import gradio as gr import pandas as pd from sklearn.model_selection import train_test_split housing = pd.read_csv("housing.csv") train_set, test_set = train_test_split(housing, test_size=0.2, random_state=10) ## 2. clean the missing values train_set_clean = train_set.dropna(subset=["total_bedrooms"]) train_set_clean ## 2. derive training features and training labels train_labels = train_set_clean["median_house_value"].copy() # get labels for output label Y train_features = train_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set ## 4. scale the numeric features in training set from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() ## define the transformer scaler.fit(train_features) ## call .fit() method to calculate the min and max value for each column in dataset train_features_normalized = scaler.transform(train_features) train_features_normalized from sklearn.linear_model import LinearRegression ## import the LinearRegression Function lin_reg = LinearRegression() ## Initialize the class lin_reg.fit(train_features_normalized, train_labels) # feed the training data X, and label Y for supervised learning import numpy as np def predict_price(input1, input2, input3, input4, input5, input6, input7, input8): features = np.array([[float(input1), float(input2), float(input3), float(input4), float(input5), float(input6), float(input7), float(input8)]]) print("recived features are: ", features) price = lin_reg.predict(features) return price input_module1 = gr.inputs.Textbox(label = "Input Feature 1") input_module2 = gr.inputs.Textbox(label = "Input Feature 2") input_module3 = gr.inputs.Textbox(label = "Input Feature 3") input_module4 = gr.inputs.Textbox(label = "Input Feature 4") input_module5 = gr.inputs.Textbox(label = "Input Feature 5") input_module6 = gr.inputs.Textbox(label = "Input Feature 6") input_module7 = gr.inputs.Textbox(label = "Input Feature 7") input_module8 = gr.inputs.Textbox(label = "Input Feature 8") output_module1 = gr.outputs.Textbox(label = "Output Text") gr.Interface(fn=predict_price, inputs=[input_module1, input_module2, input_module3, input_module4, input_module5, input_module6, input_module7, input_module8], outputs=[output_module1] ).launch()