import os import numpy as np import gradio as gr from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity shanty=os.environ.get('SHANTY') def compute_cosine_similarity(text1, text2): # Initialize the TfidfVectorizer tfidf_vectorizer = TfidfVectorizer() # Fit and transform the texts tfidf_matrix = tfidf_vectorizer.fit_transform([text1, text2]) # Compute the cosine similarity similarity_score = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2]) return similarity_score[0][0] def text_similarity(text): score= compute_cosine_similarity(shanty,text) return score*100 with gr.Blocks() as demo: gr.Markdown("# Guess the lyrics of the sea shanty! \n ## Each two seconds of video represents a line") video=gr.PlayableVideo("final_video.mp4") inp=gr.Textbox(placeholder="Enter lyrics of sea shanty!",label="Prediction") out=gr.Textbox(label="Your points") inp.change(text_similarity,inp,out) demo.launch(show_api=False)