# -*- coding: utf-8 -*- """Utils for monoDepth.""" import re import sys import cv2 import numpy as np import torch def read_pfm(path): """Read pfm file. Args: path (str): path to file Returns: tuple: (data, scale) """ with open(path, 'rb') as file: color = None width = None height = None scale = None endian = None header = file.readline().rstrip() if header.decode('ascii') == 'PF': color = True elif header.decode('ascii') == 'Pf': color = False else: raise Exception('Not a PFM file: ' + path) dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('ascii')) if dim_match: width, height = list(map(int, dim_match.groups())) else: raise Exception('Malformed PFM header.') scale = float(file.readline().decode('ascii').rstrip()) if scale < 0: # little-endian endian = '<' scale = -scale else: # big-endian endian = '>' data = np.fromfile(file, endian + 'f') shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data, scale def write_pfm(path, image, scale=1): """Write pfm file. Args: path (str): pathto file image (array): data scale (int, optional): Scale. Defaults to 1. """ with open(path, 'wb') as file: color = None if image.dtype.name != 'float32': raise Exception('Image dtype must be float32.') image = np.flipud(image) if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif (len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1): # greyscale color = False else: raise Exception( 'Image must have H x W x 3, H x W x 1 or H x W dimensions.') file.write('PF\n' if color else 'Pf\n'.encode()) file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0])) endian = image.dtype.byteorder if endian == '<' or endian == '=' and sys.byteorder == 'little': scale = -scale file.write('%f\n'.encode() % scale) image.tofile(file) def read_image(path): """Read image and output RGB image (0-1). Args: path (str): path to file Returns: array: RGB image (0-1) """ img = cv2.imread(path) if img.ndim == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0 return img def resize_image(img): """Resize image and make it fit for network. Args: img (array): image Returns: tensor: data ready for network """ height_orig = img.shape[0] width_orig = img.shape[1] if width_orig > height_orig: scale = width_orig / 384 else: scale = height_orig / 384 height = (np.ceil(height_orig / scale / 32) * 32).astype(int) width = (np.ceil(width_orig / scale / 32) * 32).astype(int) img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA) img_resized = (torch.from_numpy(np.transpose( img_resized, (2, 0, 1))).contiguous().float()) img_resized = img_resized.unsqueeze(0) return img_resized def resize_depth(depth, width, height): """Resize depth map and bring to CPU (numpy). Args: depth (tensor): depth width (int): image width height (int): image height Returns: array: processed depth """ depth = torch.squeeze(depth[0, :, :, :]).to('cpu') depth_resized = cv2.resize(depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC) return depth_resized def write_depth(path, depth, bits=1): """Write depth map to pfm and png file. Args: path (str): filepath without extension depth (array): depth """ write_pfm(path + '.pfm', depth.astype(np.float32)) depth_min = depth.min() depth_max = depth.max() max_val = (2**(8 * bits)) - 1 if depth_max - depth_min > np.finfo('float').eps: out = max_val * (depth - depth_min) / (depth_max - depth_min) else: out = np.zeros(depth.shape, dtype=depth.type) if bits == 1: cv2.imwrite(path + '.png', out.astype('uint8')) elif bits == 2: cv2.imwrite(path + '.png', out.astype('uint16')) return