# Dataset utils and dataloaders import glob import logging import math import os import random import shutil import time from itertools import repeat from multiprocessing.pool import ThreadPool from pathlib import Path from threading import Thread import cv2 import numpy as np import torch import torch.nn.functional as F from PIL import Image, ExifTags from torch.utils.data import Dataset from tqdm import tqdm import pickle from copy import deepcopy #from pycocotools import mask as maskUtils from torchvision.utils import save_image from torchvision.ops import roi_pool, roi_align, ps_roi_pool, ps_roi_align from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \ resample_segments, clean_str from utils.torch_utils import torch_distributed_zero_first # Parameters help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes logger = logging.getLogger(__name__) # Get orientation exif tag for orientation in ExifTags.TAGS.keys(): if ExifTags.TAGS[orientation] == 'Orientation': break def get_hash(files): # Returns a single hash value of a list of files return sum(os.path.getsize(f) for f in files if os.path.isfile(f)) def exif_size(img): # Returns exif-corrected PIL size s = img.size # (width, height) try: rotation = dict(img._getexif().items())[orientation] if rotation == 6: # rotation 270 s = (s[1], s[0]) elif rotation == 8: # rotation 90 s = (s[1], s[0]) except: pass return s def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False, rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''): # Make sure only the first process in DDP process the dataset first, and the following others can use the cache with torch_distributed_zero_first(rank): dataset = LoadImagesAndLabels(path, imgsz, batch_size, augment=augment, # augment images hyp=hyp, # augmentation hyperparameters rect=rect, # rectangular training cache_images=cache, single_cls=opt.single_cls, stride=int(stride), pad=pad, image_weights=image_weights, prefix=prefix) batch_size = min(batch_size, len(dataset)) nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader() dataloader = loader(dataset, batch_size=batch_size, num_workers=nw, sampler=sampler, pin_memory=True, collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn) return dataloader, dataset class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader): """ Dataloader that reuses workers Uses same syntax as vanilla DataLoader """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) self.iterator = super().__iter__() def __len__(self): return len(self.batch_sampler.sampler) def __iter__(self): for i in range(len(self)): yield next(self.iterator) class _RepeatSampler(object): """ Sampler that repeats forever Args: sampler (Sampler) """ def __init__(self, sampler): self.sampler = sampler def __iter__(self): while True: yield from iter(self.sampler) class LoadImages: # for inference def __init__(self, path, img_size=640, stride=32): p = str(Path(path).absolute()) # os-agnostic absolute path if '*' in p: files = sorted(glob.glob(p, recursive=True)) # glob elif os.path.isdir(p): files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir elif os.path.isfile(p): files = [p] # files else: raise Exception(f'ERROR: {p} does not exist') images = [x for x in files if x.split('.')[-1].lower() in img_formats] videos = [x for x in files if x.split('.')[-1].lower() in vid_formats] ni, nv = len(images), len(videos) self.img_size = img_size self.stride = stride self.files = images + videos self.nf = ni + nv # number of files self.video_flag = [False] * ni + [True] * nv self.mode = 'image' if any(videos): self.new_video(videos[0]) # new video else: self.cap = None assert self.nf > 0, f'No images or videos found in {p}. ' \ f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}' def __iter__(self): self.count = 0 return self def __next__(self): if self.count == self.nf: raise StopIteration path = self.files[self.count] if self.video_flag[self.count]: # Read video self.mode = 'video' ret_val, img0 = self.cap.read() if not ret_val: self.count += 1 self.cap.release() if self.count == self.nf: # last video raise StopIteration else: path = self.files[self.count] self.new_video(path) ret_val, img0 = self.cap.read() self.frame += 1 print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='') else: # Read image self.count += 1 img0 = cv2.imread(path) # BGR assert img0 is not None, 'Image Not Found ' + path #print(f'image {self.count}/{self.nf} {path}: ', end='') # Padded resize img = letterbox(img0, self.img_size, stride=self.stride)[0] # Convert img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) return path, img, img0, self.cap def new_video(self, path): self.frame = 0 self.cap = cv2.VideoCapture(path) self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) def __len__(self): return self.nf # number of files class LoadWebcam: # for inference def __init__(self, pipe='0', img_size=640, stride=32): self.img_size = img_size self.stride = stride if pipe.isnumeric(): pipe = eval(pipe) # local camera # pipe = 'rtsp://192.168.1.64/1' # IP camera # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera self.pipe = pipe self.cap = cv2.VideoCapture(pipe) # video capture object self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size def __iter__(self): self.count = -1 return self def __next__(self): self.count += 1 if cv2.waitKey(1) == ord('q'): # q to quit self.cap.release() cv2.destroyAllWindows() raise StopIteration # Read frame if self.pipe == 0: # local camera ret_val, img0 = self.cap.read() img0 = cv2.flip(img0, 1) # flip left-right else: # IP camera n = 0 while True: n += 1 self.cap.grab() if n % 30 == 0: # skip frames ret_val, img0 = self.cap.retrieve() if ret_val: break # Print assert ret_val, f'Camera Error {self.pipe}' img_path = 'webcam.jpg' print(f'webcam {self.count}: ', end='') # Padded resize img = letterbox(img0, self.img_size, stride=self.stride)[0] # Convert img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) return img_path, img, img0, None def __len__(self): return 0 class LoadStreams: # multiple IP or RTSP cameras def __init__(self, sources='streams.txt', img_size=640, stride=32): self.mode = 'stream' self.img_size = img_size self.stride = stride if os.path.isfile(sources): with open(sources, 'r') as f: sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())] else: sources = [sources] n = len(sources) self.imgs = [None] * n self.sources = [clean_str(x) for x in sources] # clean source names for later for i, s in enumerate(sources): # Start the thread to read frames from the video stream print(f'{i + 1}/{n}: {s}... ', end='') url = eval(s) if s.isnumeric() else s if 'youtube.com/' in url or 'youtu.be/' in url: # if source is YouTube video check_requirements(('pafy', 'youtube_dl')) import pafy url = pafy.new(url).getbest(preftype="mp4").url cap = cv2.VideoCapture(url) assert cap.isOpened(), f'Failed to open {s}' w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.fps = cap.get(cv2.CAP_PROP_FPS) % 100 _, self.imgs[i] = cap.read() # guarantee first frame thread = Thread(target=self.update, args=([i, cap]), daemon=True) print(f' success ({w}x{h} at {self.fps:.2f} FPS).') thread.start() print('') # newline # check for common shapes s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) # shapes self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal if not self.rect: print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.') def update(self, index, cap): # Read next stream frame in a daemon thread n = 0 while cap.isOpened(): n += 1 # _, self.imgs[index] = cap.read() cap.grab() if n == 4: # read every 4th frame success, im = cap.retrieve() self.imgs[index] = im if success else self.imgs[index] * 0 n = 0 time.sleep(1 / self.fps) # wait time def __iter__(self): self.count = -1 return self def __next__(self): self.count += 1 img0 = self.imgs.copy() if cv2.waitKey(1) == ord('q'): # q to quit cv2.destroyAllWindows() raise StopIteration # Letterbox img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0] # Stack img = np.stack(img, 0) # Convert img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416 img = np.ascontiguousarray(img) return self.sources, img, img0, None def __len__(self): return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years def img2label_paths(img_paths): # Define label paths as a function of image paths sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths] class LoadImagesAndLabels(Dataset): # for training/testing def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''): self.img_size = img_size self.augment = augment self.hyp = hyp self.image_weights = image_weights self.rect = False if image_weights else rect self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) self.mosaic_border = [-img_size // 2, -img_size // 2] self.stride = stride self.path = path #self.albumentations = Albumentations() if augment else None try: f = [] # image files for p in path if isinstance(path, list) else [path]: p = Path(p) # os-agnostic if p.is_dir(): # dir f += glob.glob(str(p / '**' / '*.*'), recursive=True) # f = list(p.rglob('**/*.*')) # pathlib elif p.is_file(): # file with open(p, 'r') as t: t = t.read().strip().splitlines() parent = str(p.parent) + os.sep f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib) else: raise Exception(f'{prefix}{p} does not exist') self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats]) # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib assert self.img_files, f'{prefix}No images found' except Exception as e: raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}') # Check cache self.label_files = img2label_paths(self.img_files) # labels cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') # cached labels if cache_path.is_file(): cache, exists = torch.load(cache_path), True # load #if cache['hash'] != get_hash(self.label_files + self.img_files) or 'version' not in cache: # changed # cache, exists = self.cache_labels(cache_path, prefix), False # re-cache else: cache, exists = self.cache_labels(cache_path, prefix), False # cache # Display cache nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total if exists: d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted" tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}' # Read cache cache.pop('hash') # remove hash cache.pop('version') # remove version labels, shapes, self.segments = zip(*cache.values()) self.labels = list(labels) self.shapes = np.array(shapes, dtype=np.float64) self.img_files = list(cache.keys()) # update self.label_files = img2label_paths(cache.keys()) # update if single_cls: for x in self.labels: x[:, 0] = 0 n = len(shapes) # number of images bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index nb = bi[-1] + 1 # number of batches self.batch = bi # batch index of image self.n = n self.indices = range(n) # Rectangular Training if self.rect: # Sort by aspect ratio s = self.shapes # wh ar = s[:, 1] / s[:, 0] # aspect ratio irect = ar.argsort() self.img_files = [self.img_files[i] for i in irect] self.label_files = [self.label_files[i] for i in irect] self.labels = [self.labels[i] for i in irect] self.shapes = s[irect] # wh ar = ar[irect] # Set training image shapes shapes = [[1, 1]] * nb for i in range(nb): ari = ar[bi == i] mini, maxi = ari.min(), ari.max() if maxi < 1: shapes[i] = [maxi, 1] elif mini > 1: shapes[i] = [1, 1 / mini] self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM) self.imgs = [None] * n if cache_images: if cache_images == 'disk': self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy') self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files] self.im_cache_dir.mkdir(parents=True, exist_ok=True) gb = 0 # Gigabytes of cached images self.img_hw0, self.img_hw = [None] * n, [None] * n results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) pbar = tqdm(enumerate(results), total=n) for i, x in pbar: if cache_images == 'disk': if not self.img_npy[i].exists(): np.save(self.img_npy[i].as_posix(), x[0]) gb += self.img_npy[i].stat().st_size else: self.imgs[i], self.img_hw0[i], self.img_hw[i] = x gb += self.imgs[i].nbytes pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)' pbar.close() def cache_labels(self, path=Path('./labels.cache'), prefix=''): # Cache dataset labels, check images and read shapes x = {} # dict nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files)) for i, (im_file, lb_file) in enumerate(pbar): try: # verify images im = Image.open(im_file) im.verify() # PIL verify shape = exif_size(im) # image size segments = [] # instance segments assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' assert im.format.lower() in img_formats, f'invalid image format {im.format}' # verify labels if os.path.isfile(lb_file): nf += 1 # label found with open(lb_file, 'r') as f: l = [x.split() for x in f.read().strip().splitlines()] if any([len(x) > 8 for x in l]): # is segment classes = np.array([x[0] for x in l], dtype=np.float32) segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...) l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) l = np.array(l, dtype=np.float32) if len(l): assert l.shape[1] == 5, 'labels require 5 columns each' assert (l >= 0).all(), 'negative labels' assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels' assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels' else: ne += 1 # label empty l = np.zeros((0, 5), dtype=np.float32) else: nm += 1 # label missing l = np.zeros((0, 5), dtype=np.float32) x[im_file] = [l, shape, segments] except Exception as e: nc += 1 print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}') pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels... " \ f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted" pbar.close() if nf == 0: print(f'{prefix}WARNING: No labels found in {path}. See {help_url}') x['hash'] = get_hash(self.label_files + self.img_files) x['results'] = nf, nm, ne, nc, i + 1 x['version'] = 0.1 # cache version torch.save(x, path) # save for next time logging.info(f'{prefix}New cache created: {path}') return x def __len__(self): return len(self.img_files) # def __iter__(self): # self.count = -1 # print('ran dataset iter') # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) # return self def __getitem__(self, index): index = self.indices[index] # linear, shuffled, or image_weights hyp = self.hyp mosaic = self.mosaic and random.random() < hyp['mosaic'] if mosaic: # Load mosaic if random.random() < 0.8: img, labels = load_mosaic(self, index) else: img, labels = load_mosaic9(self, index) shapes = None # MixUp https://arxiv.org/pdf/1710.09412.pdf if random.random() < hyp['mixup']: if random.random() < 0.8: img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1)) else: img2, labels2 = load_mosaic9(self, random.randint(0, len(self.labels) - 1)) r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0 img = (img * r + img2 * (1 - r)).astype(np.uint8) labels = np.concatenate((labels, labels2), 0) else: # Load image img, (h0, w0), (h, w) = load_image(self, index) # Letterbox shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling labels = self.labels[index].copy() if labels.size: # normalized xywh to pixel xyxy format labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) if self.augment: # Augment imagespace if not mosaic: img, labels = random_perspective(img, labels, degrees=hyp['degrees'], translate=hyp['translate'], scale=hyp['scale'], shear=hyp['shear'], perspective=hyp['perspective']) #img, labels = self.albumentations(img, labels) # Augment colorspace augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) # Apply cutouts # if random.random() < 0.9: # labels = cutout(img, labels) if random.random() < hyp['paste_in']: sample_labels, sample_images, sample_masks = [], [], [] while len(sample_labels) < 30: sample_labels_, sample_images_, sample_masks_ = load_samples(self, random.randint(0, len(self.labels) - 1)) sample_labels += sample_labels_ sample_images += sample_images_ sample_masks += sample_masks_ #print(len(sample_labels)) if len(sample_labels) == 0: break labels = pastein(img, labels, sample_labels, sample_images, sample_masks) nL = len(labels) # number of labels if nL: labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1 labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1 if self.augment: # flip up-down if random.random() < hyp['flipud']: img = np.flipud(img) if nL: labels[:, 2] = 1 - labels[:, 2] # flip left-right if random.random() < hyp['fliplr']: img = np.fliplr(img) if nL: labels[:, 1] = 1 - labels[:, 1] labels_out = torch.zeros((nL, 6)) if nL: labels_out[:, 1:] = torch.from_numpy(labels) # Convert img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) return torch.from_numpy(img), labels_out, self.img_files[index], shapes @staticmethod def collate_fn(batch): img, label, path, shapes = zip(*batch) # transposed for i, l in enumerate(label): l[:, 0] = i # add target image index for build_targets() return torch.stack(img, 0), torch.cat(label, 0), path, shapes @staticmethod def collate_fn4(batch): img, label, path, shapes = zip(*batch) # transposed n = len(shapes) // 4 img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n] ho = torch.tensor([[0., 0, 0, 1, 0, 0]]) wo = torch.tensor([[0., 0, 1, 0, 0, 0]]) s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW i *= 4 if random.random() < 0.5: im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[ 0].type(img[i].type()) l = label[i] else: im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2) l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s img4.append(im) label4.append(l) for i, l in enumerate(label4): l[:, 0] = i # add target image index for build_targets() return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4 # Ancillary functions -------------------------------------------------------------------------------------------------- def load_image(self, index): # loads 1 image from dataset, returns img, original hw, resized hw img = self.imgs[index] if img is None: # not cached path = self.img_files[index] img = cv2.imread(path) # BGR assert img is not None, 'Image Not Found ' + path h0, w0 = img.shape[:2] # orig hw r = self.img_size / max(h0, w0) # resize image to img_size if r != 1: # always resize down, only resize up if training with augmentation interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp) return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized else: return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) dtype = img.dtype # uint8 x = np.arange(0, 256, dtype=np.int16) lut_hue = ((x * r[0]) % 180).astype(dtype) lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) lut_val = np.clip(x * r[2], 0, 255).astype(dtype) img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype) cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed def hist_equalize(img, clahe=True, bgr=False): # Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255 yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) if clahe: c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) yuv[:, :, 0] = c.apply(yuv[:, :, 0]) else: yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB def load_mosaic(self, index): # loads images in a 4-mosaic labels4, segments4 = [], [] s = self.img_size yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices for i, index in enumerate(indices): # Load image img, _, (h, w) = load_image(self, index) # place img in img4 if i == 0: # top left img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) elif i == 1: # top right x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h elif i == 2: # bottom left x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) elif i == 3: # bottom right x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] padw = x1a - x1b padh = y1a - y1b # Labels labels, segments = self.labels[index].copy(), self.segments[index].copy() if labels.size: labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format segments = [xyn2xy(x, w, h, padw, padh) for x in segments] labels4.append(labels) segments4.extend(segments) # Concat/clip labels labels4 = np.concatenate(labels4, 0) for x in (labels4[:, 1:], *segments4): np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() # img4, labels4 = replicate(img4, labels4) # replicate # Augment #img4, labels4, segments4 = remove_background(img4, labels4, segments4) #sample_segments(img4, labels4, segments4, probability=self.hyp['copy_paste']) img4, labels4, segments4 = copy_paste(img4, labels4, segments4, probability=self.hyp['copy_paste']) img4, labels4 = random_perspective(img4, labels4, segments4, degrees=self.hyp['degrees'], translate=self.hyp['translate'], scale=self.hyp['scale'], shear=self.hyp['shear'], perspective=self.hyp['perspective'], border=self.mosaic_border) # border to remove return img4, labels4 def load_mosaic9(self, index): # loads images in a 9-mosaic labels9, segments9 = [], [] s = self.img_size indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices for i, index in enumerate(indices): # Load image img, _, (h, w) = load_image(self, index) # place img in img9 if i == 0: # center img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles h0, w0 = h, w c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates elif i == 1: # top c = s, s - h, s + w, s elif i == 2: # top right c = s + wp, s - h, s + wp + w, s elif i == 3: # right c = s + w0, s, s + w0 + w, s + h elif i == 4: # bottom right c = s + w0, s + hp, s + w0 + w, s + hp + h elif i == 5: # bottom c = s + w0 - w, s + h0, s + w0, s + h0 + h elif i == 6: # bottom left c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h elif i == 7: # left c = s - w, s + h0 - h, s, s + h0 elif i == 8: # top left c = s - w, s + h0 - hp - h, s, s + h0 - hp padx, pady = c[:2] x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords # Labels labels, segments = self.labels[index].copy(), self.segments[index].copy() if labels.size: labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format segments = [xyn2xy(x, w, h, padx, pady) for x in segments] labels9.append(labels) segments9.extend(segments) # Image img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax] hp, wp = h, w # height, width previous # Offset yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s] # Concat/clip labels labels9 = np.concatenate(labels9, 0) labels9[:, [1, 3]] -= xc labels9[:, [2, 4]] -= yc c = np.array([xc, yc]) # centers segments9 = [x - c for x in segments9] for x in (labels9[:, 1:], *segments9): np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() # img9, labels9 = replicate(img9, labels9) # replicate # Augment #img9, labels9, segments9 = remove_background(img9, labels9, segments9) img9, labels9, segments9 = copy_paste(img9, labels9, segments9, probability=self.hyp['copy_paste']) img9, labels9 = random_perspective(img9, labels9, segments9, degrees=self.hyp['degrees'], translate=self.hyp['translate'], scale=self.hyp['scale'], shear=self.hyp['shear'], perspective=self.hyp['perspective'], border=self.mosaic_border) # border to remove return img9, labels9 def load_samples(self, index): # loads images in a 4-mosaic labels4, segments4 = [], [] s = self.img_size yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices for i, index in enumerate(indices): # Load image img, _, (h, w) = load_image(self, index) # place img in img4 if i == 0: # top left img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) elif i == 1: # top right x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h elif i == 2: # bottom left x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) elif i == 3: # bottom right x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] padw = x1a - x1b padh = y1a - y1b # Labels labels, segments = self.labels[index].copy(), self.segments[index].copy() if labels.size: labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format segments = [xyn2xy(x, w, h, padw, padh) for x in segments] labels4.append(labels) segments4.extend(segments) # Concat/clip labels labels4 = np.concatenate(labels4, 0) for x in (labels4[:, 1:], *segments4): np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() # img4, labels4 = replicate(img4, labels4) # replicate # Augment #img4, labels4, segments4 = remove_background(img4, labels4, segments4) sample_labels, sample_images, sample_masks = sample_segments(img4, labels4, segments4, probability=0.5) return sample_labels, sample_images, sample_masks def copy_paste(img, labels, segments, probability=0.5): # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) n = len(segments) if probability and n: h, w, c = img.shape # height, width, channels im_new = np.zeros(img.shape, np.uint8) for j in random.sample(range(n), k=round(probability * n)): l, s = labels[j], segments[j] box = w - l[3], l[2], w - l[1], l[4] ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area if (ioa < 0.30).all(): # allow 30% obscuration of existing labels labels = np.concatenate((labels, [[l[0], *box]]), 0) segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED) result = cv2.bitwise_and(src1=img, src2=im_new) result = cv2.flip(result, 1) # augment segments (flip left-right) i = result > 0 # pixels to replace # i[:, :] = result.max(2).reshape(h, w, 1) # act over ch img[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug return img, labels, segments def remove_background(img, labels, segments): # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) n = len(segments) h, w, c = img.shape # height, width, channels im_new = np.zeros(img.shape, np.uint8) img_new = np.ones(img.shape, np.uint8) * 114 for j in range(n): cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED) result = cv2.bitwise_and(src1=img, src2=im_new) i = result > 0 # pixels to replace img_new[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug return img_new, labels, segments def sample_segments(img, labels, segments, probability=0.5): # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) n = len(segments) sample_labels = [] sample_images = [] sample_masks = [] if probability and n: h, w, c = img.shape # height, width, channels for j in random.sample(range(n), k=round(probability * n)): l, s = labels[j], segments[j] box = l[1].astype(int).clip(0,w-1), l[2].astype(int).clip(0,h-1), l[3].astype(int).clip(0,w-1), l[4].astype(int).clip(0,h-1) #print(box) if (box[2] <= box[0]) or (box[3] <= box[1]): continue sample_labels.append(l[0]) mask = np.zeros(img.shape, np.uint8) cv2.drawContours(mask, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED) sample_masks.append(mask[box[1]:box[3],box[0]:box[2],:]) result = cv2.bitwise_and(src1=img, src2=mask) i = result > 0 # pixels to replace mask[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug #print(box) sample_images.append(mask[box[1]:box[3],box[0]:box[2],:]) return sample_labels, sample_images, sample_masks def replicate(img, labels): # Replicate labels h, w = img.shape[:2] boxes = labels[:, 1:].astype(int) x1, y1, x2, y2 = boxes.T s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices x1b, y1b, x2b, y2b = boxes[i] bh, bw = y2b - y1b, x2b - x1b yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) return img, labels def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): # Resize and pad image while meeting stride-multiple constraints shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better test mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if auto: # minimum rectangle dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding elif scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return img, ratio, (dw, dh) def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)): # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) # targets = [cls, xyxy] height = img.shape[0] + border[0] * 2 # shape(h,w,c) width = img.shape[1] + border[1] * 2 # Center C = np.eye(3) C[0, 2] = -img.shape[1] / 2 # x translation (pixels) C[1, 2] = -img.shape[0] / 2 # y translation (pixels) # Perspective P = np.eye(3) P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y) P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x) # Rotation and Scale R = np.eye(3) a = random.uniform(-degrees, degrees) # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations s = random.uniform(1 - scale, 1.1 + scale) # s = 2 ** random.uniform(-scale, scale) R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) # Shear S = np.eye(3) S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) # Translation T = np.eye(3) T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels) T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels) # Combined rotation matrix M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed if perspective: img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114)) else: # affine img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) # Visualize # import matplotlib.pyplot as plt # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() # ax[0].imshow(img[:, :, ::-1]) # base # ax[1].imshow(img2[:, :, ::-1]) # warped # Transform label coordinates n = len(targets) if n: use_segments = any(x.any() for x in segments) new = np.zeros((n, 4)) if use_segments: # warp segments segments = resample_segments(segments) # upsample for i, segment in enumerate(segments): xy = np.ones((len(segment), 3)) xy[:, :2] = segment xy = xy @ M.T # transform xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine # clip new[i] = segment2box(xy, width, height) else: # warp boxes xy = np.ones((n * 4, 3)) xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 xy = xy @ M.T # transform xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine # create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # clip new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) # filter candidates i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10) targets = targets[i] targets[:, 1:5] = new[i] return img, targets def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio w1, h1 = box1[2] - box1[0], box1[3] - box1[1] w2, h2 = box2[2] - box2[0], box2[3] - box2[1] ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates def bbox_ioa(box1, box2): # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2 box2 = box2.transpose() # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] # Intersection area inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \ (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0) # box2 area box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16 # Intersection over box2 area return inter_area / box2_area def cutout(image, labels): # Applies image cutout augmentation https://arxiv.org/abs/1708.04552 h, w = image.shape[:2] # create random masks scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction for s in scales: mask_h = random.randint(1, int(h * s)) mask_w = random.randint(1, int(w * s)) # box xmin = max(0, random.randint(0, w) - mask_w // 2) ymin = max(0, random.randint(0, h) - mask_h // 2) xmax = min(w, xmin + mask_w) ymax = min(h, ymin + mask_h) # apply random color mask image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] # return unobscured labels if len(labels) and s > 0.03: box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area labels = labels[ioa < 0.60] # remove >60% obscured labels return labels def pastein(image, labels, sample_labels, sample_images, sample_masks): # Applies image cutout augmentation https://arxiv.org/abs/1708.04552 h, w = image.shape[:2] # create random masks scales = [0.75] * 2 + [0.5] * 4 + [0.25] * 4 + [0.125] * 4 + [0.0625] * 6 # image size fraction for s in scales: if random.random() < 0.2: continue mask_h = random.randint(1, int(h * s)) mask_w = random.randint(1, int(w * s)) # box xmin = max(0, random.randint(0, w) - mask_w // 2) ymin = max(0, random.randint(0, h) - mask_h // 2) xmax = min(w, xmin + mask_w) ymax = min(h, ymin + mask_h) box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) if len(labels): ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area else: ioa = np.zeros(1) if (ioa < 0.30).all() and len(sample_labels) and (xmax > xmin+20) and (ymax > ymin+20): # allow 30% obscuration of existing labels sel_ind = random.randint(0, len(sample_labels)-1) #print(len(sample_labels)) #print(sel_ind) #print((xmax-xmin, ymax-ymin)) #print(image[ymin:ymax, xmin:xmax].shape) #print([[sample_labels[sel_ind], *box]]) #print(labels.shape) hs, ws, cs = sample_images[sel_ind].shape r_scale = min((ymax-ymin)/hs, (xmax-xmin)/ws) r_w = int(ws*r_scale) r_h = int(hs*r_scale) if (r_w > 10) and (r_h > 10): r_mask = cv2.resize(sample_masks[sel_ind], (r_w, r_h)) r_image = cv2.resize(sample_images[sel_ind], (r_w, r_h)) temp_crop = image[ymin:ymin+r_h, xmin:xmin+r_w] m_ind = r_mask > 0 if m_ind.astype(np.int).sum() > 60: temp_crop[m_ind] = r_image[m_ind] #print(sample_labels[sel_ind]) #print(sample_images[sel_ind].shape) #print(temp_crop.shape) box = np.array([xmin, ymin, xmin+r_w, ymin+r_h], dtype=np.float32) if len(labels): labels = np.concatenate((labels, [[sample_labels[sel_ind], *box]]), 0) else: labels = np.array([[sample_labels[sel_ind], *box]]) image[ymin:ymin+r_h, xmin:xmin+r_w] = temp_crop return labels class Albumentations: # YOLOv5 Albumentations class (optional, only used if package is installed) def __init__(self): self.transform = None import albumentations as A self.transform = A.Compose([ A.CLAHE(p=0.01), A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.01), A.RandomGamma(gamma_limit=[80, 120], p=0.01), A.Blur(p=0.01), A.MedianBlur(p=0.01), A.ToGray(p=0.01), A.ImageCompression(quality_lower=75, p=0.01),], bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels'])) #logging.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p)) def __call__(self, im, labels, p=1.0): if self.transform and random.random() < p: new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])]) return im, labels def create_folder(path='./new'): # Create folder if os.path.exists(path): shutil.rmtree(path) # delete output folder os.makedirs(path) # make new output folder def flatten_recursive(path='../coco'): # Flatten a recursive directory by bringing all files to top level new_path = Path(path + '_flat') create_folder(new_path) for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)): shutil.copyfile(file, new_path / Path(file).name) def extract_boxes(path='../coco/'): # from utils.datasets import *; extract_boxes('../coco128') # Convert detection dataset into classification dataset, with one directory per class path = Path(path) # images dir shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing files = list(path.rglob('*.*')) n = len(files) # number of files for im_file in tqdm(files, total=n): if im_file.suffix[1:] in img_formats: # image im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB h, w = im.shape[:2] # labels lb_file = Path(img2label_paths([str(im_file)])[0]) if Path(lb_file).exists(): with open(lb_file, 'r') as f: lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels for j, x in enumerate(lb): c = int(x[0]) # class f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename if not f.parent.is_dir(): f.parent.mkdir(parents=True) b = x[1:] * [w, h, w, h] # box # b[2:] = b[2:].max() # rectangle to square b[2:] = b[2:] * 1.2 + 3 # pad b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image b[[1, 3]] = np.clip(b[[1, 3]], 0, h) assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}' def autosplit(path='../coco', weights=(0.9, 0.1, 0.0), annotated_only=False): """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files Usage: from utils.datasets import *; autosplit('../coco') Arguments path: Path to images directory weights: Train, val, test weights (list) annotated_only: Only use images with an annotated txt file """ path = Path(path) # images dir files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], []) # image files only n = len(files) # number of files indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only) for i, img in tqdm(zip(indices, files), total=n): if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label with open(path / txt[i], 'a') as f: f.write(str(img) + '\n') # add image to txt file def load_segmentations(self, index): key = '/work/handsomejw66/coco17/' + self.img_files[index] #print(key) # /work/handsomejw66/coco17/ return self.segs[key]