{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%%capture --no-stderr\n", "%pip install -U langgraph langsmith langchain_anthropic" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import os\n", "from dotenv import load_dotenv\n", "\n", "load_dotenv()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "openai_api_key = os.getenv(\"OPENAI_API_KEY\")\n", "model = os.getenv(\"OPENAI_MODEL\", \"gpt-4o\")\n", "temperature = float(os.getenv(\"OPENAI_TEMPERATURE\", 0))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "from typing import Annotated\n", "\n", "from typing_extensions import TypedDict\n", "\n", "from langgraph.graph import StateGraph, START, END\n", "from langgraph.graph.message import add_messages\n", "\n", "\n", "class State(TypedDict):\n", " # Messages have the type \"list\". The `add_messages` function\n", " # in the annotation defines how this state key should be updated\n", " # (in this case, it appends messages to the list, rather than overwriting them)\n", " messages: Annotated[list, add_messages]\n", "\n", "\n", "graph_builder = StateGraph(State)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from langchain_openai import ChatOpenAI as Chat\n", "\n", "llm = Chat(\n", " openai_api_key=openai_api_key,\n", " model=model,\n", " temperature=temperature\n", ")\n", "\n", "\n", "def chatbot(state: State):\n", " return {\"messages\": [llm.invoke(state[\"messages\"])]}\n", "\n", "\n", "# The first argument is the unique node name\n", "# The second argument is the function or object that will be called whenever\n", "# the node is used.\n", "graph_builder.add_node(\"chatbot\", chatbot)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "graph_builder.add_edge(START, \"chatbot\")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "graph_builder.add_edge(\"chatbot\", END)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "graph = graph_builder.compile()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdCIFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAAABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAAACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCADqAGsDASIAAhEBAxEB/8QAHQABAAMBAAMBAQAAAAAAAAAAAAUGBwQCAwgBCf/EAE0QAAEDAwEDBQkKDAQHAAAAAAECAwQABREGBxIhExUxQZQIFiJRVmGB0dMUFyMyNlRVcXSVJTVCUlNzkZKTsrO0YnKD0iRDREaxwfD/xAAaAQEBAAMBAQAAAAAAAAAAAAAAAQIDBAUH/8QAMxEAAgECAgcFCAIDAAAAAAAAAAECAxEEMRIUIVFxkaFBUmHB0RMjMjNTYoGSIkLh8PH/2gAMAwEAAhEDEQA/AP6p0pUFdrtLk3AWi0hIlhIXJmODebiIPRw/KcV+SnoABUrhupXnGLm7IuZMvyGozZcecQ0gdKlqCQPSajzqmyg4N3gA/aUeuuBnZ/ZSsPXCKL3MxhUq6gPrPHPAEbqPqQlI81dw0rZQMczwMfZUeqttqKzbY2H731WX6YgdpR66d9Vl+mIHaUeunerZfoeB2ZHqp3q2X6HgdmR6qe58ehdg76rL9MQO0o9dO+qy/TEDtKPXTvVsv0PA7Mj1U71bL9DwOzI9VPc+PQbB31WX6YgdpR66d9Vl+mIHaUeunerZfoeB2ZHqp3q2X6HgdmR6qe58eg2HTDu0G4EiLMjySOpl1K//AAa66gpmhNOTx8NY7epXU4mMhK0+dKgAQfODXG6iZosF9L8m6WMH4Zp9XKPw0/noV8ZxA6SlRUoDJBOAmmhCeyD27n6/8JZPItNK8W3EPNpcbUlaFAKSpJyCD0EGvKuch65D6IzDjzhwhtJWo+IAZNQGz9lR0xFuDwHuy6jnGQoZ4rcAIHH81O4geZAqauUT3fbpUXOOXaW3nxZBH/uorQUr3XouyrIKXERG2nEqGClxA3FpI8ykkeiuhbKLtvXmXsJ6lKVzkK7rraDp/ZrYxd9SXAW6Cp5EZtQaW6466s4Q2222lS1qODhKQTwPirN9Zd1NpnTE7Z+qMzPudp1VIlNmZHtkxbkdDLbpUQyhhS1L5RsIKMBQG8ojCSam+6FtNou2iIgu9q1LcBHuTEmJJ0lHU9cLdIQFFEptKcnweIOEq+PgpIJrIzO2gu6e2P631bp69XiTp7UM8zWods/Ca4LseTHjyXYjeSlZC2ytCRkb2cDiABs+s+6C0Fs9uceBqG+Ltkh6O3K+EgSVNstLJCFvLS2UsgkEZcKeg+KvfqfbnorR+pkaduV3d58ciNTm4EOBJluuMOLWhLiUstr3k5bVkj4uAVYBBOC7cxqvaBcda22XaNev2q56caRpS12Jl6NFdeejr5bnBaSkJWlwpSWn1BO4DhKiTVw2KafuidrsC9TbJcYTHvb2aB7pnQnGdyQl98usEqSMOJ8AqR0jwT1igLhst7oK1bTNbav001BnwplkujsFlbkCUGn222mlKcU6plLbat5xQDZVvEJChkKBrV6w/ZPIuGi9r+0jT1z09eko1BqBV6t94agrcty2FQmEkKkAbqFhTCk7qsEkpxnNbhQClKUBWNDYgtXWyJwGrRMMaOlOcJYU2h1pIz1JS4EDzIqz1WdJJ90XrVM9OeSeuAZbJGMhplttR8/hhweirNXRX+Y3wvxtt6leYqrvBWjblKlhtS7FNcL0jk0lSobxxvOED/lKxlRHxFZUcpUpSLRStcJ6N09qYKrqjZ7ozagxAk6g0/ZtUMsJUqI7OityUoSvG8UFQOArdTnHTgVAjubdlASU+9vpbdJBI5pYwT1fk+c1ZZOgrW4+4/DVLs7zhJWq2SVsJUScklsHcJJ45Kc9PHia9XeTI6tU34f6zPsq2aFJ5StxXpcbDw0hso0Xs/mPy9M6Us9glPt8k69bYTbC1ozndJSBkZAOKtdVfvJkeVV+/jM+yp3kyPKq/fxmfZU9nT7/AEYst5aKVlmsbddbHqbQsCLqm8GPebu7Cl8q6zvcmmBLfG58GPC32G/Hw3uHWLX3kyPKq/fxmfZU9nT7/Riy3kvqDTtr1XZ5NpvVujXW2SQA9DmNJdacAIUApKgQcEA/WBVJR3N2ylsko2caXSSCMi0sDgRgj4viNT/eTI8qr9/GZ9lTvJkeVV+/jM+yp7On3+jFlvIm0bAdmlgukW5W3QOnIFwiuJeYlRrYyhxpYOQpKgnIIPWKnrtf3JMly02Rbci653XXfjNQUnpW7/ix8VvpUcdCd5Sec6CZkcJt5vU9s8C05OU0lX18luZHm6D11PW62RLRERFhRmokdOSG2UBIyek8Os9Z66e7htT0n0GxHhZrTHsVqi2+KFBiOgISVneUrxqUetROST1kk120pWhtyd3mQUpSoBSlKAUpSgM/2kFI1zsp3iQTqKRu4HSeaLh5x1Z8f1dY0Cs/2kZ7+NlOCnHfDIzvAZ/FFw6M8c/VxxnqzWgUApSlAKUpQClKUApSlAKUpQClKUBnu0oA662T5UlONRyMBQ4q/BFx4Dh09fV0H6q0Ks92l47+tk2SQe+ORjwc5/A9x/Z/9460KgFKUoBSlKAUpSgFKVXL9qiRFn822mG3PuCUJdeL7xaZYQokJ3lBKiVHBwkDoGSU5GdkISqO0S5ljpVI591h8wsfa3vZ0591h8wsfa3vZ10arPeuaFi70qkc+6w+YWPtb3s6c+6w+YWPtb3s6arPeuaFj5R7pru3JmybbVaNPXTZ2685pq5KuMaQ3dRu3Bl2HIYQpILB3D/xGTgnBQpOTxNfZ2kL1I1JpOyXaZb12mXPgsSnoDi99UZa20qU0VYGSkkpzgZx0CsA2x9z+9tr11ovVF7t9mTM03I5QtokOKTNaB30suZa+KFje4fnKHXka/z7rD5hY+1vezpqs965oWLvSqRz7rD5hY+1vezpz7rD5hY+1vezpqs965oWLvSqRz7rD5hY+1vezr9Gr75aQZF5tkHm1HF5+3yXHHGU/nltTY3kjpODkAcAropqtTss/wAoWLtSvFC0uIStCgpKhkKByCK8q4yCqHAOda6sz1Pxx6Pc6PWavlUKB8tdW/r4/wDbt124X+/DzRV2k1SlK3EFKh4+rrTK1XN001L3r1DiNTn4vJrG4y4paW1b2N05LaxgHIxxAyKmKgFK4Z18t9sm2+HLmsRpdwdUzEYdcCVyFpQpakoHSohKVKOOgA1y23V1pu+orzYokvlbrZwwZ0fk1p5EPJKmvCICVZCSfBJxjjigJilK4Zl8t9vuNvgSZrDE64KWiJGccAcfKEFa9xPSrdSCTjoFUHdXBqAA2G5AgEGM7wP+Q131wX/8RXL7M5/Kazh8SKsyb0goq0nZSTkmCwSf9NNS9Q+jvkjZPsLH9NNTFedV+ZLiw8xVCgfLXVv6+P8A27dX2qFA+Wurf18f+3browv9+Hmgu0mqwq5RbhtX276t0xO1Pe9PWXTVtgOxINinqguS3JAdUt9biMLUlHJpQE53c5yOPHdapWudjGjtpFyi3G/2f3TcYzRYbmxpT0V/kiclsuMrQpSM5O6okcTw41sauQyCfs2Vqvuh9TWvvq1HaxC0da0CZbLgY8h9wPS0pcdcQAVkYJxwSoqOQeGK7btaX7bLojZlbosnUcrWcvTfO85Vov5skVLe8GhIfdQ2tS1laTutpSU8VlQxivpOxbO9PaZupuVstqYkw26Pad9DqyBFYKiy2ElRSAnfVxAyc8ScCq3I7nbZ7JtVitytPlMSyRVQYSWpshtSY5OVMrWlwKdbJGShwqB8VY6LBgMQStsFn7me7aku11Tcp782NKl225PQ1rUiFJ+ECmlJ3VqLYypOCQpSegkVal7OhqzbVtj5PV2oNLuW6FaCzMtdyWwEqERwhx79KE7vELyCCrrOa12XsI0LM0bC0quwpRYYMtU6HFZkvNGI8VKUVMuJWFtcVrwEKAAUQBjhXBeu5r2c6hlKk3DT65Dy2WYzq+cZSeXaabS2227h0cqkJSBuryDxJySSZosGQbNNU6k7oa8aUt2or9eNORhoqLfHGrDMVAdnynn3GlPKW3hW4kNJIQPBy7xyMCq7ZWZG1q/bDntQX28vyhP1FaedLdc3oS5bcVLyG30qZUnC1pbG8pOCrBB4cK+mNYbF9Ga7atqLvZEK5tZMeGuE+7DWyyQAWkrYWhXJkJHgZ3eA4UvmxbRWodL2fTsuwsotFnUlduZhuuRVRFJSUgtuNKStPAkHB45Oc00WC6pTupCck4GMk5NcN/8AxFcvszn8prqiRW4MRmMyClllCW0AqKiEgYHE8TwHSa5b/wDiK5fZnP5TXRD4kVZk1o75I2T7Cx/TTUxUPo75I2T7Cx/TTUxXnVfmS4sPMVQoHy11b+vj/wBu3V9qo3yzXG3XqRdrXFFxRLShMmHyobcCkDCXEFR3Tw4FJI6AQeo78NJJyTeat1T8gjrpUJztfvIy69qhe3pztfvIy69qhe3rr0PuX7L1LYm6VCc7X7yMuvaoXt6c7X7yMuvaoXt6aH3L9l6ixN0qp3TW8+zT7RCmaUurUm7SVQ4SOXiK5V1LLj5TkPEJ+DZcVk4Hg46SAZHna/eRl17VC9vTQ+5fsvUWJulQnO1+8jLr2qF7enO1+8jLr2qF7emh9y/ZeosTdcF//EVy+zOfymuPna/eRl17VC9vXi9H1BqSO7bzZHrIxIQpp6ZMkMrU2gjBKEtLXlWDwyQB08cYOUYqLTclbivUWLRo75I2T7Cx/TTUxXqixm4UVmOyndaaQG0J8SQMAV7a8mb0pOW8xFKUrAClKUApSlAUHaKnOttlhxnGoJBzu5x+CZ/mOP2j6+ODfqz/AGkI3tc7KTuqO7qKQchOQPwRcBk8eHT08ekePNaBQClKUApSlAKUpQClKUApSlAKUpQGe7Sika62TZOCdRyMeCDk8z3H9n1+jrrQqoG0cLOuNlW6XABqGRvbgyCOabh8bxDOPTir/QClKUApSlAKUpQClKUApX4pQQkqUQlIGSScACq5J2laSiOqbe1PZ23EnCkGc1lP1je4VshTnU+BN8C2byLJSqr76ujfKqz9tb9dPfV0b5VWftrfrrZq1fuPky6L3FA2obVNERdoOzliRq+wMyLbqKT7racubCVRSLXPbPKArBR4Sgnwh0qAxk8Nigzo10hR5kOQ1LhyG0vMyGFhbbqFDKVJUOBBBBBHAg1/ODuztgVj2lbfNL3/AEpe7WYGpnkRr4+xJbKIS0YBkrwcBKmx6VIPWoZ+69N612f6T07a7HbdS2di3WyK1CjNe7mzuNNoCEDp6kpFNWr9x8mNF7i90qq++ro3yqs/bW/XX6NqmjSflVZh5zObA/mpq1fuPkyaL3FppXHbLxAvUfl7dNjT2P0sZ1Lif2pJFdlaGnF2ZBSlKgFRuo9QQ9LWeRcpylJYZA8FAytaicJQkdaiSAPrqSrGdud0XIv9ltIVhhhlyc4j85ZPJtn0Dlf3h4q7sFh9arxpPLt4IqKfqjUdx1tKW7dXD7kKiWrahZ5BtPVvDocV/iUOnOAkcKjkNpaSEoSEJHQEjAFftK+jwhGlFQgrJGDbYpSqDets9pssu4g2y8TbZbHCzPvEOIHIkVacb4UreCjuZ8IoSoJ454g1J1I01eTsQv1Kzy97bbVZp99jJtF5uTdjDblwlQYyFsstLZS6Hd4rG8ndVxCQVeCTu4wT3X7avbLRc4duhQLnqKdIiidyFmjh1TUc8EurKlJACuOBkqODgVh7ent25AutKpOxXUlw1dst09eLrIMq4S2Ct54tpRvHfUPipAA4AdAq7VshNVIqaye0HhHbMGYmZDccgzUkESYquTc+okdI8xyD1its2Z7RFaoQq2XLcRemG+U3kDdTJbBA5RI6iCUhQ6iQRwOBi1eyDdF2G9Wq6tq3FRJbSlHxtqUEOJ9KFK9OPFXDjsHDF0mmv5LJ+XAzTvsZ9RUpSvnAFYptxgLjars88hRZlRHIu91JWhW+kfWQtZH+Q1tdQesdKRtZWJ23SFFpWQ4w+lOVMup+KsDr8RHWCR116GAxCwuIjUll2/kqPnRa0tIUtaghCRlSlHAA8Zqqe+7oU/8AemnvvVj/AH1crxbpenLkbbdmRFlkkI4/BvpH5Tavyh5ukZwQK4/cMY/9O1+4K+h3c0pU2rP8+ZhaxWffd0L5a6d+9WP99ZZA2SqsuoL0xM2bWjWcW43R2dGvrzsdJbZeXvqQ6HAVkoJVgpCgoY6K3n3FH/QNfuCvdWqdD2tnUeXh63Blb2hLshe1xDEBKGL3EbZtaUuIAe3YAZ3QM+BhY3fCx4+jjUbp3TerdnmoGblC06L8xdLJbocxpE1pl2FIjNqTxKzhSCFnJSScjoPXs1Kjw0bqSbTV+rb3eLBlmy++WnZfs609p3Vt6tGn75FjEvQZtyYStGVqIPx+IPjFWf33dC+WunfvVj/fVocjMuq3ltIWrxqSCa8fcMb5u1+4KzjCcIqEWrLw/wAg47FqW0aojOSLNdYV2jtr5NbsGQh5KVYB3SUkgHBBx56km4C7vcLdbWgVOTZbLACekJ3wVn0IC1fUDXpKmIe4gBLZcUEobQnwlqPQEpHEnzCtg2V7PH7U+L9d2uSnqbLcaIrBMdCulSv8agB/lGR1qrRi8VHCUXOb/l2eL/3MyjvNMpSlfNgKUpQHJdLTBvcNcS4Q2J0VfxmZDYcQfQeFVB7Ylo91RULfJYz+SxcZLafQlLgA9Aq9UrfTxFajspza4Not2ig+8bpH5rP+9pftae8bpH5rP+9pftav1K369ivqy5sXZQfeN0j81n/e0v2tPeN0j81n/e0v2tX6lNexX1Zc2LsoPvG6R+az/vaX7Wv0bDtIA8Yk8jxG7S/a1faU17FfVlzYuyB09oPT+lXC7a7UxGfI3TIIK3iPEXFEqI9NT1KVyTnKo9Kbu/EmYpSlYA//2Q==", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from IPython.display import Image, display\n", "\n", "try:\n", " display(Image(graph.get_graph().draw_mermaid_png()))\n", "except Exception:\n", " # This requires some extra dependencies and is optional\n", " pass" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Assistant: Sentry is a fictional superhero appearing in American comic books published by Marvel Comics. Created by writer Paul Jenkins and artist Jae Lee, the character first appeared in \"The Sentry\" #1 in 2000. The Sentry, whose real name is Robert Reynolds, is often depicted as one of the most powerful beings in the Marvel Universe.\n", "\n", "The character has a complex and intriguing backstory. Robert Reynolds was a regular man who gained his powers after ingesting a special serum, which granted him the power of \"a million exploding suns.\" This made him incredibly strong, fast, and nearly invulnerable, with abilities such as flight, superhuman strength, and energy projection. However, his immense power comes with a significant drawback: he has a dark alter ego known as the Void, which represents his fears and insecurities and poses a threat to the world.\n", "\n", "The Sentry's stories often explore themes of mental health, identity, and the duality of human nature. Despite his power, he struggles with psychological issues, including agoraphobia and schizophrenia, which add depth to his character and create tension in his interactions with other superheroes in the Marvel Universe.\n", "Goodbye!\n" ] } ], "source": [ "def stream_graph_updates(user_input: str):\n", " for event in graph.stream({\"messages\": [(\"user\", user_input)]}):\n", " for value in event.values():\n", " print(\"Assistant:\", value[\"messages\"][-1].content)\n", "\n", "\n", "while True:\n", " try:\n", " user_input = input(\"User: \")\n", " if user_input.lower() in [\"quit\", \"exit\", \"q\"]:\n", " print(\"Goodbye!\")\n", " break\n", "\n", " stream_graph_updates(user_input)\n", " except:\n", " # fallback if input() is not available\n", " user_input = \"What do you know about LangGraph?\"\n", " print(\"User: \" + user_input)\n", " stream_graph_updates(user_input)\n", " break" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 2 }