# -*- coding: utf-8 -*- """MidashNet: Network for monocular depth estimation trained by mixing several datasets. This file contains code that is adapted from https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py """ import torch import torch.nn as nn from .base_model import BaseModel from .blocks import FeatureFusionBlock, Interpolate, _make_encoder class MidasNet(BaseModel): """Network for monocular depth estimation. """ def __init__(self, path=None, features=256, non_negative=True): """Init. Args: path (str, optional): Path to saved model. Defaults to None. features (int, optional): Number of features. Defaults to 256. backbone (str, optional): Backbone network for encoder. Defaults to resnet50 """ print('Loading weights: ', path) super(MidasNet, self).__init__() use_pretrained = False if path is None else True self.pretrained, self.scratch = _make_encoder( backbone='resnext101_wsl', features=features, use_pretrained=use_pretrained) self.scratch.refinenet4 = FeatureFusionBlock(features) self.scratch.refinenet3 = FeatureFusionBlock(features) self.scratch.refinenet2 = FeatureFusionBlock(features) self.scratch.refinenet1 = FeatureFusionBlock(features) self.scratch.output_conv = nn.Sequential( nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1), Interpolate(scale_factor=2, mode='bilinear'), nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(True), nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(True) if non_negative else nn.Identity(), ) if path: self.load(path) def forward(self, x): """Forward pass. Args: x (tensor): input data (image) Returns: tensor: depth """ layer_1 = self.pretrained.layer1(x) layer_2 = self.pretrained.layer2(layer_1) layer_3 = self.pretrained.layer3(layer_2) layer_4 = self.pretrained.layer4(layer_3) layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn) path_3 = self.scratch.refinenet3(path_4, layer_3_rn) path_2 = self.scratch.refinenet2(path_3, layer_2_rn) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv(path_1) return torch.squeeze(out, dim=1)