{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%%capture --no-stderr\n", "%pip install -U tavily-python langchain_community" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import os\n", "from dotenv import load_dotenv\n", "\n", "load_dotenv()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "openai_api_key = os.getenv(\"OPENAI_API_KEY\")\n", "model = os.getenv(\"OPENAI_MODEL\", \"gpt-4o\")\n", "temperature = float(os.getenv(\"OPENAI_TEMPERATURE\", 0))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[{'url': 'https://medium.com/@cplog/introduction-to-langgraph-a-beginners-guide-14f9be027141',\n", " 'content': 'Nodes: Nodes are the building blocks of your LangGraph. Each node represents a function or a computation step. You define nodes to perform specific tasks, such as processing input, making'},\n", " {'url': 'https://www.datacamp.com/tutorial/langgraph-tutorial',\n", " 'content': \"In LangGraph, each node represents an LLM agent, and the edges are the communication channels between these agents. This structure allows for clear and manageable workflows, where each agent performs specific tasks and passes information to other agents as needed. State management. One of LangGraph's standout features is its automatic state\"}]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from langchain_community.tools.tavily_search import TavilySearchResults\n", "\n", "tool = TavilySearchResults(max_results=2)\n", "tools = [tool]\n", "tool.invoke(\"What's a 'node' in LangGraph?\")" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from langchain_openai import ChatOpenAI as Chat\n", "from typing import Annotated\n", "from typing_extensions import TypedDict\n", "\n", "from langgraph.graph import StateGraph, START, END\n", "from langgraph.graph.message import add_messages\n", "\n", "\n", "class State(TypedDict):\n", " messages: Annotated[list, add_messages]\n", "\n", "\n", "graph_builder = StateGraph(State)\n", "\n", "\n", "llm = Chat(\n", " openai_api_key=openai_api_key,\n", " model=model,\n", " temperature=temperature\n", ")\n", "# Modification: tell the LLM which tools it can call\n", "llm_with_tools = llm.bind_tools(tools)\n", "\n", "\n", "def chatbot(state: State):\n", " return {\"messages\": [llm_with_tools.invoke(state[\"messages\"])]}\n", "\n", "\n", "graph_builder.add_node(\"chatbot\", chatbot)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import json\n", "\n", "from langchain_core.messages import ToolMessage\n", "\n", "\n", "class BasicToolNode:\n", " \"\"\"A node that runs the tools requested in the last AIMessage.\"\"\"\n", "\n", " def __init__(self, tools: list) -> None:\n", " self.tools_by_name = {tool.name: tool for tool in tools}\n", "\n", " def __call__(self, inputs: dict):\n", " if messages := inputs.get(\"messages\", []):\n", " message = messages[-1]\n", " else:\n", " raise ValueError(\"No message found in input\")\n", " outputs = []\n", " for tool_call in message.tool_calls:\n", " tool_result = self.tools_by_name[tool_call[\"name\"]].invoke(\n", " tool_call[\"args\"]\n", " )\n", " outputs.append(\n", " ToolMessage(\n", " content=json.dumps(tool_result),\n", " name=tool_call[\"name\"],\n", " tool_call_id=tool_call[\"id\"],\n", " )\n", " )\n", " return {\"messages\": outputs}\n", "\n", "\n", "tool_node = BasicToolNode(tools=[tool])\n", "graph_builder.add_node(\"tools\", tool_node)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "from typing import Literal\n", "\n", "\n", "def route_tools(\n", " state: State,\n", "):\n", " \"\"\"\n", " Use in the conditional_edge to route to the ToolNode if the last message\n", " has tool calls. Otherwise, route to the end.\n", " \"\"\"\n", " if isinstance(state, list):\n", " ai_message = state[-1]\n", " elif messages := state.get(\"messages\", []):\n", " ai_message = messages[-1]\n", " else:\n", " raise ValueError(\n", " f\"No messages found in input state to tool_edge: {state}\")\n", " if hasattr(ai_message, \"tool_calls\") and len(ai_message.tool_calls) > 0:\n", " return \"tools\"\n", " return END\n", "\n", "\n", "# The `tools_condition` function returns \"tools\" if the chatbot asks to use a tool, and \"END\" if\n", "# it is fine directly responding. This conditional routing defines the main agent loop.\n", "graph_builder.add_conditional_edges(\n", " \"chatbot\",\n", " route_tools,\n", " # The following dictionary lets you tell the graph to interpret the condition's outputs as a specific node\n", " # It defaults to the identity function, but if you\n", " # want to use a node named something else apart from \"tools\",\n", " # You can update the value of the dictionary to something else\n", " # e.g., \"tools\": \"my_tools\"\n", " {\"tools\": \"tools\", END: END},\n", ")\n", "# Any time a tool is called, we return to the chatbot to decide the next step\n", "graph_builder.add_edge(\"tools\", \"chatbot\")\n", "graph_builder.add_edge(START, \"chatbot\")\n", "graph = graph_builder.compile()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdCIFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAAABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAAACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAD5ANYDASIAAhEBAxEB/8QAHQABAAMAAwEBAQAAAAAAAAAAAAUGBwMECAEJAv/EAFAQAAEEAQIDAgYOBQgIBwAAAAEAAgMEBQYRBxIhEzEVFhciQZQIFDI2UVVWYXF0stHS0yNUgZGTN0JDUnWClbMYJCUzcpKWoTQ1U2SxwfD/xAAbAQEBAAMBAQEAAAAAAAAAAAAAAQIDBQQGB//EADQRAQABAgEJBAoDAQEAAAAAAAABAhEDBBIhMUFRUpHRFGGhsQUTFSMzYnGSweEiMoHw8f/aAAwDAQACEQMRAD8A/VNERAREQEREBcNq5XpR89ieOuz+tK8NH7yoO7fu56/PjsVMaVWueS3k2tDnNf8A+lCHAtLh3ue4Frdw0Bzi7k+1uH+n4XmWXFwX7J25rV9vtmZxHpL37n93Rb4opp+JP+Qtt7u+NWF+N6HrLPvTxqwvxxQ9ZZ96eKuF+J6HqzPuTxVwvxPQ9WZ9yvue/wAF0HjVhfjih6yz708asL8cUPWWfenirhfieh6sz7k8VcL8T0PVmfcnue/wNB41YX44oess+9PGrC/HFD1ln3p4q4X4noerM+5PFXC/E9D1Zn3J7nv8DQeNWF+OKHrLPvXcqZCrfaXVbMNlo7zDIHAfuXT8VcL8T0PVmfcupa0Dpy3IJXYanDO07tsVohDM0/NIzZw/YU9zO2fD9JoT6KsR2bmkZ4Yb9qbJYeVwjZen5e1quJ2a2UgAOYegD9twdubfcuFnWuujN74JgREWtBERAREQEREBERAREQEREBRGrsw/T+l8rkYgHTVqz5Imu7i/bzQf27KXVe4hU5b2iczHC0yTNrulYxo3LnM88AD4SW7LbgxE4lMVarwsa0hp/Dx4DDVKEZ5uxZ58npkkJ3e8/O5xc4n4SVIrhp2or1SCzA7nhmY2RjvhaRuD+4rmWFUzNUzVrQVS4gcVtLcLose/UmTNJ+QkdFUghrTWZp3NbzP5IoWPeQ0dSdthuNyFbVinslaFR8GncnHj9YN1Jjn2ZMRnNHY43ZqEro2hzJogHB0cvQFrmlp5epb0KxHZynsmNP43irpvSba161RzeF8Lw5Orjrc4PPJC2FobHC7zXNkc50hIDNmh3KXBWC1x+0FR1y3SFnPe186+02i2KWnO2E2HDdsInMfZdodxs3n3O4GyymPL6z07rvhdr7WOk8tdt2NI2cTmIdPUH3H070ktaYc8Ue5a13ZPG43DT0J9KoHFvH6z1PNqYZjDa/y2oMfquC3j6mNgmGFhxMFyKSOSNsZEdiQxNJI2fLzno0AdA9MW+O2iaesb2lDlLFjUNGaOvaoU8basPgdJG2RheY4nBrC17fPJ5dyRvuCBF8BePeN454Kzcq0buOuV7FmOSvPSssjEbLEkUbmzSRMY9zmsDnMaSWElrgCF1uEun7uM4xcaclaxtipBkstj3Vbc0DmNtRsx0DSWOI2e1r+dvTcA8w791F+xjsZDS+HymhMxp7NY3JYvKZS17esUXtoWYZb0ksbobG3I8ubM08oO45XbgbINwREQdfIUK+VoWaVuJs9WzG6GWJ/c9jhs4H6QSojQ1+e/puEWpe3t1JZqM0p33kfDK6IvO/8AW5Ob9qn1WeHje00/JcG/Jfu2rkfMNt45J3ujO3zs5T+1ein4NV98fldizIiLzoIiICIiAiIgIiICIiAiIgIiIKpTnZoN5o29osA55dTt9eSpudzDKe5jdyeR/Ru2zDsQ3tOPVfCLQ2v8jHktR6SwmfvNiELLWQoxTyCMEkNDnAnl3c47fOVbXsbIxzHtD2OGxa4bgj4Cq0/h9joSTjbOQwoP9Fjrb44h8G0R3jb+xo/7BeiaqMTTXNp53/7/AFlolXj7G3hQWhvk30tygkgeCYNgfT/N+YKzaP4d6W4ew2YtMaexmn4rLmunZjajIBKRuAXBoG+257/hXD4k2PlVnv40P5SeJNj5VZ7+ND+Unq8Pj8JS0b1oRVfxJsfKrPfxofylU72Oy1firg9PM1TmPB1zC378pMsPadrDPTYzb9H7nlsSb9O/l6j0vV4fH4SWje1RQurNF4DXeMbjtR4Whnce2QTNq5Gu2eMPAIDuVwI3AcRv85XR8SbHyqz38aH8pPEmx8qs9/Gh/KT1eHx+Elo3oBvsbuFLA4N4caXaHjZwGJg6jcHY+b8IH7lJ6Z4K6A0Zl4srgNF4HDZOIObHco4+KGVocNnAOa0EbgkFdzxJsfKrPfxofyl98QKdh3+0MhlcqzffsbV14iP0sZytcPmcCEzMONdfKP8AwtD+crkPG7t8Nipeeo/mhyGRhd5kLOodFG4d8p7unuBu4kHla6ywQR1oI4YWNiijaGMYwbBrQNgAPQF8q1YaVeOvXhjrwRtDWRRNDWtA7gAOgC5VhXXExm06oJERFqQREQEREBERAREQEREBERAREQEREBERAWfZYt8v2lgSebxYy+w9G3trG7+n6PR+0enQVn+V38v2lurdvFjL9CBv/wCKxvd6dvo6d2/oQaAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgLPcsB/pA6VPM0HxXzHm7dT/reM677d37fSP2aEs9y23+kFpXqebxXzGw5f/d4z0/8A7/sg0JERAREQEREBERAREQEREBERAREQEREBERAREQEVVyuq70mQsUsHRr23VXclizcndFEx+wPI3la4vcARv3Ab7bkggdLw7rD9Qwfrc35a9VOTYkxfRH+wtl3RUjw7rD9Qwfrc35aeHdYfqGD9bm/LWXZa98c4LLuvAesfZ7ZXT3siK+JtcK53ahxMdzTox8WYDu3lnsVnNex3tfflPtcbbDzg8H0BexfDusP1DB+tzflrIM97H+bUPsg8PxasY/DDM46r2JqCxIYp5mjlincez352NOw/4Wf1erste+OcFnpZFSPDusP1DB+tzflp4d1h+oYP1ub8tOy1745wWXdFSPDusP1DB+tzflp4d1h+oYP1ub8tOy1745wWXdFT6er8pRswsz2PqV6sz2xNuUbD5WxvcdmiRrmNLQSQOYE9SNwB1VwWjEwqsOf5ExYREWpBERAREQEREBERAREQEREBERBn2kTzNzZPf4Xu9fomcFPKA0h7jNf2xd/znKfXYxf7ys6xEUPhdXYnUOUzeOx9v2xcwtltS/H2b29jK6Nsobu4AO8x7Tu0kddu/cLSiYRF0TnMe3Nsw5uweFX13WxS7QdqYQ4NMnL38vM4Dfu3Ko7yKH07q7E6sOVGKt+2ji70mNt/o3s7KxGGl7POA325m9RuDv0KmFARdE5zHtzbMObsHhV9d1sUu0HamEODTJy9/LzOA37tyu8qK7xBO2kMgR3jsyPmPaN2WirOuIXvPyP0M+21aKsMo+FR9Z8qWWwREXPYiIiAiIgIiICIiAiIgIiICIiDPdIe4zX9sXf85yn1AaQ9xmv7Yu/5zlPrsYv95WdbAdK4jIcaNc8QrmW1fqLCx6ezzsNj8Tg8i6nHBFHFE8TSNb/vXSmRx/SczdgAAqDqjT99tz2R+rcZqnPYPJadteEKUONuGGu6aHFwSgyxgbSh3KGlr927dwBJK3zVnATQet9Qy5zMYET5SeNkVieC1PXFpjfctmbE9rZQB0HOHdOncpifhjpq1S1bUlxvNX1WHDMs7eUe2g6AQHrzbs/RtDfM5e7fv6rzZt0ec+M2rc9q6HUGT0nb1JVy+mdNQZPIWKuoDjsbSmfA6xHtXEb/AG08t6ua/ZnKGjmaSVN4bBxa69krpLOXshlq1y3oKDLvjo5SxXiMotQ7s5GPAMR5vOjI5XHqQStXznADQOpMhHcyWnmWZW1YqT2GzM2KeGMbRsmjDwyblHcZA4hc2S4GaJy1bTkNnESHxegFbGSxXrEc0EIDR2ZkbIHvZsxvmvLh07lM2R52s4G9itG8c9eYrWGc0/mNPanyt2pBXultCV8UcTxHLXPmSdofMPNueo229M6cln+KNPipqfJatzmjrmlYmNxuNxl51aCmW0I7XbTx90we+R24kBHK3Ybd61+97HHh1ks/NmbWm2WLs9w5CdslucwT2C7m7SSHtOzkIPdzNO2wA2AAXb1jwH0Jr7OuzGdwDLt+RjIp3NsTRMtMYd2NnjY9rJgPQJA4ejuTNkYxo3H+Unj/AKE1NlbeXoZLI8PKubmrUsnYrRib2xATGY2PAMW7vOjPmuPVwJXqVVLVfCjSutclh8hlsX2l7EbilZrWJa0kTSQSzeJzS5h5W+Y7dvTuVtWcRYV3iF7z8j9DPttWirOuIXvPyP0M+21aKplHwqPrPlSy2CIi57EREQEREBERAREQEREBERAREQZ7pD3Ga/ti7/nOU+oy7icrp7IXZsdj3ZijcmdZMMUzI5oZHDzwOdwa5pI37wQSe/0R3jPmDfbTbo3LvmLXOcWTVHMZy8m4e8TcrXESNIaSCRuQCGkjs1WxJz6ZjT3xHnLKYvpWRFCeFs98jMr61S/PTwtnvkZlfWqX56xzPmj7o6lk2ihPC2e+RmV9apfnqr3eMdbH8Qsfoexg78WqshUfdrY4z1eaSFm/M7m7blHc47E7kNJA2BTM+aPujqWaGihPC2e+RmV9apfnp4Wz3yMyvrVL89Mz5o+6OpZNooTwtnvkZlfWqX56eFs98jMr61S/PTM+aPujqWcHEL3n5H6GfbatFWb0HXtdyNo2cZLg6kcjZrMN6VgtSNZKQGtiYTsxzoyO0J2LQeUHmDhpC82UTEU00XvMXnRp126E6rCIi8LEREQEREBERAREQEREBERARfHODGlziGtA3JPcFAxvsansNkjkmpYiCc+5Ebm5SMxdCHbkti5nnu5XOdECD2Z/SB/M+Qs6lE1bEyy06ZjhlZnIuykilBk8+OEbkl3I07vLeUdowt5yHBstjcVTw8MkNGrFUikmksPbEwNDpJHl8jzt3uc5xJPpJK5q1aGlWir14mQQRMEccUTQ1rGgbBoA6AAdNlyoCIiAvzx4g+xl43Z72XVTWVbUWlaufnM2ZxcbrtoxQVKksEQgeRX9IsRggAg7v3Pw/ocs/wAhyzcfMByhpdX0zkec7nmaJLVHl6d2x7J3/L9KDQEREBERBFZvTtfMsfK176GTFeStXytVkftqq15aXdm57XDbmZG4tcC1xY3ma4DZdV+opcRekhzcUNKpLahq0L0cjntsukb0bIOUdi/nBYASWu5o9ncz+Rs+iAirIqy6Jqh1NktrT9WCxNNWHbWrjHc3aNEI3c57QC9oiAJADGsGwDVYoJ47MLJoniSJ7Q5rm9xB7ig5EREBERAREQEREBERARFxWp/ataabkfL2bC/kjG7nbDfYD0lBAWRDrK9cx7uSfCVHSU8lSuY/njuvdGxwY17/ADXRtDzzcrXAv2bzAxyMNkUDoOPk0XhHdrlJjJUjmL82f9d3e0OImA6B45ti0dARsOgCnkBERAREQFn3DgnVeodQa435qOREWOxDt9w+jAXkTjrttLLLM4Ee6jbCfg2/vUtqXiFlbGlMZM6PEV3hmfyELnNdy7B3tKJw7pHgjtHA7sjdsNnyNcy9V68VSCOCCNkMMTQxkcbQ1rGgbAADuAHoQciIiAiIgIiICgbtF+Bt2srRazsJ5PbGShc2WR7w2Pl54ms5vP5WsHKGnn5QOh6meRB1sdkauYx9W/RsR26VqJs8FiFwcyWNwDmuaR0IIIIPzrsqv4WWSjqTMYuR+UtMcGZGGzbiBrxtlLmmvFKO8sdEXlrurRMzYkbBtgQEREBERAREQERQuY1tp7T9oVsnnMdj7JHN2Nm0xj9vh5Sd9lnTRVXNqYvK2umkVW8qWjvlTiPXY/vVZ4l3+G3FfQmZ0ln9R4qbFZSDsZQy/G17SCHMe07+6a9rXDfpu0bgjotvZ8bgnlK5s7kjoXiBpeGWpow6k31NSdLSGKzuQidmJxCXDtnx83O8PjYJWv286NzXnvKvy/OL2FPBejwV9kTq+/qPN4uTH4ema2JyntlgiuGZw/SRnfbcRtcHDvaX7H5/enlS0d8qcR67H96dnxuCeUmbO5aUVW8qWjvlTiPXY/vTypaO+VOI9dj+9Oz43BPKTNnctKpuezuQ1Bl5NOabl7CSItGVzPLzNx7CN+yi3HK+y5vc07iJrhI8HeOOaIyXEarrPOs0vpbOVIHyx89vLxTxudCwj3FZrtxLMfh2LIx1dueVjr1g8HQ03i4cdjazatOHmLY2kklznFz3ucdy5znOc5znEuc5xJJJJWqqiqibVxZLWfMDgaGmMRWxmMritSrghjOYuJJJc5znOJc97nEuc9xLnOcSSSSVIIiwQREQEREBERAREQV22Q3iHihvmSX4u50i/wDLRyzVv998E55v0fwsE/wKxLHMn7IrhVX4jYqGXifhYnsxt9r4mZ2oMeHCaoNp/wBJ0nHXsx/V9sfAtjQEREBERAREQdLNXHY/D3rTAC+CCSVoPwtaSP8A4VR0lUjrYClIBzT2YmTzzO6vmkc0Fz3E9SST+zu7grPqr3sZj6nN9gqvaa97mK+qRfYC6GBowp+q7EkiIs0EREBERB1clja2WpyVrUYkif8APsWkdQ5pHVrgdiHDqCAR1Xf0HlJ81ovB3rT+1sz04nyybbc7uUbu29G567fOuJcPCz+TnTn1GL7KxxdODPdMeU9F2LSiIucgiIgIireutZwaKxAsOjFm5O/sqtXm5e1f3kk+hrRuSfgGw3JAOzDw6sWuKKIvMiZyeWo4So63kblehVb7qe1K2Ng+lziAqxLxh0dC8tOchcR03jjkeP3hpCw/J2rWdyPhDK2HX73XlkkHmxDf3Mbe5jeg6DqdgSSeq419bheg8OKfe1zfu/dy8Nx8s2jfjpvq8v4E8s2jfjpvq8v4FhyLd7Dybiq5x0LwwLiR7HTSeqfZjY7Ule5GeHuSk8MZVwikDY7DDu+Dl25v0r+U9BsA93wL3d5ZtG/HTfV5fwLDkT2Hk3FVzjoXhuPlm0b8dN9Xl/AvrOMmjXu28Nxt+d8MjR+8tWGonsPJuKrnHQvD0th9QYzUNd0+LyFXIRNPK51aVsgafgOx6H5ipBeWIDJSvR3qU8lG/H7i1XIa9vzHoQ4dB5rgQduoK3Xhvr4axpTV7bWQZemGieNnuZWnulYPQ0kEEd7SCOo2J4uXei6slp9ZRN6fGF16lyREXCRF6q97GY+pzfYKr2mve5ivqkX2ArDqr3sZj6nN9gqvaa97mK+qRfYC6OD8Gfr+F2O9YdIyCR0LGyzBpLGOdyhztugJ2O3X07FeduFvHrVGM4K5jWevMVFYr1L1uCrNj7oms3Z/CEleOsIexjazZ3JG13MeYDmIb1Xo1ee4eAWrpdA6l0FPkcLFgHX5svgctCZXXIbJvC5E2eItDOVry5pLXkkbdApN9iLA32Qk+lrWZqcQ9MHSFqhhZc/F7VyDchHZrRODZWteGM2la5zBybbHnGziFwV+N+dnsVcRqfR02jptQYu3awlmPJttOe+KHtXRShrGmGUMPOAC4ea7ztwo3M8CNUcXMhm73EW5hqLp9O2NP0KmnnSzRw9u5rpLL3ytYS7eOPZgGwAO5Peu7juFGutX6q01kdf38EyppqnahqMwJme+5YngNd08vaNaIwIy/Zjebq8+d0Cn8hB6S445jTXDDgtjIsW7VeqNV4RkzZ8rlhUZI+KCJ0nNO9ry+V5kGzdiXbOJI2XoTHzT2aFaazWNOzJE18tcvD+yeQCWcw6HY7jcdDsvP1jgtr53BDA8PbFHQuoq+PqSY6STK+2Wjs2NayrYj5WOLJmgOLgPTtyvC2zQen7elNE4DC38lJmL2OoQVJ8hNvz2XsjDXSHck7uIJ6knr1JVpvtE6uHhZ/Jzpz6jF9lcy4eFn8nOnPqMX2VcX4M/WPKV2LSiIucgiIgLAuLOSdkuIliBziYsbVjgjae5rpP0jyPpHZA/8AW+rAuLONdjOIc87mkRZOrHPG89znx/o3gfQOyP98Lvehc3tWnXabeH4uuyVWRdfI34sXRntziUwwsL3iGF8r9h8DGAucfmAJVVHFvT5/os5/07kPyF9vViUUaKpiGtcnODWkkgAdST6FidL2UGHu5Co9kGPOEt22VIp2ZqB17zn8jZHUx54YXEH3RcGnctCvbOKOn7721exzR7c9ns/T99jTv06uMAAHXvJ2Ve4faE1doOLH6fa/T97TNCRzYr0zZRfdX3JawsA5OYbgc/N3D3O68mJXXXVT6mrRttad1vyrin43X68OUyUmli3T2LzMmHuX/CDe0aW2BCJWRcnnN3c0kFzSNyBzAbnr8TOKGYmw+uaOl8JNcgwtGeK7mm3xWNWcwF+0I2Je+NrmuOxbsegO658jwmy9vh1rDAMs0hczGdmydd7nv7NsT7bJgHnk3DuVpGwBG/p9K4NQ8NNYV/HnH6cs4WTCaqE00gybpmTVbEsAikLeRpD2u5Wnrtsfh9OiqcozbTfTHdfb+ho+i55bWjsFNNI+aaShA98kji5znGNpJJPeSfSphUXH63xWjcZQwd9uUku4+tDWmdTwt6eIubG0EtkZCWuHzgrn8runj/AEWd/wCnch+QvbTi4cRETVF/qi5qW0VknYfXuAsscWiac0pQP57JWkAf84jd/dVbwuarZ/HR3agsNgeSALVaWvJ0Ox3ZI1rh3ekdVZNE412Z17gKzG8zYJzdlI/mMjaSD/zmMf3lMomicCuatVp8mVOt6QREX5gqL1V72Mx9Tm+wVXtNe9zFfVIvsBWnM03ZHEXqjCA+eCSIE+guaR/9qoaSuR2MDThB5LNaFkFiB3R8MjWgOY4HqCD+8bEdCF0MDThTHeuxMIiLNBERAREQFw8LP5OdOfUYvsrjyeUrYio+zalEcbegHe57j0DWtHVziSAGjckkAdSpDQmLnwmjMJRtM7OzBTiZLHvvyP5Ru3f07Hpv8yxxdGDPfMeU9V2J1ERc5BERAVc1zoyDWuHFZ8grW4X9rVtcvMYn93UdN2kbgjfuPQggEWNFsw8SrCriuibTA8u5Wpa0/kPaGWrnH3OvK153ZKP60b+547u7qNxuGnouNenMli6WZqPq36kF6s/3UNmJsjD9LSCFWJeEGjpXFxwNdpPXaNz2D9wIC+twvTmHNPvaJv3fstDCkW5eRvRvxHF/Fk/Enkb0b8RxfxZPxLd7cybhq5R1LQw1FuXkb0b8RxfxZPxJ5G9G/EcX8WT8Se3Mm4auUdS0MNRbl5G9G/EcX8WT8S+s4O6NY7fwFA75nve4fuLtk9uZNw1co6lo3sLrCXIXmUaMEl++/wBzVrgOefnPXZo6jznEAb9St24caCGjaM09p7J8vb5TPIz3EbR7mJh7y0Ek7nq4knYDZrbFiMFjcBXMGMoVsfCTuWVomxhx+E7DqfnK764mXelKsrp9XRFqfGV1ahERcNBQuY0Vp/UNgWMpg8bkZwOUS2qkcjwPg3cCdlNIsqa6qJvTNpNSreSvRnyTwn+HxfhTyV6M+SeE/wAPi/CrSi3doxuOecred6reSvRnyTwn+HxfhTyV6M+SeE/w+L8KtKJ2jG455yXneq3kr0Z8k8J/h8X4U8lejPknhP8AD4vwq0onaMbjnnJed6DxWhtOYKy2zjsBjKFhu/LNWqRxvbv37EDcbqcRFqqrqrm9U3TWIiLAEREBERAREQEREBERAREQEREBERB//9k=", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from IPython.display import Image, display\n", "\n", "try:\n", " display(Image(graph.get_graph().draw_mermaid_png()))\n", "except Exception:\n", " # This requires some extra dependencies and is optional\n", " pass" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Assistant: \n", "Assistant: [{\"url\": \"https://langchain-ai.github.io/langgraph/\", \"content\": \"LangGraph is a framework for creating stateful, multi-actor applications with LLMs, using cycles, controllability, and persistence. Learn how to use LangGraph with LangChain, LangSmith, and Anthropic tools to build agent and multi-agent workflows.\"}, {\"url\": \"https://langchain-ai.github.io/langgraph/tutorials/\", \"content\": \"LangGraph is a framework for building language agents as graphs. Learn how to use LangGraph to create chatbots, code assistants, planning agents, reflection agents, and more with these notebooks.\"}]\n", "Assistant: LangGraph is a framework designed for creating stateful, multi-actor applications using large language models (LLMs). It emphasizes the use of cycles, controllability, and persistence to build complex workflows. LangGraph can be integrated with tools like LangChain, LangSmith, and Anthropic to develop agent and multi-agent workflows. It is particularly useful for building language agents as graphs, which can include applications such as chatbots, code assistants, planning agents, and reflection agents. You can find more information and tutorials on how to use LangGraph on their [official website](https://langchain-ai.github.io/langgraph/).\n" ] } ], "source": [ "def stream_graph_updates(user_input: str):\n", " for event in graph.stream({\"messages\": [(\"user\", user_input)]}):\n", " for value in event.values():\n", " print(\"Assistant:\", value[\"messages\"][-1].content)\n", "\n", "\n", "user_input = \"What do you know about LangGraph?\"\n", "try:\n", " stream_graph_updates(user_input)\n", "except Exception as e:\n", " print(f\"An error occurred: {e}\")\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 2 }