM_PROMPT # from prompt.gpt4_prompt import CODE_INTERPRETER_SYSTEM_PROMPT from colorama import init, Fore, Style, Back from rich.markdown import Markdown import base64 import openai from retrying import retry import requests import logging from termcolor import colored # load from key file with open("./openai_api_key.txt") as f: OPENAI_API_KEY = key = f.read() openai.api_key = OPENAI_API_KEY from utils.cleaner import clean_error_msg def remove_string(s): pattern = r"\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}\.\d{6}:.*LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64\n" return re.sub(pattern, "", s) def clean_the_dialog(dialog, question): question_idx = 0 for idx, item in enumerate(dialog): if item["content"] == question: question_idx = idx filtered_dialog = dialog[question_idx:] user_qinit_dict = filtered_dialog[0] answer_fuse_str = "\n".join([i["content"].strip() for i in filtered_dialog[1::2]]) final_dialog_dict = [ {"role": "user", "content": user_qinit_dict["content"]}, {"role": "assistant", "content": answer_fuse_str}, ] return final_dialog_dict @retry( stop_max_attempt_number=7, wait_exponential_multiplier=1000, wait_exponential_max=10000, ) def get_embedding(text, model="text-embedding-ada-002"): global counter headers = { "Authorization": f"Bearer {OPENAI_API_KEY}", # Make sure to replace with your OpenAI API key "Content-Type": "application/json", } payload = {"input": text, "model": model} response = requests.post( "https://api.openai.com/v1/embeddings", headers=headers, json=payload ) if response.status_code != 200: raise Exception(f"Request failed with status {response.status_code}") return np.array(response.json()["data"][0]["embedding"]) class QueryRetrospect: def __init__( self, data_directory="./gpt_data_gen_retrospect/", embeddings_path="./gpt_data_gen_retrospect/embeddings.npy", ): self.data_directory = data_directory self.embeddings_path = embeddings_path self.data = [] self.embeddings = [] if os.path.exists(embeddings_path): print("++ Embedding Exists!") self.embeddings = np.load(embeddings_path) for fname in [i for i in os.listdir(data_directory) if i.endswith(".json")]: with open( os.path.join(data_directory, fname), "r", encoding="utf-8", errors="replace", ) as f: self.data.append(json.load(f)) else: only_files = [ f for f in os.listdir(data_directory) if os.path.isfile(os.path.join(data_directory, f)) and f.endswith(".json") ] for fname in tqdm(only_files): with open( os.path.join(data_directory, fname), "r", encoding="cp1252" ) as f: data_point = json.load(f) self.data.append(data_point) self.embeddings.append( get_embedding(data_point["execution_result"]) ) self.embeddings = np.array(self.embeddings) self.save_embeddings() print(f"++ Embedding Saved! {self.embeddings.shape}") def save_embeddings(self): np.save(self.embeddings_path, self.embeddings) def __call__(self, query, top_k=3, VERBOSE: bool = False): query_embedding = get_embedding(query) similarities = np.dot(self.embeddings, query_embedding) top_indices = similarities.argsort()[-top_k:][::-1] return [self.data[i]["retrospection"] for i in top_indices] class QueryRetrospectPrefix: def __init__( self, model="gpt-4", data_directory="./eval/gpt_mbpp_output", embeddings_path="./eval/gpt_mbpp_output/embeddings.npy", ): self.data_directory = data_directory self.embeddings_path = embeddings_path self.data = [] self.embeddings = [] if os.path.exists(embeddings_path): print("++ Embedding Exists!") self.embeddings = np.load(embeddings_path) for fname in [i for i in os.listdir(data_directory) if i.endswith(".json")]: with open( os.path.join(data_directory, fname), "r", encoding="utf-8", errors="replace", ) as f: self.data.append(json.load(f)) else: only_files = [ f for f in os.listdir(data_directory) if os.path.isfile(os.path.join(data_directory, f)) and f.endswith(".json") ] for fname in tqdm(only_files): with open( os.path.join(data_directory, fname), "r", encoding="cp1252" ) as f: data_point = json.load(f) print(f'Processing "{data_point[1]["content"]}" ...') self.data.append(data_point) self.embeddings.append(get_embedding(data_point[1]["content"])) self.embeddings = np.array(self.embeddings) self.save_embeddings() print(f"++ Embedding Saved! {self.embeddings.shape}") self.model = model self.dialog = [ { "role": "system", "content": "You are retrospection GPT. retrospect from the given data.", }, { "role": "user", "content": 'Current Question:\n\nWrite a Python function to solve the following task:\n\nfrom typing import List\n\ndef cum_sum(numbers: List[int]) -> List[int]:\n """\n From a given list of integers, generate a list representing the cumulative sum of elements at each index.\n >>> cum_sum([1, 2, 3, 4])\n [1, 3, 6, 10]\n """\n\nRetrieved Trajectories : \nIn a past interaction, a function named running_average was provided to calculate the running average of a list of numbers.\n\n```python\ndef running_average(numbers: List[int]) -> List[float]:\n total = 0\n averages = []\n for i, num in enumerate(numbers):\n total += num\n averages.append(total / (i+1))\n return averages\n\nprint(running_average([1,2,3,4])) # expected [1.0, 1.5, 2.0, 2.5]\n```\n```RESULT\n[1.0, 1.5, 2.0, 2.5]\n```\nThe output is expected. \n\n', }, { "role": "assistant", "content": "From previous similar questions :\nThe `running_average` function highlights an important concept of maintaining a running or cumulative value (total) as one iterates over the list. This is directly applicable to the cum_sum problem.\n\nApplication to the Question:\nFor the cum_sum function, one needs to maintain a cumulative total of the elements as we traverse through the list. The running_average function is most closely related since it involves accumulating a total and storing intermediate results. By adapting this logic (i.e., excluding the division operation to compute the average), one can easily derive the cumulative sum solution.", }, ] self.response = "" @retry( stop_max_attempt_number=7, wait_exponential_multiplier=1000, wait_exponential_max=10000, ) def ChatCompletion(self): try: self.response = openai.ChatCompletion.create( model=self.model, messages=self.dialog, temperature=0.2, top_p=0.9 ) except Exception as e: print(f"error while OPENAI api call {e} {self.response}") def save_embeddings(self): np.save(self.embeddings_path, self.embeddings) def __call__(self, query, top_k=3, VERBOSE: bool = False): query_embedding = get_embedding(query) similarities = np.dot(self.embeddings, query_embedding) top_indices = similarities.argsort()[-top_k:][::-1] top_i = top_indices[0] prior_traj = self.data[top_i][-1]["content"] ask_dict = { "role": "user", "content": f"Current Question:\n\n{query}\n\nRetrieved Trajectories :\n{prior_traj}", } # print(f"From prior experience:\n{prior_traj}\n\nCurrent Question:\n{query}\n") self.dialog.append(ask_dict) self.ChatCompletion() return self.response["choices"][0]["message"]["content"] class RetrospectiveGPTCodeInterpreter(BaseCodeInterpreter): def __init__(self, model="gpt-4"): self.model = model self.dialog = [ # {"role": "system", "content": CODE_INTERPRETER_SYSTEM_PROMPT }, { "role": "system", "content": CODE_INTERPRETER_SYSTEM_PROMPT, }, # {"role": "user", "content": "How can I use BeautifulSoup to scrape a website and extract all the URLs on a page?"}, # {"role": "assistant", "content": "I think I need to use beatifulsoup to find current korean president,"} ] # self.dialog += few_shot_4 self.response = None assert os.path.isfile( "./openai_api_key.txt" ), "The openai_api_key.txt file could not be found. Please make sure it is in the same directory as this script, and that it contains your OpenAI API key." # load from key file with open("./openai_api_key.txt") as f: OPENAI_API_KEY = f.read() openai.api_key = OPENAI_API_KEY self.nb = JupyterNotebook() out = self.nb.add_and_run(TOOLS_CODE) # tool import # retrospections self.retrospector = QueryRetrospectPrefix() def get_response_content(self): if self.response: return self.response["choices"][0]["message"]["content"] else: return None @retry( stop_max_attempt_number=7, wait_exponential_multiplier=1000, wait_exponential_max=10000, ) def ChatCompletion(self): try: self.response = openai.ChatCompletion.create( model=self.model, messages=self.dialog, temperature=0.2, top_p=0.9 ) except Exception as e: print(f"error while OPENAI api call {e}") def save_dialog(self, path: str = "./output/dialog.json"): with open(path, "w") as f: json.dump(self.dialog, f) print(f" ++Dialog saved to [{path}]") def close(self): """ close jupyter notebook, and this class instance """ self.nb.close() def chat( self, user_message: str, VERBOSE: bool = False, MAX_TRY: int = 6, code_exec_prefix: str = "", feedback_prompt: str = "", append_result: bool = True, use_retrospect: bool = True, ): prefix_retrospection = self.retrospector(query=user_message) self.dialog.append( {"role": "user", "content": f"{prefix_retrospection}\n\n{user_message}"} ) init_feedback = copy.deepcopy(feedback_prompt) code_block_output = "" attempt = 0 img_data = None if VERBOSE: print( "###Retrospection : " + Fore.BLUE + Back.WHITE + Style.BRIGHT + prefix_retrospection + Style.RESET_ALL ) print( "###User : " + Fore.BLUE + Style.BRIGHT + user_message + Style.RESET_ALL ) print("\n###Assistant : ") for i in range(MAX_TRY): # GPT response self.ChatCompletion() # Get code block generated_text = self.get_response_content() generated_code_blocks = self.extract_code_blocks(generated_text) # execute code if len(generated_code_blocks) > 0: # Find the position of the first code block in the last answer first_code_block_pos = ( generated_text.find(generated_code_blocks[0]) if generated_code_blocks else -1 ) text_before_first_code_block = ( generated_text if first_code_block_pos == -1 else generated_text[:first_code_block_pos] ) if VERBOSE: print(Fore.GREEN + text_before_first_code_block + Style.RESET_ALL) if VERBOSE: print( Fore.YELLOW + generated_code_blocks[0] + "\n```\n" + Style.RESET_ALL ) code_block_output, error_flag = self.execute_code_and_return_output( generated_code_blocks[0] ) code_block_output = f"{code_block_output}" if code_block_output is not None: code_block_output = code_block_output.strip() code_block_output = remove_string(code_block_output) if len(code_block_output) > 500: code_block_output = ( code_block_output[:200] + "⋯(skip)⋯" + code_block_output[-200:] ) code_block_output_str = f"\n```RESULT\n{code_block_output}\n```\n" if append_result: gen_final = f"{text_before_first_code_block}{generated_code_blocks[0]}\n```{code_block_output_str}" if VERBOSE: print( Fore.LIGHTBLACK_EX + code_block_output_str + Style.RESET_ALL ) else: gen_final = ( f"{text_before_first_code_block}{generated_code_blocks[0]}\n```" ) self.dialog.append( { "role": "assistant", "content": gen_final, } ) feedback_prompt = f"{init_feedback}\nif you accomplish the instruction just say \nIf not keep going." if VERBOSE: print(Fore.MAGENTA + feedback_prompt + Style.RESET_ALL) feedback_dict = { "role": "user", "content": feedback_prompt, } self.dialog.append(feedback_dict) else: if "" in generated_text: generated_text = generated_text.split("")[0].strip() if len(generated_text) <= 0: break if VERBOSE: print(Fore.GREEN + generated_text + Style.RESET_ALL) self.dialog.append( { "role": "assistant", "content": f"{generated_text}", } ) break self.dialog = [self.dialog[0]] + clean_the_dialog( self.dialog, question=f"{prefix_retrospection}\n\n{user_message}" ) # delete retrospections after generation step return self.dialog[-1] if __name__ == "__main__": import pickle import random from tqdm import tqdm # python3 -m code_interpreter.RetrospectiveGPTCodeInterpreter retro_interpreter = RetrospectiveGPTCodeInterpreter(model="gpt-4") instruction = """ Write a Python script to solve the following problem: def get_row(lst, x): \"\"\" You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] get_row([], 1) == [] get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)] \"\"\" Ensure the solution is verified by printing the expected output. """ # instruction = "Can you make a image of astraunaut in the garden?" # example retro_interpreter.chat( user_message=instruction, MAX_TRY=5, use_retrospect=True, feedback_prompt="Ensure the output matches the expected result, taking into account any corner cases. If discrepancies arise, pinpoint where you went wrong. Then, refine the code to achieve the desired outcome.", VERBOSE=True, )