--- title: LangGraph Agentic Chatbot app_file: agent/app.py sdk: gradio sdk_version: 5.4.0 --- # LangGraph Agentic Chatbot This repository contains a LangGraph-based chatbot that utilizes Gradio for interface rendering and integrates OpenAI's language model capabilities and custom tools for enhanced functionality. This project allowed me to learn and explore the capabilities of LangGraph and Agnetic workflows. ## Tech Stack - **Frontend:** - **[Gradio](https://gradio.app/docs)** - **Backend:** - **[LangGraph](https://langgraph.dev/)** - **[LangChain](https://python.langchain.com/en/latest/)** - **[Python](https://www.python.org/)** - **APIs:** - **[OpenAI API](https://platform.openai.com/docs)** - **[Tavily Search API](https://tavilyapi.com/docs)** - **Version Control:** - **[Git](https://git-scm.com/doc)** ## Setup To run this project locally, follow these steps: 1. **Clone the repository:** ```bash git clone https://github.com/your-repo/langgraph-agentic-chatbot.git ``` 2. **Navigate to the project directory:** ```bash cd langgraph-agentic-chatbot ``` 3. **Install dependencies:** ```bash pip install -r requirements.txt ``` 4. **Set up environment variables:** Create a `.env` file in the root directory and add your OpenAI API key and LangChain API key to trace the chatbot's interactions. ``` LANGCHAIN_TRACING_V2=true LANGCHAIN_ENDPOINT="https://api.example.langchain.com" LANGCHAIN_API_KEY="your_langchain_api_key" LANGCHAIN_PROJECT="your_langchain_project" ``` ``` OPENAI_API_KEY="your_openai_api_key" TAVILY_API_KEY="your_tavily_api_key" ``` 5. **Run the Gradio application:** ```bash gradio agent/main.py ``` 6. **Access the chatbot:** Open `http://localhost:7860` in your web browser to interact with the chatbot.