diff --git a/LICENSE.md b/LICENSE.md
new file mode 100644
index 0000000000000000000000000000000000000000..f288702d2fa16d3cdf0035b15a9fcbc552cd88e7
--- /dev/null
+++ b/LICENSE.md
@@ -0,0 +1,674 @@
+ GNU GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+ The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works. By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users. We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors. You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+ To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights. Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received. You must make sure that they, too, receive
+or can get the source code. And you must show them these terms so they
+know their rights.
+
+ Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+ For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software. For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+ Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so. This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software. The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable. Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products. If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+ Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary. To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ TERMS AND CONDITIONS
+
+ 0. Definitions.
+
+ "This License" refers to version 3 of the GNU General Public License.
+
+ "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+ "The Program" refers to any copyrightable work licensed under this
+License. Each licensee is addressed as "you". "Licensees" and
+"recipients" may be individuals or organizations.
+
+ To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy. The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+ A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+ To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy. Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+ To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies. Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+ An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License. If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+ 1. Source Code.
+
+ The "source code" for a work means the preferred form of the work
+for making modifications to it. "Object code" means any non-source
+form of a work.
+
+ A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+ The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form. A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+ The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities. However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work. For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+ The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+ The Corresponding Source for a work in source code form is that
+same work.
+
+ 2. Basic Permissions.
+
+ All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met. This License explicitly affirms your unlimited
+permission to run the unmodified Program. The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work. This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+ You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force. You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright. Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+ Conveying under any other circumstances is permitted solely under
+the conditions stated below. Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+ No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+ When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+ 4. Conveying Verbatim Copies.
+
+ You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+ You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+ 5. Conveying Modified Source Versions.
+
+ You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+ a) The work must carry prominent notices stating that you modified
+ it, and giving a relevant date.
+
+ b) The work must carry prominent notices stating that it is
+ released under this License and any conditions added under section
+ 7. This requirement modifies the requirement in section 4 to
+ "keep intact all notices".
+
+ c) You must license the entire work, as a whole, under this
+ License to anyone who comes into possession of a copy. This
+ License will therefore apply, along with any applicable section 7
+ additional terms, to the whole of the work, and all its parts,
+ regardless of how they are packaged. This License gives no
+ permission to license the work in any other way, but it does not
+ invalidate such permission if you have separately received it.
+
+ d) If the work has interactive user interfaces, each must display
+ Appropriate Legal Notices; however, if the Program has interactive
+ interfaces that do not display Appropriate Legal Notices, your
+ work need not make them do so.
+
+ A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit. Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+ 6. Conveying Non-Source Forms.
+
+ You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+ a) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by the
+ Corresponding Source fixed on a durable physical medium
+ customarily used for software interchange.
+
+ b) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by a
+ written offer, valid for at least three years and valid for as
+ long as you offer spare parts or customer support for that product
+ model, to give anyone who possesses the object code either (1) a
+ copy of the Corresponding Source for all the software in the
+ product that is covered by this License, on a durable physical
+ medium customarily used for software interchange, for a price no
+ more than your reasonable cost of physically performing this
+ conveying of source, or (2) access to copy the
+ Corresponding Source from a network server at no charge.
+
+ c) Convey individual copies of the object code with a copy of the
+ written offer to provide the Corresponding Source. This
+ alternative is allowed only occasionally and noncommercially, and
+ only if you received the object code with such an offer, in accord
+ with subsection 6b.
+
+ d) Convey the object code by offering access from a designated
+ place (gratis or for a charge), and offer equivalent access to the
+ Corresponding Source in the same way through the same place at no
+ further charge. You need not require recipients to copy the
+ Corresponding Source along with the object code. If the place to
+ copy the object code is a network server, the Corresponding Source
+ may be on a different server (operated by you or a third party)
+ that supports equivalent copying facilities, provided you maintain
+ clear directions next to the object code saying where to find the
+ Corresponding Source. Regardless of what server hosts the
+ Corresponding Source, you remain obligated to ensure that it is
+ available for as long as needed to satisfy these requirements.
+
+ e) Convey the object code using peer-to-peer transmission, provided
+ you inform other peers where the object code and Corresponding
+ Source of the work are being offered to the general public at no
+ charge under subsection 6d.
+
+ A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+ A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling. In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage. For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product. A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+ "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source. The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+ If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information. But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+ The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed. Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+ Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+ 7. Additional Terms.
+
+ "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law. If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+ When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it. (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.) You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+ Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+ a) Disclaiming warranty or limiting liability differently from the
+ terms of sections 15 and 16 of this License; or
+
+ b) Requiring preservation of specified reasonable legal notices or
+ author attributions in that material or in the Appropriate Legal
+ Notices displayed by works containing it; or
+
+ c) Prohibiting misrepresentation of the origin of that material, or
+ requiring that modified versions of such material be marked in
+ reasonable ways as different from the original version; or
+
+ d) Limiting the use for publicity purposes of names of licensors or
+ authors of the material; or
+
+ e) Declining to grant rights under trademark law for use of some
+ trade names, trademarks, or service marks; or
+
+ f) Requiring indemnification of licensors and authors of that
+ material by anyone who conveys the material (or modified versions of
+ it) with contractual assumptions of liability to the recipient, for
+ any liability that these contractual assumptions directly impose on
+ those licensors and authors.
+
+ All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10. If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term. If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+ If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+ Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+ 8. Termination.
+
+ You may not propagate or modify a covered work except as expressly
+provided under this License. Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+ However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+ Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+ Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License. If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+ 9. Acceptance Not Required for Having Copies.
+
+ You are not required to accept this License in order to receive or
+run a copy of the Program. Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance. However,
+nothing other than this License grants you permission to propagate or
+modify any covered work. These actions infringe copyright if you do
+not accept this License. Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+ 10. Automatic Licensing of Downstream Recipients.
+
+ Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License. You are not responsible
+for enforcing compliance by third parties with this License.
+
+ An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations. If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+ You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License. For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+ 11. Patents.
+
+ A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based. The
+work thus licensed is called the contributor's "contributor version".
+
+ A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version. For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+ In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement). To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+ If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients. "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+ If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+ A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License. You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+ Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+ 12. No Surrender of Others' Freedom.
+
+ If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all. For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+ 13. Use with the GNU Affero General Public License.
+
+ Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work. The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+ 14. Revised Versions of this License.
+
+ The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation. If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+ If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+ Later license versions may give you additional or different
+permissions. However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+ 15. Disclaimer of Warranty.
+
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+ 16. Limitation of Liability.
+
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+ 17. Interpretation of Sections 15 and 16.
+
+ If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+
+ Copyright (C)
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+
+Also add information on how to contact you by electronic and paper mail.
+
+ If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+ Copyright (C)
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+ You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+.
+
+ The GNU General Public License does not permit incorporating your program
+into proprietary programs. If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License. But first, please read
+.
diff --git a/cfg/baseline/r50-csp.yaml b/cfg/baseline/r50-csp.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..94559f7d0c07e675dd48795ddc819b637f62326c
--- /dev/null
+++ b/cfg/baseline/r50-csp.yaml
@@ -0,0 +1,49 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [12,16, 19,36, 40,28] # P3/8
+ - [36,75, 76,55, 72,146] # P4/16
+ - [142,110, 192,243, 459,401] # P5/32
+
+# CSP-ResNet backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Stem, [128]], # 0-P1/2
+ [-1, 3, ResCSPC, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 2-P3/8
+ [-1, 4, ResCSPC, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 4-P3/8
+ [-1, 6, ResCSPC, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 6-P3/8
+ [-1, 3, ResCSPC, [1024]], # 7
+ ]
+
+# CSP-Res-PAN head
+head:
+ [[-1, 1, SPPCSPC, [512]], # 8
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [5, 1, Conv, [256, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 2, ResCSPB, [256]], # 13
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [3, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 2, ResCSPB, [128]], # 18
+ [-1, 1, Conv, [256, 3, 1]],
+ [-2, 1, Conv, [256, 3, 2]],
+ [[-1, 13], 1, Concat, [1]], # cat
+ [-1, 2, ResCSPB, [256]], # 22
+ [-1, 1, Conv, [512, 3, 1]],
+ [-2, 1, Conv, [512, 3, 2]],
+ [[-1, 8], 1, Concat, [1]], # cat
+ [-1, 2, ResCSPB, [512]], # 26
+ [-1, 1, Conv, [1024, 3, 1]],
+
+ [[19,23,27], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/cfg/baseline/x50-csp.yaml b/cfg/baseline/x50-csp.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..8de14f81ab9df369bd5ff9ff4805de4861137ed2
--- /dev/null
+++ b/cfg/baseline/x50-csp.yaml
@@ -0,0 +1,49 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [12,16, 19,36, 40,28] # P3/8
+ - [36,75, 76,55, 72,146] # P4/16
+ - [142,110, 192,243, 459,401] # P5/32
+
+# CSP-ResNeXt backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Stem, [128]], # 0-P1/2
+ [-1, 3, ResXCSPC, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 2-P3/8
+ [-1, 4, ResXCSPC, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 4-P3/8
+ [-1, 6, ResXCSPC, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 6-P3/8
+ [-1, 3, ResXCSPC, [1024]], # 7
+ ]
+
+# CSP-ResX-PAN head
+head:
+ [[-1, 1, SPPCSPC, [512]], # 8
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [5, 1, Conv, [256, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 2, ResXCSPB, [256]], # 13
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [3, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 2, ResXCSPB, [128]], # 18
+ [-1, 1, Conv, [256, 3, 1]],
+ [-2, 1, Conv, [256, 3, 2]],
+ [[-1, 13], 1, Concat, [1]], # cat
+ [-1, 2, ResXCSPB, [256]], # 22
+ [-1, 1, Conv, [512, 3, 1]],
+ [-2, 1, Conv, [512, 3, 2]],
+ [[-1, 8], 1, Concat, [1]], # cat
+ [-1, 2, ResXCSPB, [512]], # 26
+ [-1, 1, Conv, [1024, 3, 1]],
+
+ [[19,23,27], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/cfg/baseline/yolor-csp-x.yaml b/cfg/baseline/yolor-csp-x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..6e234c5c2d71ba6e3ba5061e180682a43c31a7d5
--- /dev/null
+++ b/cfg/baseline/yolor-csp-x.yaml
@@ -0,0 +1,52 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.33 # model depth multiple
+width_multiple: 1.25 # layer channel multiple
+
+# anchors
+anchors:
+ - [12,16, 19,36, 40,28] # P3/8
+ - [36,75, 76,55, 72,146] # P4/16
+ - [142,110, 192,243, 459,401] # P5/32
+
+# CSP-Darknet backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Bottleneck, [64]],
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 2, BottleneckCSPC, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
+ [-1, 8, BottleneckCSPC, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
+ [-1, 8, BottleneckCSPC, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
+ [-1, 4, BottleneckCSPC, [1024]], # 10
+ ]
+
+# CSP-Dark-PAN head
+head:
+ [[-1, 1, SPPCSPC, [512]], # 11
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [8, 1, Conv, [256, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 2, BottleneckCSPB, [256]], # 16
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [6, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 2, BottleneckCSPB, [128]], # 21
+ [-1, 1, Conv, [256, 3, 1]],
+ [-2, 1, Conv, [256, 3, 2]],
+ [[-1, 16], 1, Concat, [1]], # cat
+ [-1, 2, BottleneckCSPB, [256]], # 25
+ [-1, 1, Conv, [512, 3, 1]],
+ [-2, 1, Conv, [512, 3, 2]],
+ [[-1, 11], 1, Concat, [1]], # cat
+ [-1, 2, BottleneckCSPB, [512]], # 29
+ [-1, 1, Conv, [1024, 3, 1]],
+
+ [[22,26,30], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/cfg/baseline/yolor-csp.yaml b/cfg/baseline/yolor-csp.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3beecf3ddc10f68fdd5e01f38a1c4cf25b6208b3
--- /dev/null
+++ b/cfg/baseline/yolor-csp.yaml
@@ -0,0 +1,52 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [12,16, 19,36, 40,28] # P3/8
+ - [36,75, 76,55, 72,146] # P4/16
+ - [142,110, 192,243, 459,401] # P5/32
+
+# CSP-Darknet backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Bottleneck, [64]],
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 2, BottleneckCSPC, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
+ [-1, 8, BottleneckCSPC, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
+ [-1, 8, BottleneckCSPC, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
+ [-1, 4, BottleneckCSPC, [1024]], # 10
+ ]
+
+# CSP-Dark-PAN head
+head:
+ [[-1, 1, SPPCSPC, [512]], # 11
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [8, 1, Conv, [256, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 2, BottleneckCSPB, [256]], # 16
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [6, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 2, BottleneckCSPB, [128]], # 21
+ [-1, 1, Conv, [256, 3, 1]],
+ [-2, 1, Conv, [256, 3, 2]],
+ [[-1, 16], 1, Concat, [1]], # cat
+ [-1, 2, BottleneckCSPB, [256]], # 25
+ [-1, 1, Conv, [512, 3, 1]],
+ [-2, 1, Conv, [512, 3, 2]],
+ [[-1, 11], 1, Concat, [1]], # cat
+ [-1, 2, BottleneckCSPB, [512]], # 29
+ [-1, 1, Conv, [1024, 3, 1]],
+
+ [[22,26,30], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/cfg/baseline/yolor-d6.yaml b/cfg/baseline/yolor-d6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..297b0d1c2424ee532053a568109da371fbbdd18d
--- /dev/null
+++ b/cfg/baseline/yolor-d6.yaml
@@ -0,0 +1,63 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # expand model depth
+width_multiple: 1.25 # expand layer channels
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# CSP-Darknet backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, ReOrg, []], # 0
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
+ [-1, 1, DownC, [128]], # 2-P2/4
+ [-1, 3, BottleneckCSPA, [128]],
+ [-1, 1, DownC, [256]], # 4-P3/8
+ [-1, 15, BottleneckCSPA, [256]],
+ [-1, 1, DownC, [512]], # 6-P4/16
+ [-1, 15, BottleneckCSPA, [512]],
+ [-1, 1, DownC, [768]], # 8-P5/32
+ [-1, 7, BottleneckCSPA, [768]],
+ [-1, 1, DownC, [1024]], # 10-P6/64
+ [-1, 7, BottleneckCSPA, [1024]], # 11
+ ]
+
+# CSP-Dark-PAN head
+head:
+ [[-1, 1, SPPCSPC, [512]], # 12
+ [-1, 1, Conv, [384, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [-6, 1, Conv, [384, 1, 1]], # route backbone P5
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 3, BottleneckCSPB, [384]], # 17
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [-13, 1, Conv, [256, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 3, BottleneckCSPB, [256]], # 22
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [-20, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 3, BottleneckCSPB, [128]], # 27
+ [-1, 1, Conv, [256, 3, 1]],
+ [-2, 1, DownC, [256]],
+ [[-1, 22], 1, Concat, [1]], # cat
+ [-1, 3, BottleneckCSPB, [256]], # 31
+ [-1, 1, Conv, [512, 3, 1]],
+ [-2, 1, DownC, [384]],
+ [[-1, 17], 1, Concat, [1]], # cat
+ [-1, 3, BottleneckCSPB, [384]], # 35
+ [-1, 1, Conv, [768, 3, 1]],
+ [-2, 1, DownC, [512]],
+ [[-1, 12], 1, Concat, [1]], # cat
+ [-1, 3, BottleneckCSPB, [512]], # 39
+ [-1, 1, Conv, [1024, 3, 1]],
+
+ [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+ ]
\ No newline at end of file
diff --git a/cfg/baseline/yolor-e6.yaml b/cfg/baseline/yolor-e6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..58afc5ba1a9771d757310dcc1b4f1c185087d642
--- /dev/null
+++ b/cfg/baseline/yolor-e6.yaml
@@ -0,0 +1,63 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # expand model depth
+width_multiple: 1.25 # expand layer channels
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# CSP-Darknet backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, ReOrg, []], # 0
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
+ [-1, 1, DownC, [128]], # 2-P2/4
+ [-1, 3, BottleneckCSPA, [128]],
+ [-1, 1, DownC, [256]], # 4-P3/8
+ [-1, 7, BottleneckCSPA, [256]],
+ [-1, 1, DownC, [512]], # 6-P4/16
+ [-1, 7, BottleneckCSPA, [512]],
+ [-1, 1, DownC, [768]], # 8-P5/32
+ [-1, 3, BottleneckCSPA, [768]],
+ [-1, 1, DownC, [1024]], # 10-P6/64
+ [-1, 3, BottleneckCSPA, [1024]], # 11
+ ]
+
+# CSP-Dark-PAN head
+head:
+ [[-1, 1, SPPCSPC, [512]], # 12
+ [-1, 1, Conv, [384, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [-6, 1, Conv, [384, 1, 1]], # route backbone P5
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 3, BottleneckCSPB, [384]], # 17
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [-13, 1, Conv, [256, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 3, BottleneckCSPB, [256]], # 22
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [-20, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 3, BottleneckCSPB, [128]], # 27
+ [-1, 1, Conv, [256, 3, 1]],
+ [-2, 1, DownC, [256]],
+ [[-1, 22], 1, Concat, [1]], # cat
+ [-1, 3, BottleneckCSPB, [256]], # 31
+ [-1, 1, Conv, [512, 3, 1]],
+ [-2, 1, DownC, [384]],
+ [[-1, 17], 1, Concat, [1]], # cat
+ [-1, 3, BottleneckCSPB, [384]], # 35
+ [-1, 1, Conv, [768, 3, 1]],
+ [-2, 1, DownC, [512]],
+ [[-1, 12], 1, Concat, [1]], # cat
+ [-1, 3, BottleneckCSPB, [512]], # 39
+ [-1, 1, Conv, [1024, 3, 1]],
+
+ [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+ ]
\ No newline at end of file
diff --git a/cfg/baseline/yolor-p6.yaml b/cfg/baseline/yolor-p6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..924cf5cf453d82af810f4d172e6d41b10162fb87
--- /dev/null
+++ b/cfg/baseline/yolor-p6.yaml
@@ -0,0 +1,63 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # expand model depth
+width_multiple: 1.0 # expand layer channels
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# CSP-Darknet backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, ReOrg, []], # 0
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
+ [-1, 3, BottleneckCSPA, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
+ [-1, 7, BottleneckCSPA, [256]],
+ [-1, 1, Conv, [384, 3, 2]], # 6-P4/16
+ [-1, 7, BottleneckCSPA, [384]],
+ [-1, 1, Conv, [512, 3, 2]], # 8-P5/32
+ [-1, 3, BottleneckCSPA, [512]],
+ [-1, 1, Conv, [640, 3, 2]], # 10-P6/64
+ [-1, 3, BottleneckCSPA, [640]], # 11
+ ]
+
+# CSP-Dark-PAN head
+head:
+ [[-1, 1, SPPCSPC, [320]], # 12
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [-6, 1, Conv, [256, 1, 1]], # route backbone P5
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 3, BottleneckCSPB, [256]], # 17
+ [-1, 1, Conv, [192, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [-13, 1, Conv, [192, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 3, BottleneckCSPB, [192]], # 22
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [-20, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 3, BottleneckCSPB, [128]], # 27
+ [-1, 1, Conv, [256, 3, 1]],
+ [-2, 1, Conv, [192, 3, 2]],
+ [[-1, 22], 1, Concat, [1]], # cat
+ [-1, 3, BottleneckCSPB, [192]], # 31
+ [-1, 1, Conv, [384, 3, 1]],
+ [-2, 1, Conv, [256, 3, 2]],
+ [[-1, 17], 1, Concat, [1]], # cat
+ [-1, 3, BottleneckCSPB, [256]], # 35
+ [-1, 1, Conv, [512, 3, 1]],
+ [-2, 1, Conv, [320, 3, 2]],
+ [[-1, 12], 1, Concat, [1]], # cat
+ [-1, 3, BottleneckCSPB, [320]], # 39
+ [-1, 1, Conv, [640, 3, 1]],
+
+ [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+ ]
\ No newline at end of file
diff --git a/cfg/baseline/yolor-w6.yaml b/cfg/baseline/yolor-w6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a2fc969693debe81f9f755ec2a29730bf341fcad
--- /dev/null
+++ b/cfg/baseline/yolor-w6.yaml
@@ -0,0 +1,63 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # expand model depth
+width_multiple: 1.0 # expand layer channels
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# CSP-Darknet backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, ReOrg, []], # 0
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
+ [-1, 3, BottleneckCSPA, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
+ [-1, 7, BottleneckCSPA, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 6-P4/16
+ [-1, 7, BottleneckCSPA, [512]],
+ [-1, 1, Conv, [768, 3, 2]], # 8-P5/32
+ [-1, 3, BottleneckCSPA, [768]],
+ [-1, 1, Conv, [1024, 3, 2]], # 10-P6/64
+ [-1, 3, BottleneckCSPA, [1024]], # 11
+ ]
+
+# CSP-Dark-PAN head
+head:
+ [[-1, 1, SPPCSPC, [512]], # 12
+ [-1, 1, Conv, [384, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [-6, 1, Conv, [384, 1, 1]], # route backbone P5
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 3, BottleneckCSPB, [384]], # 17
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [-13, 1, Conv, [256, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 3, BottleneckCSPB, [256]], # 22
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [-20, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 3, BottleneckCSPB, [128]], # 27
+ [-1, 1, Conv, [256, 3, 1]],
+ [-2, 1, Conv, [256, 3, 2]],
+ [[-1, 22], 1, Concat, [1]], # cat
+ [-1, 3, BottleneckCSPB, [256]], # 31
+ [-1, 1, Conv, [512, 3, 1]],
+ [-2, 1, Conv, [384, 3, 2]],
+ [[-1, 17], 1, Concat, [1]], # cat
+ [-1, 3, BottleneckCSPB, [384]], # 35
+ [-1, 1, Conv, [768, 3, 1]],
+ [-2, 1, Conv, [512, 3, 2]],
+ [[-1, 12], 1, Concat, [1]], # cat
+ [-1, 3, BottleneckCSPB, [512]], # 39
+ [-1, 1, Conv, [1024, 3, 1]],
+
+ [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+ ]
\ No newline at end of file
diff --git a/cfg/baseline/yolov3-spp.yaml b/cfg/baseline/yolov3-spp.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..38dcc449f0d0c1b85b4e6ff426da0d9e9df07d4e
--- /dev/null
+++ b/cfg/baseline/yolov3-spp.yaml
@@ -0,0 +1,51 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
+
+# darknet53 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Bottleneck, [64]],
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 2, Bottleneck, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
+ [-1, 8, Bottleneck, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
+ [-1, 8, Bottleneck, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
+ [-1, 4, Bottleneck, [1024]], # 10
+ ]
+
+# YOLOv3-SPP head
+head:
+ [[-1, 1, Bottleneck, [1024, False]],
+ [-1, 1, SPP, [512, [5, 9, 13]]],
+ [-1, 1, Conv, [1024, 3, 1]],
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
+
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
+
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
+ [-1, 1, Bottleneck, [256, False]],
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
+
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/cfg/baseline/yolov3.yaml b/cfg/baseline/yolov3.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f2e76135546945f3ccbb3311c99bf3882a90c199
--- /dev/null
+++ b/cfg/baseline/yolov3.yaml
@@ -0,0 +1,51 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
+
+# darknet53 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Bottleneck, [64]],
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 2, Bottleneck, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
+ [-1, 8, Bottleneck, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
+ [-1, 8, Bottleneck, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
+ [-1, 4, Bottleneck, [1024]], # 10
+ ]
+
+# YOLOv3 head
+head:
+ [[-1, 1, Bottleneck, [1024, False]],
+ [-1, 1, Conv, [512, [1, 1]]],
+ [-1, 1, Conv, [1024, 3, 1]],
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
+
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
+
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
+ [-1, 1, Bottleneck, [256, False]],
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
+
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/cfg/baseline/yolov4-csp.yaml b/cfg/baseline/yolov4-csp.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3c908c7867399b08ec4dd09ea1a5c0219437f2e1
--- /dev/null
+++ b/cfg/baseline/yolov4-csp.yaml
@@ -0,0 +1,52 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [12,16, 19,36, 40,28] # P3/8
+ - [36,75, 76,55, 72,146] # P4/16
+ - [142,110, 192,243, 459,401] # P5/32
+
+# CSP-Darknet backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Bottleneck, [64]],
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 2, BottleneckCSPC, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
+ [-1, 8, BottleneckCSPC, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
+ [-1, 8, BottleneckCSPC, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
+ [-1, 4, BottleneckCSPC, [1024]], # 10
+ ]
+
+# CSP-Dark-PAN head
+head:
+ [[-1, 1, SPPCSPC, [512]], # 11
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [8, 1, Conv, [256, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 2, BottleneckCSPB, [256]], # 16
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [6, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+ [-1, 2, BottleneckCSPB, [128]], # 21
+ [-1, 1, Conv, [256, 3, 1]],
+ [-2, 1, Conv, [256, 3, 2]],
+ [[-1, 16], 1, Concat, [1]], # cat
+ [-1, 2, BottleneckCSPB, [256]], # 25
+ [-1, 1, Conv, [512, 3, 1]],
+ [-2, 1, Conv, [512, 3, 2]],
+ [[-1, 11], 1, Concat, [1]], # cat
+ [-1, 2, BottleneckCSPB, [512]], # 29
+ [-1, 1, Conv, [1024, 3, 1]],
+
+ [[22,26,30], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/cfg/deploy/yolov7-d6.yaml b/cfg/deploy/yolov7-d6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..75a8cf58bd6aebd4a66594e231c0266431a102c7
--- /dev/null
+++ b/cfg/deploy/yolov7-d6.yaml
@@ -0,0 +1,202 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# yolov7-d6 backbone
+backbone:
+ # [from, number, module, args],
+ [[-1, 1, ReOrg, []], # 0
+ [-1, 1, Conv, [96, 3, 1]], # 1-P1/2
+
+ [-1, 1, DownC, [192]], # 2-P2/4
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [192, 1, 1]], # 14
+
+ [-1, 1, DownC, [384]], # 15-P3/8
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [384, 1, 1]], # 27
+
+ [-1, 1, DownC, [768]], # 28-P4/16
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [768, 1, 1]], # 40
+
+ [-1, 1, DownC, [1152]], # 41-P5/32
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [1152, 1, 1]], # 53
+
+ [-1, 1, DownC, [1536]], # 54-P6/64
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [1536, 1, 1]], # 66
+ ]
+
+# yolov7-d6 head
+head:
+ [[-1, 1, SPPCSPC, [768]], # 67
+
+ [-1, 1, Conv, [576, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [53, 1, Conv, [576, 1, 1]], # route backbone P5
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [576, 1, 1]], # 83
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [40, 1, Conv, [384, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [384, 1, 1]], # 99
+
+ [-1, 1, Conv, [192, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [27, 1, Conv, [192, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [192, 1, 1]], # 115
+
+ [-1, 1, DownC, [384]],
+ [[-1, 99], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [384, 1, 1]], # 129
+
+ [-1, 1, DownC, [576]],
+ [[-1, 83], 1, Concat, [1]],
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [576, 1, 1]], # 143
+
+ [-1, 1, DownC, [768]],
+ [[-1, 67], 1, Concat, [1]],
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [768, 1, 1]], # 157
+
+ [115, 1, Conv, [384, 3, 1]],
+ [129, 1, Conv, [768, 3, 1]],
+ [143, 1, Conv, [1152, 3, 1]],
+ [157, 1, Conv, [1536, 3, 1]],
+
+ [[158,159,160,161], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+ ]
diff --git a/cfg/deploy/yolov7-e6.yaml b/cfg/deploy/yolov7-e6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e6804069510071d179708c38b0976aa2c669be2a
--- /dev/null
+++ b/cfg/deploy/yolov7-e6.yaml
@@ -0,0 +1,180 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# yolov7-e6 backbone
+backbone:
+ # [from, number, module, args],
+ [[-1, 1, ReOrg, []], # 0
+ [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
+
+ [-1, 1, DownC, [160]], # 2-P2/4
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [160, 1, 1]], # 12
+
+ [-1, 1, DownC, [320]], # 13-P3/8
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 23
+
+ [-1, 1, DownC, [640]], # 24-P4/16
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 34
+
+ [-1, 1, DownC, [960]], # 35-P5/32
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [960, 1, 1]], # 45
+
+ [-1, 1, DownC, [1280]], # 46-P6/64
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [1280, 1, 1]], # 56
+ ]
+
+# yolov7-e6 head
+head:
+ [[-1, 1, SPPCSPC, [640]], # 57
+
+ [-1, 1, Conv, [480, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [45, 1, Conv, [480, 1, 1]], # route backbone P5
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [480, 1, 1]], # 71
+
+ [-1, 1, Conv, [320, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [34, 1, Conv, [320, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 85
+
+ [-1, 1, Conv, [160, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [23, 1, Conv, [160, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [160, 1, 1]], # 99
+
+ [-1, 1, DownC, [320]],
+ [[-1, 85], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 111
+
+ [-1, 1, DownC, [480]],
+ [[-1, 71], 1, Concat, [1]],
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [480, 1, 1]], # 123
+
+ [-1, 1, DownC, [640]],
+ [[-1, 57], 1, Concat, [1]],
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 135
+
+ [99, 1, Conv, [320, 3, 1]],
+ [111, 1, Conv, [640, 3, 1]],
+ [123, 1, Conv, [960, 3, 1]],
+ [135, 1, Conv, [1280, 3, 1]],
+
+ [[136,137,138,139], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+ ]
diff --git a/cfg/deploy/yolov7-e6e.yaml b/cfg/deploy/yolov7-e6e.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..135990d8602eb02d1f9f7bfcda27c4ca4f7bd15b
--- /dev/null
+++ b/cfg/deploy/yolov7-e6e.yaml
@@ -0,0 +1,301 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# yolov7-e6e backbone
+backbone:
+ # [from, number, module, args],
+ [[-1, 1, ReOrg, []], # 0
+ [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
+
+ [-1, 1, DownC, [160]], # 2-P2/4
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [160, 1, 1]], # 12
+ [-11, 1, Conv, [64, 1, 1]],
+ [-12, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [160, 1, 1]], # 22
+ [[-1, -11], 1, Shortcut, [1]], # 23
+
+ [-1, 1, DownC, [320]], # 24-P3/8
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 34
+ [-11, 1, Conv, [128, 1, 1]],
+ [-12, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 44
+ [[-1, -11], 1, Shortcut, [1]], # 45
+
+ [-1, 1, DownC, [640]], # 46-P4/16
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 56
+ [-11, 1, Conv, [256, 1, 1]],
+ [-12, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 66
+ [[-1, -11], 1, Shortcut, [1]], # 67
+
+ [-1, 1, DownC, [960]], # 68-P5/32
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [960, 1, 1]], # 78
+ [-11, 1, Conv, [384, 1, 1]],
+ [-12, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [960, 1, 1]], # 88
+ [[-1, -11], 1, Shortcut, [1]], # 89
+
+ [-1, 1, DownC, [1280]], # 90-P6/64
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [1280, 1, 1]], # 100
+ [-11, 1, Conv, [512, 1, 1]],
+ [-12, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [1280, 1, 1]], # 110
+ [[-1, -11], 1, Shortcut, [1]], # 111
+ ]
+
+# yolov7-e6e head
+head:
+ [[-1, 1, SPPCSPC, [640]], # 112
+
+ [-1, 1, Conv, [480, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [89, 1, Conv, [480, 1, 1]], # route backbone P5
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [480, 1, 1]], # 126
+ [-11, 1, Conv, [384, 1, 1]],
+ [-12, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [480, 1, 1]], # 136
+ [[-1, -11], 1, Shortcut, [1]], # 137
+
+ [-1, 1, Conv, [320, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [67, 1, Conv, [320, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 151
+ [-11, 1, Conv, [256, 1, 1]],
+ [-12, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 161
+ [[-1, -11], 1, Shortcut, [1]], # 162
+
+ [-1, 1, Conv, [160, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [45, 1, Conv, [160, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [160, 1, 1]], # 176
+ [-11, 1, Conv, [128, 1, 1]],
+ [-12, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [160, 1, 1]], # 186
+ [[-1, -11], 1, Shortcut, [1]], # 187
+
+ [-1, 1, DownC, [320]],
+ [[-1, 162], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 199
+ [-11, 1, Conv, [256, 1, 1]],
+ [-12, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 209
+ [[-1, -11], 1, Shortcut, [1]], # 210
+
+ [-1, 1, DownC, [480]],
+ [[-1, 137], 1, Concat, [1]],
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [480, 1, 1]], # 222
+ [-11, 1, Conv, [384, 1, 1]],
+ [-12, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [480, 1, 1]], # 232
+ [[-1, -11], 1, Shortcut, [1]], # 233
+
+ [-1, 1, DownC, [640]],
+ [[-1, 112], 1, Concat, [1]],
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 245
+ [-11, 1, Conv, [512, 1, 1]],
+ [-12, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 255
+ [[-1, -11], 1, Shortcut, [1]], # 256
+
+ [187, 1, Conv, [320, 3, 1]],
+ [210, 1, Conv, [640, 3, 1]],
+ [233, 1, Conv, [960, 3, 1]],
+ [256, 1, Conv, [1280, 3, 1]],
+
+ [[257,258,259,260], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+ ]
diff --git a/cfg/deploy/yolov7-tiny-silu.yaml b/cfg/deploy/yolov7-tiny-silu.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..9250573acc92b94b08eb304f00790b5bed620830
--- /dev/null
+++ b/cfg/deploy/yolov7-tiny-silu.yaml
@@ -0,0 +1,112 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
+
+# YOLOv7-tiny backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [32, 3, 2]], # 0-P1/2
+
+ [-1, 1, Conv, [64, 3, 2]], # 1-P2/4
+
+ [-1, 1, Conv, [32, 1, 1]],
+ [-2, 1, Conv, [32, 1, 1]],
+ [-1, 1, Conv, [32, 3, 1]],
+ [-1, 1, Conv, [32, 3, 1]],
+ [[-1, -2, -3, -4], 1, Concat, [1]],
+ [-1, 1, Conv, [64, 1, 1]], # 7
+
+ [-1, 1, MP, []], # 8-P3/8
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4], 1, Concat, [1]],
+ [-1, 1, Conv, [128, 1, 1]], # 14
+
+ [-1, 1, MP, []], # 15-P4/16
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 21
+
+ [-1, 1, MP, []], # 22-P5/32
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4], 1, Concat, [1]],
+ [-1, 1, Conv, [512, 1, 1]], # 28
+ ]
+
+# YOLOv7-tiny head
+head:
+ [[-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, SP, [5]],
+ [-2, 1, SP, [9]],
+ [-3, 1, SP, [13]],
+ [[-1, -2, -3, -4], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]],
+ [[-1, -7], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 37
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [21, 1, Conv, [128, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4], 1, Concat, [1]],
+ [-1, 1, Conv, [128, 1, 1]], # 47
+
+ [-1, 1, Conv, [64, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [14, 1, Conv, [64, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [32, 1, 1]],
+ [-2, 1, Conv, [32, 1, 1]],
+ [-1, 1, Conv, [32, 3, 1]],
+ [-1, 1, Conv, [32, 3, 1]],
+ [[-1, -2, -3, -4], 1, Concat, [1]],
+ [-1, 1, Conv, [64, 1, 1]], # 57
+
+ [-1, 1, Conv, [128, 3, 2]],
+ [[-1, 47], 1, Concat, [1]],
+
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4], 1, Concat, [1]],
+ [-1, 1, Conv, [128, 1, 1]], # 65
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 37], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 73
+
+ [57, 1, Conv, [128, 3, 1]],
+ [65, 1, Conv, [256, 3, 1]],
+ [73, 1, Conv, [512, 3, 1]],
+
+ [[74,75,76], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/cfg/deploy/yolov7-w6.yaml b/cfg/deploy/yolov7-w6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..5637a615261bf1aa735ce1385239673c4ae446c8
--- /dev/null
+++ b/cfg/deploy/yolov7-w6.yaml
@@ -0,0 +1,158 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# yolov7-w6 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, ReOrg, []], # 0
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
+
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [128, 1, 1]], # 10
+
+ [-1, 1, Conv, [256, 3, 2]], # 11-P3/8
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 19
+
+ [-1, 1, Conv, [512, 3, 2]], # 20-P4/16
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [512, 1, 1]], # 28
+
+ [-1, 1, Conv, [768, 3, 2]], # 29-P5/32
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [768, 1, 1]], # 37
+
+ [-1, 1, Conv, [1024, 3, 2]], # 38-P6/64
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [1024, 1, 1]], # 46
+ ]
+
+# yolov7-w6 head
+head:
+ [[-1, 1, SPPCSPC, [512]], # 47
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [37, 1, Conv, [384, 1, 1]], # route backbone P5
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [384, 1, 1]], # 59
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [28, 1, Conv, [256, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 71
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [19, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [128, 1, 1]], # 83
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 71], 1, Concat, [1]], # cat
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 93
+
+ [-1, 1, Conv, [384, 3, 2]],
+ [[-1, 59], 1, Concat, [1]], # cat
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [384, 1, 1]], # 103
+
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 47], 1, Concat, [1]], # cat
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [512, 1, 1]], # 113
+
+ [83, 1, Conv, [256, 3, 1]],
+ [93, 1, Conv, [512, 3, 1]],
+ [103, 1, Conv, [768, 3, 1]],
+ [113, 1, Conv, [1024, 3, 1]],
+
+ [[114,115,116,117], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+ ]
diff --git a/cfg/deploy/yolov7.yaml b/cfg/deploy/yolov7.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..201f98da6d3c7e283a905ca8a7593f7f96e7fabc
--- /dev/null
+++ b/cfg/deploy/yolov7.yaml
@@ -0,0 +1,140 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [12,16, 19,36, 40,28] # P3/8
+ - [36,75, 76,55, 72,146] # P4/16
+ - [142,110, 192,243, 459,401] # P5/32
+
+# yolov7 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Conv, [64, 3, 1]],
+
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 11
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [128, 1, 1]],
+ [-3, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 16-P3/8
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [512, 1, 1]], # 24
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-3, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 29-P4/16
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [1024, 1, 1]], # 37
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [512, 1, 1]],
+ [-3, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 42-P5/32
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [1024, 1, 1]], # 50
+ ]
+
+# yolov7 head
+head:
+ [[-1, 1, SPPCSPC, [512]], # 51
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [37, 1, Conv, [256, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 63
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [24, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [128, 1, 1]], # 75
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [128, 1, 1]],
+ [-3, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 2]],
+ [[-1, -3, 63], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 88
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-3, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, -3, 51], 1, Concat, [1]],
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [512, 1, 1]], # 101
+
+ [75, 1, RepConv, [256, 3, 1]],
+ [88, 1, RepConv, [512, 3, 1]],
+ [101, 1, RepConv, [1024, 3, 1]],
+
+ [[102,103,104], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/cfg/deploy/yolov7x.yaml b/cfg/deploy/yolov7x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..c1b4acce40c08baf9aa311cea1e07b4e856d93a2
--- /dev/null
+++ b/cfg/deploy/yolov7x.yaml
@@ -0,0 +1,156 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [12,16, 19,36, 40,28] # P3/8
+ - [36,75, 76,55, 72,146] # P4/16
+ - [142,110, 192,243, 459,401] # P5/32
+
+# yolov7x backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [40, 3, 1]], # 0
+
+ [-1, 1, Conv, [80, 3, 2]], # 1-P1/2
+ [-1, 1, Conv, [80, 3, 1]],
+
+ [-1, 1, Conv, [160, 3, 2]], # 3-P2/4
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 13
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [160, 1, 1]],
+ [-3, 1, Conv, [160, 1, 1]],
+ [-1, 1, Conv, [160, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 18-P3/8
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 28
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [320, 1, 1]],
+ [-3, 1, Conv, [320, 1, 1]],
+ [-1, 1, Conv, [320, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 33-P4/16
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [1280, 1, 1]], # 43
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [640, 1, 1]],
+ [-3, 1, Conv, [640, 1, 1]],
+ [-1, 1, Conv, [640, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 48-P5/32
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [1280, 1, 1]], # 58
+ ]
+
+# yolov7x head
+head:
+ [[-1, 1, SPPCSPC, [640]], # 59
+
+ [-1, 1, Conv, [320, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [43, 1, Conv, [320, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 73
+
+ [-1, 1, Conv, [160, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [28, 1, Conv, [160, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [160, 1, 1]], # 87
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [160, 1, 1]],
+ [-3, 1, Conv, [160, 1, 1]],
+ [-1, 1, Conv, [160, 3, 2]],
+ [[-1, -3, 73], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 102
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [320, 1, 1]],
+ [-3, 1, Conv, [320, 1, 1]],
+ [-1, 1, Conv, [320, 3, 2]],
+ [[-1, -3, 59], 1, Concat, [1]],
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 117
+
+ [87, 1, Conv, [320, 3, 1]],
+ [102, 1, Conv, [640, 3, 1]],
+ [117, 1, Conv, [1280, 3, 1]],
+
+ [[118,119,120], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/cfg/training/yolov7.yaml b/cfg/training/yolov7.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..9a807e58fb2a8b03f3eff5c97228eede0e9cdb9f
--- /dev/null
+++ b/cfg/training/yolov7.yaml
@@ -0,0 +1,140 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [12,16, 19,36, 40,28] # P3/8
+ - [36,75, 76,55, 72,146] # P4/16
+ - [142,110, 192,243, 459,401] # P5/32
+
+# yolov7 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Conv, [64, 3, 1]],
+
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 11
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [128, 1, 1]],
+ [-3, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 16-P3/8
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [512, 1, 1]], # 24
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-3, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 29-P4/16
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [1024, 1, 1]], # 37
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [512, 1, 1]],
+ [-3, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 42-P5/32
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [1024, 1, 1]], # 50
+ ]
+
+# yolov7 head
+head:
+ [[-1, 1, SPPCSPC, [512]], # 51
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [37, 1, Conv, [256, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 63
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [24, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [128, 1, 1]], # 75
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [128, 1, 1]],
+ [-3, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 2]],
+ [[-1, -3, 63], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 88
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-3, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, -3, 51], 1, Concat, [1]],
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [512, 1, 1]], # 101
+
+ [75, 1, RepConv, [256, 3, 1]],
+ [88, 1, RepConv, [512, 3, 1]],
+ [101, 1, RepConv, [1024, 3, 1]],
+
+ [[102,103,104], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/cfg/training/yolov7d6.yaml b/cfg/training/yolov7d6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..4faedda4520934a36cf5633a71cffb4227d20834
--- /dev/null
+++ b/cfg/training/yolov7d6.yaml
@@ -0,0 +1,207 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# yolov7 backbone
+backbone:
+ # [from, number, module, args],
+ [[-1, 1, ReOrg, []], # 0
+ [-1, 1, Conv, [96, 3, 1]], # 1-P1/2
+
+ [-1, 1, DownC, [192]], # 2-P2/4
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [192, 1, 1]], # 14
+
+ [-1, 1, DownC, [384]], # 15-P3/8
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [384, 1, 1]], # 27
+
+ [-1, 1, DownC, [768]], # 28-P4/16
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [768, 1, 1]], # 40
+
+ [-1, 1, DownC, [1152]], # 41-P5/32
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [1152, 1, 1]], # 53
+
+ [-1, 1, DownC, [1536]], # 54-P6/64
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [1536, 1, 1]], # 66
+ ]
+
+# yolov7 head
+head:
+ [[-1, 1, SPPCSPC, [768]], # 67
+
+ [-1, 1, Conv, [576, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [53, 1, Conv, [576, 1, 1]], # route backbone P5
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [576, 1, 1]], # 83
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [40, 1, Conv, [384, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [384, 1, 1]], # 99
+
+ [-1, 1, Conv, [192, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [27, 1, Conv, [192, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [192, 1, 1]], # 115
+
+ [-1, 1, DownC, [384]],
+ [[-1, 99], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [384, 1, 1]], # 129
+
+ [-1, 1, DownC, [576]],
+ [[-1, 83], 1, Concat, [1]],
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [576, 1, 1]], # 143
+
+ [-1, 1, DownC, [768]],
+ [[-1, 67], 1, Concat, [1]],
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
+ [-1, 1, Conv, [768, 1, 1]], # 157
+
+ [115, 1, Conv, [384, 3, 1]],
+ [129, 1, Conv, [768, 3, 1]],
+ [143, 1, Conv, [1152, 3, 1]],
+ [157, 1, Conv, [1536, 3, 1]],
+
+ [115, 1, Conv, [384, 3, 1]],
+ [99, 1, Conv, [768, 3, 1]],
+ [83, 1, Conv, [1152, 3, 1]],
+ [67, 1, Conv, [1536, 3, 1]],
+
+ [[158,159,160,161,162,163,164,165], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+ ]
diff --git a/cfg/training/yolov7e6.yaml b/cfg/training/yolov7e6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..58b27f097d9e1c0f334bb2522999b2c6b8022e65
--- /dev/null
+++ b/cfg/training/yolov7e6.yaml
@@ -0,0 +1,185 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# yolov7 backbone
+backbone:
+ # [from, number, module, args],
+ [[-1, 1, ReOrg, []], # 0
+ [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
+
+ [-1, 1, DownC, [160]], # 2-P2/4
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [160, 1, 1]], # 12
+
+ [-1, 1, DownC, [320]], # 13-P3/8
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 23
+
+ [-1, 1, DownC, [640]], # 24-P4/16
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 34
+
+ [-1, 1, DownC, [960]], # 35-P5/32
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [960, 1, 1]], # 45
+
+ [-1, 1, DownC, [1280]], # 46-P6/64
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [1280, 1, 1]], # 56
+ ]
+
+# yolov7 head
+head:
+ [[-1, 1, SPPCSPC, [640]], # 57
+
+ [-1, 1, Conv, [480, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [45, 1, Conv, [480, 1, 1]], # route backbone P5
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [480, 1, 1]], # 71
+
+ [-1, 1, Conv, [320, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [34, 1, Conv, [320, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 85
+
+ [-1, 1, Conv, [160, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [23, 1, Conv, [160, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [160, 1, 1]], # 99
+
+ [-1, 1, DownC, [320]],
+ [[-1, 85], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 111
+
+ [-1, 1, DownC, [480]],
+ [[-1, 71], 1, Concat, [1]],
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [480, 1, 1]], # 123
+
+ [-1, 1, DownC, [640]],
+ [[-1, 57], 1, Concat, [1]],
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 135
+
+ [99, 1, Conv, [320, 3, 1]],
+ [111, 1, Conv, [640, 3, 1]],
+ [123, 1, Conv, [960, 3, 1]],
+ [135, 1, Conv, [1280, 3, 1]],
+
+ [99, 1, Conv, [320, 3, 1]],
+ [85, 1, Conv, [640, 3, 1]],
+ [71, 1, Conv, [960, 3, 1]],
+ [57, 1, Conv, [1280, 3, 1]],
+
+ [[136,137,138,139,140,141,142,143], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+ ]
diff --git a/cfg/training/yolov7e6e.yaml b/cfg/training/yolov7e6e.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3c836619e6bd3e9e5585df3696dcb977995c99ff
--- /dev/null
+++ b/cfg/training/yolov7e6e.yaml
@@ -0,0 +1,306 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# yolov7 backbone
+backbone:
+ # [from, number, module, args],
+ [[-1, 1, ReOrg, []], # 0
+ [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
+
+ [-1, 1, DownC, [160]], # 2-P2/4
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [160, 1, 1]], # 12
+ [-11, 1, Conv, [64, 1, 1]],
+ [-12, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [160, 1, 1]], # 22
+ [[-1, -11], 1, Shortcut, [1]], # 23
+
+ [-1, 1, DownC, [320]], # 24-P3/8
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 34
+ [-11, 1, Conv, [128, 1, 1]],
+ [-12, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 44
+ [[-1, -11], 1, Shortcut, [1]], # 45
+
+ [-1, 1, DownC, [640]], # 46-P4/16
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 56
+ [-11, 1, Conv, [256, 1, 1]],
+ [-12, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 66
+ [[-1, -11], 1, Shortcut, [1]], # 67
+
+ [-1, 1, DownC, [960]], # 68-P5/32
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [960, 1, 1]], # 78
+ [-11, 1, Conv, [384, 1, 1]],
+ [-12, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [960, 1, 1]], # 88
+ [[-1, -11], 1, Shortcut, [1]], # 89
+
+ [-1, 1, DownC, [1280]], # 90-P6/64
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [1280, 1, 1]], # 100
+ [-11, 1, Conv, [512, 1, 1]],
+ [-12, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [1280, 1, 1]], # 110
+ [[-1, -11], 1, Shortcut, [1]], # 111
+ ]
+
+# yolov7 head
+head:
+ [[-1, 1, SPPCSPC, [640]], # 112
+
+ [-1, 1, Conv, [480, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [89, 1, Conv, [480, 1, 1]], # route backbone P5
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [480, 1, 1]], # 126
+ [-11, 1, Conv, [384, 1, 1]],
+ [-12, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [480, 1, 1]], # 136
+ [[-1, -11], 1, Shortcut, [1]], # 137
+
+ [-1, 1, Conv, [320, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [67, 1, Conv, [320, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 151
+ [-11, 1, Conv, [256, 1, 1]],
+ [-12, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 161
+ [[-1, -11], 1, Shortcut, [1]], # 162
+
+ [-1, 1, Conv, [160, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [45, 1, Conv, [160, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [160, 1, 1]], # 176
+ [-11, 1, Conv, [128, 1, 1]],
+ [-12, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [160, 1, 1]], # 186
+ [[-1, -11], 1, Shortcut, [1]], # 187
+
+ [-1, 1, DownC, [320]],
+ [[-1, 162], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 199
+ [-11, 1, Conv, [256, 1, 1]],
+ [-12, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 209
+ [[-1, -11], 1, Shortcut, [1]], # 210
+
+ [-1, 1, DownC, [480]],
+ [[-1, 137], 1, Concat, [1]],
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [480, 1, 1]], # 222
+ [-11, 1, Conv, [384, 1, 1]],
+ [-12, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [480, 1, 1]], # 232
+ [[-1, -11], 1, Shortcut, [1]], # 233
+
+ [-1, 1, DownC, [640]],
+ [[-1, 112], 1, Concat, [1]],
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 245
+ [-11, 1, Conv, [512, 1, 1]],
+ [-12, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 255
+ [[-1, -11], 1, Shortcut, [1]], # 256
+
+ [187, 1, Conv, [320, 3, 1]],
+ [210, 1, Conv, [640, 3, 1]],
+ [233, 1, Conv, [960, 3, 1]],
+ [256, 1, Conv, [1280, 3, 1]],
+
+ [186, 1, Conv, [320, 3, 1]],
+ [161, 1, Conv, [640, 3, 1]],
+ [136, 1, Conv, [960, 3, 1]],
+ [112, 1, Conv, [1280, 3, 1]],
+
+ [[257,258,259,260,261,262,263,264], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+ ]
diff --git a/cfg/training/yolov7w6.yaml b/cfg/training/yolov7w6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..4b9c0131a0ec971fd64ad914fa6704ec3185e3e6
--- /dev/null
+++ b/cfg/training/yolov7w6.yaml
@@ -0,0 +1,163 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# yolov7 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, ReOrg, []], # 0
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
+
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [128, 1, 1]], # 10
+
+ [-1, 1, Conv, [256, 3, 2]], # 11-P3/8
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 19
+
+ [-1, 1, Conv, [512, 3, 2]], # 20-P4/16
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [512, 1, 1]], # 28
+
+ [-1, 1, Conv, [768, 3, 2]], # 29-P5/32
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [-1, 1, Conv, [384, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [768, 1, 1]], # 37
+
+ [-1, 1, Conv, [1024, 3, 2]], # 38-P6/64
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [1024, 1, 1]], # 46
+ ]
+
+# yolov7 head
+head:
+ [[-1, 1, SPPCSPC, [512]], # 47
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [37, 1, Conv, [384, 1, 1]], # route backbone P5
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [384, 1, 1]], # 59
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [28, 1, Conv, [256, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 71
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [19, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [128, 1, 1]], # 83
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 71], 1, Concat, [1]], # cat
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 93
+
+ [-1, 1, Conv, [384, 3, 2]],
+ [[-1, 59], 1, Concat, [1]], # cat
+
+ [-1, 1, Conv, [384, 1, 1]],
+ [-2, 1, Conv, [384, 1, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [-1, 1, Conv, [192, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [384, 1, 1]], # 103
+
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 47], 1, Concat, [1]], # cat
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [512, 1, 1]], # 113
+
+ [83, 1, Conv, [256, 3, 1]],
+ [93, 1, Conv, [512, 3, 1]],
+ [103, 1, Conv, [768, 3, 1]],
+ [113, 1, Conv, [1024, 3, 1]],
+
+ [83, 1, Conv, [320, 3, 1]],
+ [71, 1, Conv, [640, 3, 1]],
+ [59, 1, Conv, [960, 3, 1]],
+ [47, 1, Conv, [1280, 3, 1]],
+
+ [[114,115,116,117,118,119,120,121], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+ ]
diff --git a/cfg/training/yolov7x.yaml b/cfg/training/yolov7x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..207be886353b92ec6b3a0db915ff37bebf914961
--- /dev/null
+++ b/cfg/training/yolov7x.yaml
@@ -0,0 +1,156 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [12,16, 19,36, 40,28] # P3/8
+ - [36,75, 76,55, 72,146] # P4/16
+ - [142,110, 192,243, 459,401] # P5/32
+
+# yolov7 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [40, 3, 1]], # 0
+
+ [-1, 1, Conv, [80, 3, 2]], # 1-P1/2
+ [-1, 1, Conv, [80, 3, 1]],
+
+ [-1, 1, Conv, [160, 3, 2]], # 3-P2/4
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 13
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [160, 1, 1]],
+ [-3, 1, Conv, [160, 1, 1]],
+ [-1, 1, Conv, [160, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 18-P3/8
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 28
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [320, 1, 1]],
+ [-3, 1, Conv, [320, 1, 1]],
+ [-1, 1, Conv, [320, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 33-P4/16
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [1280, 1, 1]], # 43
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [640, 1, 1]],
+ [-3, 1, Conv, [640, 1, 1]],
+ [-1, 1, Conv, [640, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 48-P5/32
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [1280, 1, 1]], # 58
+ ]
+
+# yolov7 head
+head:
+ [[-1, 1, SPPCSPC, [640]], # 59
+
+ [-1, 1, Conv, [320, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [43, 1, Conv, [320, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 73
+
+ [-1, 1, Conv, [160, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [28, 1, Conv, [160, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [160, 1, 1]], # 87
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [160, 1, 1]],
+ [-3, 1, Conv, [160, 1, 1]],
+ [-1, 1, Conv, [160, 3, 2]],
+ [[-1, -3, 73], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [320, 1, 1]], # 102
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [320, 1, 1]],
+ [-3, 1, Conv, [320, 1, 1]],
+ [-1, 1, Conv, [320, 3, 2]],
+ [[-1, -3, 59], 1, Concat, [1]],
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, Conv, [512, 3, 1]],
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
+ [-1, 1, Conv, [640, 1, 1]], # 117
+
+ [87, 1, Conv, [320, 3, 1]],
+ [102, 1, Conv, [640, 3, 1]],
+ [117, 1, Conv, [1280, 3, 1]],
+
+ [[118,119,120], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/data/coco.yaml b/data/coco.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a1d126c903bf9aacb8cf619d00447545c9047866
--- /dev/null
+++ b/data/coco.yaml
@@ -0,0 +1,23 @@
+# COCO 2017 dataset http://cocodataset.org
+
+# download command/URL (optional)
+download: bash ./scripts/get_coco.sh
+
+# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
+train: ./coco/train2017.txt # 118287 images
+val: ./coco/val2017.txt # 5000 images
+test: ./coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
+
+# number of classes
+nc: 80
+
+# class names
+names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
+ 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
+ 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
+ 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
+ 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
+ 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
+ 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
+ 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
+ 'hair drier', 'toothbrush' ]
diff --git a/data/hyp.scratch.p5.yaml b/data/hyp.scratch.p5.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ca512b764474f15497256054a067aadcc351c1af
--- /dev/null
+++ b/data/hyp.scratch.p5.yaml
@@ -0,0 +1,29 @@
+lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937 # SGD momentum/Adam beta1
+weight_decay: 0.0005 # optimizer weight decay 5e-4
+warmup_epochs: 3.0 # warmup epochs (fractions ok)
+warmup_momentum: 0.8 # warmup initial momentum
+warmup_bias_lr: 0.1 # warmup initial bias lr
+box: 0.05 # box loss gain
+cls: 0.3 # cls loss gain
+cls_pw: 1.0 # cls BCELoss positive_weight
+obj: 0.7 # obj loss gain (scale with pixels)
+obj_pw: 1.0 # obj BCELoss positive_weight
+iou_t: 0.20 # IoU training threshold
+anchor_t: 4.0 # anchor-multiple threshold
+fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4 # image HSV-Value augmentation (fraction)
+degrees: 0.0 # image rotation (+/- deg)
+translate: 0.2 # image translation (+/- fraction)
+scale: 0.9 # image scale (+/- gain)
+shear: 0.0 # image shear (+/- deg)
+perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0 # image flip up-down (probability)
+fliplr: 0.5 # image flip left-right (probability)
+mosaic: 1.0 # image mosaic (probability)
+mixup: 0.15 # image mixup (probability)
+copy_paste: 0.0 # image copy paste (probability)
+paste_in: 0.15 # image copy paste (probability)
diff --git a/data/hyp.scratch.p6.yaml b/data/hyp.scratch.p6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..dcb55d63b354455c9fae28a70ec370eda8a9f4fb
--- /dev/null
+++ b/data/hyp.scratch.p6.yaml
@@ -0,0 +1,29 @@
+lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937 # SGD momentum/Adam beta1
+weight_decay: 0.0005 # optimizer weight decay 5e-4
+warmup_epochs: 3.0 # warmup epochs (fractions ok)
+warmup_momentum: 0.8 # warmup initial momentum
+warmup_bias_lr: 0.1 # warmup initial bias lr
+box: 0.05 # box loss gain
+cls: 0.3 # cls loss gain
+cls_pw: 1.0 # cls BCELoss positive_weight
+obj: 0.7 # obj loss gain (scale with pixels)
+obj_pw: 1.0 # obj BCELoss positive_weight
+iou_t: 0.20 # IoU training threshold
+anchor_t: 4.0 # anchor-multiple threshold
+fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4 # image HSV-Value augmentation (fraction)
+degrees: 0.0 # image rotation (+/- deg)
+translate: 0.2 # image translation (+/- fraction)
+scale: 0.9 # image scale (+/- gain)
+shear: 0.0 # image shear (+/- deg)
+perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0 # image flip up-down (probability)
+fliplr: 0.5 # image flip left-right (probability)
+mosaic: 1.0 # image mosaic (probability)
+mixup: 0.15 # image mixup (probability)
+copy_paste: 0.0 # image copy paste (probability)
+paste_in: 0.15 # image copy paste (probability)
diff --git a/data/hyp.scratch.tiny.yaml b/data/hyp.scratch.tiny.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b84fbfa9e22ca0e82e8037acc33dc544966e4b4f
--- /dev/null
+++ b/data/hyp.scratch.tiny.yaml
@@ -0,0 +1,29 @@
+lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937 # SGD momentum/Adam beta1
+weight_decay: 0.0005 # optimizer weight decay 5e-4
+warmup_epochs: 3.0 # warmup epochs (fractions ok)
+warmup_momentum: 0.8 # warmup initial momentum
+warmup_bias_lr: 0.1 # warmup initial bias lr
+box: 0.05 # box loss gain
+cls: 0.5 # cls loss gain
+cls_pw: 1.0 # cls BCELoss positive_weight
+obj: 1.0 # obj loss gain (scale with pixels)
+obj_pw: 1.0 # obj BCELoss positive_weight
+iou_t: 0.20 # IoU training threshold
+anchor_t: 4.0 # anchor-multiple threshold
+fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4 # image HSV-Value augmentation (fraction)
+degrees: 0.0 # image rotation (+/- deg)
+translate: 0.1 # image translation (+/- fraction)
+scale: 0.5 # image scale (+/- gain)
+shear: 0.0 # image shear (+/- deg)
+perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0 # image flip up-down (probability)
+fliplr: 0.5 # image flip left-right (probability)
+mosaic: 1.0 # image mosaic (probability)
+mixup: 0.05 # image mixup (probability)
+copy_paste: 0.0 # image copy paste (probability)
+paste_in: 0.05 # image copy paste (probability)
diff --git a/detect.py b/detect.py
new file mode 100644
index 0000000000000000000000000000000000000000..607386a244a986eb940ebb0d3dfc76f774e150fc
--- /dev/null
+++ b/detect.py
@@ -0,0 +1,183 @@
+import argparse
+import time
+from pathlib import Path
+
+import cv2
+import torch
+import torch.backends.cudnn as cudnn
+from numpy import random
+
+from models.experimental import attempt_load
+from utils.datasets import LoadStreams, LoadImages
+from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
+ scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
+from utils.plots import plot_one_box
+from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
+
+
+def detect(save_img=False):
+ source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace
+ save_img = not opt.nosave and not source.endswith('.txt') # save inference images
+ webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
+ ('rtsp://', 'rtmp://', 'http://', 'https://'))
+
+ # Directories
+ save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
+
+ # Initialize
+ set_logging()
+ device = select_device(opt.device)
+ half = device.type != 'cpu' # half precision only supported on CUDA
+
+ # Load model
+ model = attempt_load(weights, map_location=device) # load FP32 model
+ stride = int(model.stride.max()) # model stride
+ imgsz = check_img_size(imgsz, s=stride) # check img_size
+
+ if trace:
+ model = TracedModel(model, device, opt.img_size)
+
+ if half:
+ model.half() # to FP16
+
+ # Second-stage classifier
+ classify = False
+ if classify:
+ modelc = load_classifier(name='resnet101', n=2) # initialize
+ modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
+
+ # Set Dataloader
+ vid_path, vid_writer = None, None
+ if webcam:
+ view_img = check_imshow()
+ cudnn.benchmark = True # set True to speed up constant image size inference
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride)
+ else:
+ dataset = LoadImages(source, img_size=imgsz, stride=stride)
+
+ # Get names and colors
+ names = model.module.names if hasattr(model, 'module') else model.names
+ colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
+
+ # Run inference
+ if device.type != 'cpu':
+ model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
+ t0 = time.time()
+ for path, img, im0s, vid_cap in dataset:
+ img = torch.from_numpy(img).to(device)
+ img = img.half() if half else img.float() # uint8 to fp16/32
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
+ if img.ndimension() == 3:
+ img = img.unsqueeze(0)
+
+ # Inference
+ t1 = time_synchronized()
+ pred = model(img, augment=opt.augment)[0]
+
+ # Apply NMS
+ pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
+ t2 = time_synchronized()
+
+ # Apply Classifier
+ if classify:
+ pred = apply_classifier(pred, modelc, img, im0s)
+
+ # Process detections
+ for i, det in enumerate(pred): # detections per image
+ if webcam: # batch_size >= 1
+ p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
+ else:
+ p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
+
+ p = Path(p) # to Path
+ save_path = str(save_dir / p.name) # img.jpg
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
+ s += '%gx%g ' % img.shape[2:] # print string
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
+ if len(det):
+ # Rescale boxes from img_size to im0 size
+ det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
+
+ # Print results
+ for c in det[:, -1].unique():
+ n = (det[:, -1] == c).sum() # detections per class
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
+
+ # Write results
+ for *xyxy, conf, cls in reversed(det):
+ if save_txt: # Write to file
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
+ line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
+ with open(txt_path + '.txt', 'a') as f:
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+ if save_img or view_img: # Add bbox to image
+ label = f'{names[int(cls)]} {conf:.2f}'
+ plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
+
+ # Print time (inference + NMS)
+ #print(f'{s}Done. ({t2 - t1:.3f}s)')
+
+ # Stream results
+ if view_img:
+ cv2.imshow(str(p), im0)
+ cv2.waitKey(1) # 1 millisecond
+
+ # Save results (image with detections)
+ if save_img:
+ if dataset.mode == 'image':
+ cv2.imwrite(save_path, im0)
+ else: # 'video' or 'stream'
+ if vid_path != save_path: # new video
+ vid_path = save_path
+ if isinstance(vid_writer, cv2.VideoWriter):
+ vid_writer.release() # release previous video writer
+ if vid_cap: # video
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+ else: # stream
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
+ save_path += '.mp4'
+ vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
+ vid_writer.write(im0)
+
+ if save_txt or save_img:
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+ #print(f"Results saved to {save_dir}{s}")
+
+ print(f'Done. ({time.time() - t0:.3f}s)')
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
+ parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--view-img', action='store_true', help='display results')
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
+ parser.add_argument('--update', action='store_true', help='update all models')
+ parser.add_argument('--project', default='runs/detect', help='save results to project/name')
+ parser.add_argument('--name', default='exp', help='save results to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--trace', action='store_true', help='trace model')
+ opt = parser.parse_args()
+ print(opt)
+ #check_requirements(exclude=('pycocotools', 'thop'))
+
+ with torch.no_grad():
+ if opt.update: # update all models (to fix SourceChangeWarning)
+ for opt.weights in ['yolov7.pt']:
+ detect()
+ strip_optimizer(opt.weights)
+ else:
+ detect()
diff --git a/figure/performance.png b/figure/performance.png
new file mode 100644
index 0000000000000000000000000000000000000000..58c0698bc93272f243fc85fc7e8b2f044f0b8bfd
Binary files /dev/null and b/figure/performance.png differ
diff --git a/hubconf.py b/hubconf.py
new file mode 100644
index 0000000000000000000000000000000000000000..f8a8cbe940d89fa0ca293183407ec7bf6a453305
--- /dev/null
+++ b/hubconf.py
@@ -0,0 +1,97 @@
+"""PyTorch Hub models
+
+Usage:
+ import torch
+ model = torch.hub.load('repo', 'model')
+"""
+
+from pathlib import Path
+
+import torch
+
+from models.yolo import Model
+from utils.general import check_requirements, set_logging
+from utils.google_utils import attempt_download
+from utils.torch_utils import select_device
+
+dependencies = ['torch', 'yaml']
+check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop'))
+set_logging()
+
+
+def create(name, pretrained, channels, classes, autoshape):
+ """Creates a specified model
+
+ Arguments:
+ name (str): name of model, i.e. 'yolov7'
+ pretrained (bool): load pretrained weights into the model
+ channels (int): number of input channels
+ classes (int): number of model classes
+
+ Returns:
+ pytorch model
+ """
+ try:
+ cfg = list((Path(__file__).parent / 'cfg').rglob(f'{name}.yaml'))[0] # model.yaml path
+ model = Model(cfg, channels, classes)
+ if pretrained:
+ fname = f'{name}.pt' # checkpoint filename
+ attempt_download(fname) # download if not found locally
+ ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
+ msd = model.state_dict() # model state_dict
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
+ csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
+ model.load_state_dict(csd, strict=False) # load
+ if len(ckpt['model'].names) == classes:
+ model.names = ckpt['model'].names # set class names attribute
+ if autoshape:
+ model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
+ device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
+ return model.to(device)
+
+ except Exception as e:
+ s = 'Cache maybe be out of date, try force_reload=True.'
+ raise Exception(s) from e
+
+
+def custom(path_or_model='path/to/model.pt', autoshape=True):
+ """custom mode
+
+ Arguments (3 options):
+ path_or_model (str): 'path/to/model.pt'
+ path_or_model (dict): torch.load('path/to/model.pt')
+ path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
+
+ Returns:
+ pytorch model
+ """
+ model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
+ if isinstance(model, dict):
+ model = model['ema' if model.get('ema') else 'model'] # load model
+
+ hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
+ hub_model.load_state_dict(model.float().state_dict()) # load state_dict
+ hub_model.names = model.names # class names
+ if autoshape:
+ hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
+ device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
+ return hub_model.to(device)
+
+
+def yolov7(pretrained=True, channels=3, classes=80, autoshape=True):
+ return create('yolov7', pretrained, channels, classes, autoshape)
+
+
+if __name__ == '__main__':
+ model = custom(path_or_model='yolov7.pt') # custom example
+ # model = create(name='yolov7', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
+
+ # Verify inference
+ import numpy as np
+ from PIL import Image
+
+ imgs = [np.zeros((640, 480, 3))]
+
+ results = model(imgs) # batched inference
+ results.print()
+ results.save()
diff --git a/inference/images/horses.jpg b/inference/images/horses.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3a761f46ba08ed459af026b59f6b91b6fa597dd1
Binary files /dev/null and b/inference/images/horses.jpg differ
diff --git a/models/__init__.py b/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..84952a8167bc2975913a6def6b4f027d566552a9
--- /dev/null
+++ b/models/__init__.py
@@ -0,0 +1 @@
+# init
\ No newline at end of file
diff --git a/models/common.py b/models/common.py
new file mode 100644
index 0000000000000000000000000000000000000000..faebf7670f68c91654927f597328a048cc63323a
--- /dev/null
+++ b/models/common.py
@@ -0,0 +1,2019 @@
+import math
+from copy import copy
+from pathlib import Path
+
+import numpy as np
+import pandas as pd
+import requests
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torchvision.ops import DeformConv2d
+from PIL import Image
+from torch.cuda import amp
+
+from utils.datasets import letterbox
+from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh
+from utils.plots import color_list, plot_one_box
+from utils.torch_utils import time_synchronized
+
+
+##### basic ####
+
+def autopad(k, p=None): # kernel, padding
+ # Pad to 'same'
+ if p is None:
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
+ return p
+
+
+class MP(nn.Module):
+ def __init__(self, k=2):
+ super(MP, self).__init__()
+ self.m = nn.MaxPool2d(kernel_size=k, stride=k)
+
+ def forward(self, x):
+ return self.m(x)
+
+
+class SP(nn.Module):
+ def __init__(self, k=3, s=1):
+ super(SP, self).__init__()
+ self.m = nn.MaxPool2d(kernel_size=k, stride=s, padding=k // 2)
+
+ def forward(self, x):
+ return self.m(x)
+
+
+class ReOrg(nn.Module):
+ def __init__(self):
+ super(ReOrg, self).__init__()
+
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
+ return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
+
+
+class Concat(nn.Module):
+ def __init__(self, dimension=1):
+ super(Concat, self).__init__()
+ self.d = dimension
+
+ def forward(self, x):
+ return torch.cat(x, self.d)
+
+
+class Chuncat(nn.Module):
+ def __init__(self, dimension=1):
+ super(Chuncat, self).__init__()
+ self.d = dimension
+
+ def forward(self, x):
+ x1 = []
+ x2 = []
+ for xi in x:
+ xi1, xi2 = xi.chunk(2, self.d)
+ x1.append(xi1)
+ x2.append(xi2)
+ return torch.cat(x1+x2, self.d)
+
+
+class Shortcut(nn.Module):
+ def __init__(self, dimension=0):
+ super(Shortcut, self).__init__()
+ self.d = dimension
+
+ def forward(self, x):
+ return x[0]+x[1]
+
+
+class Foldcut(nn.Module):
+ def __init__(self, dimension=0):
+ super(Foldcut, self).__init__()
+ self.d = dimension
+
+ def forward(self, x):
+ x1, x2 = x.chunk(2, self.d)
+ return x1+x2
+
+
+class Conv(nn.Module):
+ # Standard convolution
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
+ super(Conv, self).__init__()
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
+ self.bn = nn.BatchNorm2d(c2)
+ self.act = nn.LeakyReLU(0.1, inplace=True) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
+
+ def forward(self, x):
+ return self.act(self.bn(self.conv(x)))
+
+ def fuseforward(self, x):
+ return self.act(self.conv(x))
+
+
+class RobustConv(nn.Module):
+ # Robust convolution (use high kernel size 7-11 for: downsampling and other layers). Train for 300 - 450 epochs.
+ def __init__(self, c1, c2, k=7, s=1, p=None, g=1, act=True, layer_scale_init_value=1e-6): # ch_in, ch_out, kernel, stride, padding, groups
+ super(RobustConv, self).__init__()
+ self.conv_dw = Conv(c1, c1, k=k, s=s, p=p, g=c1, act=act)
+ self.conv1x1 = nn.Conv2d(c1, c2, 1, 1, 0, groups=1, bias=True)
+ self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(c2)) if layer_scale_init_value > 0 else None
+
+ def forward(self, x):
+ x = x.to(memory_format=torch.channels_last)
+ x = self.conv1x1(self.conv_dw(x))
+ if self.gamma is not None:
+ x = x.mul(self.gamma.reshape(1, -1, 1, 1))
+ return x
+
+
+class RobustConv2(nn.Module):
+ # Robust convolution 2 (use [32, 5, 2] or [32, 7, 4] or [32, 11, 8] for one of the paths in CSP).
+ def __init__(self, c1, c2, k=7, s=4, p=None, g=1, act=True, layer_scale_init_value=1e-6): # ch_in, ch_out, kernel, stride, padding, groups
+ super(RobustConv2, self).__init__()
+ self.conv_strided = Conv(c1, c1, k=k, s=s, p=p, g=c1, act=act)
+ self.conv_deconv = nn.ConvTranspose2d(in_channels=c1, out_channels=c2, kernel_size=s, stride=s,
+ padding=0, bias=True, dilation=1, groups=1
+ )
+ self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(c2)) if layer_scale_init_value > 0 else None
+
+ def forward(self, x):
+ x = self.conv_deconv(self.conv_strided(x))
+ if self.gamma is not None:
+ x = x.mul(self.gamma.reshape(1, -1, 1, 1))
+ return x
+
+
+def DWConv(c1, c2, k=1, s=1, act=True):
+ # Depthwise convolution
+ return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
+
+
+class GhostConv(nn.Module):
+ # Ghost Convolution https://github.com/huawei-noah/ghostnet
+ def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
+ super(GhostConv, self).__init__()
+ c_ = c2 // 2 # hidden channels
+ self.cv1 = Conv(c1, c_, k, s, None, g, act)
+ self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
+
+ def forward(self, x):
+ y = self.cv1(x)
+ return torch.cat([y, self.cv2(y)], 1)
+
+
+class Stem(nn.Module):
+ # Stem
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
+ super(Stem, self).__init__()
+ c_ = int(c2/2) # hidden channels
+ self.cv1 = Conv(c1, c_, 3, 2)
+ self.cv2 = Conv(c_, c_, 1, 1)
+ self.cv3 = Conv(c_, c_, 3, 2)
+ self.pool = torch.nn.MaxPool2d(2, stride=2)
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
+
+ def forward(self, x):
+ x = self.cv1(x)
+ return self.cv4(torch.cat((self.cv3(self.cv2(x)), self.pool(x)), dim=1))
+
+
+class DownC(nn.Module):
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
+ def __init__(self, c1, c2, n=1, k=2):
+ super(DownC, self).__init__()
+ c_ = int(c1) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c_, c2//2, 3, k)
+ self.cv3 = Conv(c1, c2//2, 1, 1)
+ self.mp = nn.MaxPool2d(kernel_size=k, stride=k)
+
+ def forward(self, x):
+ return torch.cat((self.cv2(self.cv1(x)), self.cv3(self.mp(x))), dim=1)
+
+
+class SPP(nn.Module):
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
+ def __init__(self, c1, c2, k=(5, 9, 13)):
+ super(SPP, self).__init__()
+ c_ = c1 // 2 # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
+
+ def forward(self, x):
+ x = self.cv1(x)
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
+
+
+class Bottleneck(nn.Module):
+ # Darknet bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
+ super(Bottleneck, self).__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c_, c2, 3, 1, g=g)
+ self.add = shortcut and c1 == c2
+
+ def forward(self, x):
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class Res(nn.Module):
+ # ResNet bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
+ super(Res, self).__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c_, c_, 3, 1, g=g)
+ self.cv3 = Conv(c_, c2, 1, 1)
+ self.add = shortcut and c1 == c2
+
+ def forward(self, x):
+ return x + self.cv3(self.cv2(self.cv1(x))) if self.add else self.cv3(self.cv2(self.cv1(x)))
+
+
+class ResX(Res):
+ # ResNet bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=32, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
+ super().__init__(c1, c2, shortcu, g, e)
+ c_ = int(c2 * e) # hidden channels
+
+
+class Ghost(nn.Module):
+ # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
+ def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
+ super(Ghost, self).__init__()
+ c_ = c2 // 2
+ self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
+ DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
+ GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
+ self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
+ Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
+
+ def forward(self, x):
+ return self.conv(x) + self.shortcut(x)
+
+##### end of basic #####
+
+
+##### cspnet #####
+
+class SPPCSPC(nn.Module):
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
+ super(SPPCSPC, self).__init__()
+ c_ = int(2 * c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c1, c_, 1, 1)
+ self.cv3 = Conv(c_, c_, 3, 1)
+ self.cv4 = Conv(c_, c_, 1, 1)
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
+ self.cv5 = Conv(4 * c_, c_, 1, 1)
+ self.cv6 = Conv(c_, c_, 3, 1)
+ self.cv7 = Conv(2 * c_, c2, 1, 1)
+
+ def forward(self, x):
+ x1 = self.cv4(self.cv3(self.cv1(x)))
+ y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
+ y2 = self.cv2(x)
+ return self.cv7(torch.cat((y1, y2), dim=1))
+
+class GhostSPPCSPC(SPPCSPC):
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
+ super().__init__(c1, c2, n, shortcut, g, e, k)
+ c_ = int(2 * c2 * e) # hidden channels
+ self.cv1 = GhostConv(c1, c_, 1, 1)
+ self.cv2 = GhostConv(c1, c_, 1, 1)
+ self.cv3 = GhostConv(c_, c_, 3, 1)
+ self.cv4 = GhostConv(c_, c_, 1, 1)
+ self.cv5 = GhostConv(4 * c_, c_, 1, 1)
+ self.cv6 = GhostConv(c_, c_, 3, 1)
+ self.cv7 = GhostConv(2 * c_, c2, 1, 1)
+
+
+class GhostStem(Stem):
+ # Stem
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
+ super().__init__(c1, c2, k, s, p, g, act)
+ c_ = int(c2/2) # hidden channels
+ self.cv1 = GhostConv(c1, c_, 3, 2)
+ self.cv2 = GhostConv(c_, c_, 1, 1)
+ self.cv3 = GhostConv(c_, c_, 3, 2)
+ self.cv4 = GhostConv(2 * c_, c2, 1, 1)
+
+
+class BottleneckCSPA(nn.Module):
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super(BottleneckCSPA, self).__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c1, c_, 1, 1)
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
+ self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+ def forward(self, x):
+ y1 = self.m(self.cv1(x))
+ y2 = self.cv2(x)
+ return self.cv3(torch.cat((y1, y2), dim=1))
+
+
+class BottleneckCSPB(nn.Module):
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super(BottleneckCSPB, self).__init__()
+ c_ = int(c2) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c_, c_, 1, 1)
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
+ self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+ def forward(self, x):
+ x1 = self.cv1(x)
+ y1 = self.m(x1)
+ y2 = self.cv2(x1)
+ return self.cv3(torch.cat((y1, y2), dim=1))
+
+
+class BottleneckCSPC(nn.Module):
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super(BottleneckCSPC, self).__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c1, c_, 1, 1)
+ self.cv3 = Conv(c_, c_, 1, 1)
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
+ self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+ def forward(self, x):
+ y1 = self.cv3(self.m(self.cv1(x)))
+ y2 = self.cv2(x)
+ return self.cv4(torch.cat((y1, y2), dim=1))
+
+
+class ResCSPA(BottleneckCSPA):
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2 * e) # hidden channels
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
+
+
+class ResCSPB(BottleneckCSPB):
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2) # hidden channels
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
+
+
+class ResCSPC(BottleneckCSPC):
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2 * e) # hidden channels
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
+
+
+class ResXCSPA(ResCSPA):
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2 * e) # hidden channels
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+
+class ResXCSPB(ResCSPB):
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2) # hidden channels
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+
+class ResXCSPC(ResCSPC):
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2 * e) # hidden channels
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+
+class GhostCSPA(BottleneckCSPA):
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2 * e) # hidden channels
+ self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
+
+
+class GhostCSPB(BottleneckCSPB):
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2) # hidden channels
+ self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
+
+
+class GhostCSPC(BottleneckCSPC):
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2 * e) # hidden channels
+ self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
+
+##### end of cspnet #####
+
+
+##### yolor #####
+
+class ImplicitA(nn.Module):
+ def __init__(self, channel, mean=0., std=.02):
+ super(ImplicitA, self).__init__()
+ self.channel = channel
+ self.mean = mean
+ self.std = std
+ self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
+ nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
+
+ def forward(self, x):
+ return self.implicit + x
+
+
+class ImplicitM(nn.Module):
+ def __init__(self, channel, mean=0., std=.02):
+ super(ImplicitM, self).__init__()
+ self.channel = channel
+ self.mean = mean
+ self.std = std
+ self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))
+ nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
+
+ def forward(self, x):
+ return self.implicit * x
+
+##### end of yolor #####
+
+
+##### repvgg #####
+
+class RepConv(nn.Module):
+ # Represented convolution
+ # https://arxiv.org/abs/2101.03697
+
+ def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True, deploy=False):
+ super(RepConv, self).__init__()
+
+ self.deploy = deploy
+ self.groups = g
+ self.in_channels = c1
+ self.out_channels = c2
+
+ assert k == 3
+ assert autopad(k, p) == 1
+
+ padding_11 = autopad(k, p) - k // 2
+
+ self.act = nn.LeakyReLU(0.1, inplace=True) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
+
+ if deploy:
+ self.rbr_reparam = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=True)
+
+ else:
+ self.rbr_identity = (nn.BatchNorm2d(num_features=c1) if c2 == c1 and s == 1 else None)
+
+ self.rbr_dense = nn.Sequential(
+ nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False),
+ nn.BatchNorm2d(num_features=c2),
+ )
+
+ self.rbr_1x1 = nn.Sequential(
+ nn.Conv2d( c1, c2, 1, s, padding_11, groups=g, bias=False),
+ nn.BatchNorm2d(num_features=c2),
+ )
+
+ def forward(self, inputs):
+ if hasattr(self, "rbr_reparam"):
+ return self.act(self.rbr_reparam(inputs))
+
+ if self.rbr_identity is None:
+ id_out = 0
+ else:
+ id_out = self.rbr_identity(inputs)
+
+ return self.act(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)
+
+ def get_equivalent_kernel_bias(self):
+ kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
+ kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
+ kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
+ return (
+ kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid,
+ bias3x3 + bias1x1 + biasid,
+ )
+
+ def _pad_1x1_to_3x3_tensor(self, kernel1x1):
+ if kernel1x1 is None:
+ return 0
+ else:
+ return nn.functional.pad(kernel1x1, [1, 1, 1, 1])
+
+ def _fuse_bn_tensor(self, branch):
+ if branch is None:
+ return 0, 0
+ if isinstance(branch, nn.Sequential):
+ kernel = branch[0].weight
+ running_mean = branch[1].running_mean
+ running_var = branch[1].running_var
+ gamma = branch[1].weight
+ beta = branch[1].bias
+ eps = branch[1].eps
+ else:
+ assert isinstance(branch, nn.BatchNorm2d)
+ if not hasattr(self, "id_tensor"):
+ input_dim = self.in_channels // self.groups
+ kernel_value = np.zeros(
+ (self.in_channels, input_dim, 3, 3), dtype=np.float32
+ )
+ for i in range(self.in_channels):
+ kernel_value[i, i % input_dim, 1, 1] = 1
+ self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
+ kernel = self.id_tensor
+ running_mean = branch.running_mean
+ running_var = branch.running_var
+ gamma = branch.weight
+ beta = branch.bias
+ eps = branch.eps
+ std = (running_var + eps).sqrt()
+ t = (gamma / std).reshape(-1, 1, 1, 1)
+ return kernel * t, beta - running_mean * gamma / std
+
+ def repvgg_convert(self):
+ kernel, bias = self.get_equivalent_kernel_bias()
+ return (
+ kernel.detach().cpu().numpy(),
+ bias.detach().cpu().numpy(),
+ )
+
+ def fuse_conv_bn(self, conv, bn):
+
+ std = (bn.running_var + bn.eps).sqrt()
+ bias = bn.bias - bn.running_mean * bn.weight / std
+
+ t = (bn.weight / std).reshape(-1, 1, 1, 1)
+ weights = conv.weight * t
+
+ bn = nn.Identity()
+ conv = nn.Conv2d(in_channels = conv.in_channels,
+ out_channels = conv.out_channels,
+ kernel_size = conv.kernel_size,
+ stride=conv.stride,
+ padding = conv.padding,
+ dilation = conv.dilation,
+ groups = conv.groups,
+ bias = True,
+ padding_mode = conv.padding_mode)
+
+ conv.weight = torch.nn.Parameter(weights)
+ conv.bias = torch.nn.Parameter(bias)
+ return conv
+
+ def fuse_repvgg_block(self):
+ if self.deploy:
+ return
+ print(f"RepConv.fuse_repvgg_block")
+
+ self.rbr_dense = self.fuse_conv_bn(self.rbr_dense[0], self.rbr_dense[1])
+
+ self.rbr_1x1 = self.fuse_conv_bn(self.rbr_1x1[0], self.rbr_1x1[1])
+ rbr_1x1_bias = self.rbr_1x1.bias
+ weight_1x1_expanded = torch.nn.functional.pad(self.rbr_1x1.weight, [1, 1, 1, 1])
+
+ # Fuse self.rbr_identity
+ if (isinstance(self.rbr_identity, nn.BatchNorm2d) or isinstance(self.rbr_identity, nn.modules.batchnorm.SyncBatchNorm)):
+ # print(f"fuse: rbr_identity == BatchNorm2d or SyncBatchNorm")
+ identity_conv_1x1 = nn.Conv2d(
+ in_channels=self.in_channels,
+ out_channels=self.out_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ groups=self.groups,
+ bias=False)
+ identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.to(self.rbr_1x1.weight.data.device)
+ identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.squeeze().squeeze()
+ # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
+ identity_conv_1x1.weight.data.fill_(0.0)
+ identity_conv_1x1.weight.data.fill_diagonal_(1.0)
+ identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.unsqueeze(2).unsqueeze(3)
+ # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
+
+ identity_conv_1x1 = self.fuse_conv_bn(identity_conv_1x1, self.rbr_identity)
+ bias_identity_expanded = identity_conv_1x1.bias
+ weight_identity_expanded = torch.nn.functional.pad(identity_conv_1x1.weight, [1, 1, 1, 1])
+ else:
+ # print(f"fuse: rbr_identity != BatchNorm2d, rbr_identity = {self.rbr_identity}")
+ bias_identity_expanded = torch.nn.Parameter( torch.zeros_like(rbr_1x1_bias) )
+ weight_identity_expanded = torch.nn.Parameter( torch.zeros_like(weight_1x1_expanded) )
+
+
+ #print(f"self.rbr_1x1.weight = {self.rbr_1x1.weight.shape}, ")
+ #print(f"weight_1x1_expanded = {weight_1x1_expanded.shape}, ")
+ #print(f"self.rbr_dense.weight = {self.rbr_dense.weight.shape}, ")
+
+ self.rbr_dense.weight = torch.nn.Parameter(self.rbr_dense.weight + weight_1x1_expanded + weight_identity_expanded)
+ self.rbr_dense.bias = torch.nn.Parameter(self.rbr_dense.bias + rbr_1x1_bias + bias_identity_expanded)
+
+ self.rbr_reparam = self.rbr_dense
+ self.deploy = True
+
+ if self.rbr_identity is not None:
+ del self.rbr_identity
+ self.rbr_identity = None
+
+ if self.rbr_1x1 is not None:
+ del self.rbr_1x1
+ self.rbr_1x1 = None
+
+ if self.rbr_dense is not None:
+ del self.rbr_dense
+ self.rbr_dense = None
+
+
+class RepBottleneck(Bottleneck):
+ # Standard bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
+ super().__init__(c1, c2, shortcut=True, g=1, e=0.5)
+ c_ = int(c2 * e) # hidden channels
+ self.cv2 = RepConv(c_, c2, 3, 1, g=g)
+
+
+class RepBottleneckCSPA(BottleneckCSPA):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2 * e) # hidden channels
+ self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+
+class RepBottleneckCSPB(BottleneckCSPB):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2) # hidden channels
+ self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+
+class RepBottleneckCSPC(BottleneckCSPC):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2 * e) # hidden channels
+ self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+
+class RepRes(Res):
+ # Standard bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
+ super().__init__(c1, c2, shortcut, g, e)
+ c_ = int(c2 * e) # hidden channels
+ self.cv2 = RepConv(c_, c_, 3, 1, g=g)
+
+
+class RepResCSPA(ResCSPA):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2 * e) # hidden channels
+ self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
+
+
+class RepResCSPB(ResCSPB):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2) # hidden channels
+ self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
+
+
+class RepResCSPC(ResCSPC):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2 * e) # hidden channels
+ self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
+
+
+class RepResX(ResX):
+ # Standard bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=32, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
+ super().__init__(c1, c2, shortcut, g, e)
+ c_ = int(c2 * e) # hidden channels
+ self.cv2 = RepConv(c_, c_, 3, 1, g=g)
+
+
+class RepResXCSPA(ResXCSPA):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2 * e) # hidden channels
+ self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
+
+
+class RepResXCSPB(ResXCSPB):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=False, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2) # hidden channels
+ self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
+
+
+class RepResXCSPC(ResXCSPC):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2 * e) # hidden channels
+ self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
+
+##### end of repvgg #####
+
+
+##### transformer #####
+
+class TransformerLayer(nn.Module):
+ # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
+ def __init__(self, c, num_heads):
+ super().__init__()
+ self.q = nn.Linear(c, c, bias=False)
+ self.k = nn.Linear(c, c, bias=False)
+ self.v = nn.Linear(c, c, bias=False)
+ self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
+ self.fc1 = nn.Linear(c, c, bias=False)
+ self.fc2 = nn.Linear(c, c, bias=False)
+
+ def forward(self, x):
+ x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
+ x = self.fc2(self.fc1(x)) + x
+ return x
+
+
+class TransformerBlock(nn.Module):
+ # Vision Transformer https://arxiv.org/abs/2010.11929
+ def __init__(self, c1, c2, num_heads, num_layers):
+ super().__init__()
+ self.conv = None
+ if c1 != c2:
+ self.conv = Conv(c1, c2)
+ self.linear = nn.Linear(c2, c2) # learnable position embedding
+ self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)])
+ self.c2 = c2
+
+ def forward(self, x):
+ if self.conv is not None:
+ x = self.conv(x)
+ b, _, w, h = x.shape
+ p = x.flatten(2)
+ p = p.unsqueeze(0)
+ p = p.transpose(0, 3)
+ p = p.squeeze(3)
+ e = self.linear(p)
+ x = p + e
+
+ x = self.tr(x)
+ x = x.unsqueeze(3)
+ x = x.transpose(0, 3)
+ x = x.reshape(b, self.c2, w, h)
+ return x
+
+##### end of transformer #####
+
+
+##### yolov5 #####
+
+class Focus(nn.Module):
+ # Focus wh information into c-space
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
+ super(Focus, self).__init__()
+ self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
+ # self.contract = Contract(gain=2)
+
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
+ return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
+ # return self.conv(self.contract(x))
+
+
+class SPPF(nn.Module):
+ # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
+ def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
+ super().__init__()
+ c_ = c1 // 2 # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c_ * 4, c2, 1, 1)
+ self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
+
+ def forward(self, x):
+ x = self.cv1(x)
+ y1 = self.m(x)
+ y2 = self.m(y1)
+ return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
+
+
+class Contract(nn.Module):
+ # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
+ def __init__(self, gain=2):
+ super().__init__()
+ self.gain = gain
+
+ def forward(self, x):
+ N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
+ s = self.gain
+ x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
+ x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
+ return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
+
+
+class Expand(nn.Module):
+ # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
+ def __init__(self, gain=2):
+ super().__init__()
+ self.gain = gain
+
+ def forward(self, x):
+ N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
+ s = self.gain
+ x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
+ x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
+ return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
+
+
+class NMS(nn.Module):
+ # Non-Maximum Suppression (NMS) module
+ conf = 0.25 # confidence threshold
+ iou = 0.45 # IoU threshold
+ classes = None # (optional list) filter by class
+
+ def __init__(self):
+ super(NMS, self).__init__()
+
+ def forward(self, x):
+ return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
+
+
+class autoShape(nn.Module):
+ # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
+ conf = 0.25 # NMS confidence threshold
+ iou = 0.45 # NMS IoU threshold
+ classes = None # (optional list) filter by class
+
+ def __init__(self, model):
+ super(autoShape, self).__init__()
+ self.model = model.eval()
+
+ def autoshape(self):
+ print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
+ return self
+
+ @torch.no_grad()
+ def forward(self, imgs, size=640, augment=False, profile=False):
+ # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
+ # filename: imgs = 'data/samples/zidane.jpg'
+ # URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
+ # PIL: = Image.open('image.jpg') # HWC x(640,1280,3)
+ # numpy: = np.zeros((640,1280,3)) # HWC
+ # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
+
+ t = [time_synchronized()]
+ p = next(self.model.parameters()) # for device and type
+ if isinstance(imgs, torch.Tensor): # torch
+ with amp.autocast(enabled=p.device.type != 'cpu'):
+ return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
+
+ # Pre-process
+ n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
+ shape0, shape1, files = [], [], [] # image and inference shapes, filenames
+ for i, im in enumerate(imgs):
+ f = f'image{i}' # filename
+ if isinstance(im, str): # filename or uri
+ im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im
+ elif isinstance(im, Image.Image): # PIL Image
+ im, f = np.asarray(im), getattr(im, 'filename', f) or f
+ files.append(Path(f).with_suffix('.jpg').name)
+ if im.shape[0] < 5: # image in CHW
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
+ im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
+ s = im.shape[:2] # HWC
+ shape0.append(s) # image shape
+ g = (size / max(s)) # gain
+ shape1.append([y * g for y in s])
+ imgs[i] = im # update
+ shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
+ x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
+ x = np.stack(x, 0) if n > 1 else x[0][None] # stack
+ x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
+ t.append(time_synchronized())
+
+ with amp.autocast(enabled=p.device.type != 'cpu'):
+ # Inference
+ y = self.model(x, augment, profile)[0] # forward
+ t.append(time_synchronized())
+
+ # Post-process
+ y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
+ for i in range(n):
+ scale_coords(shape1, y[i][:, :4], shape0[i])
+
+ t.append(time_synchronized())
+ return Detections(imgs, y, files, t, self.names, x.shape)
+
+
+class Detections:
+ # detections class for YOLOv5 inference results
+ def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
+ super(Detections, self).__init__()
+ d = pred[0].device # device
+ gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
+ self.imgs = imgs # list of images as numpy arrays
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
+ self.names = names # class names
+ self.files = files # image filenames
+ self.xyxy = pred # xyxy pixels
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
+ self.n = len(self.pred) # number of images (batch size)
+ self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
+ self.s = shape # inference BCHW shape
+
+ def display(self, pprint=False, show=False, save=False, render=False, save_dir=''):
+ colors = color_list()
+ for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
+ str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
+ if pred is not None:
+ for c in pred[:, -1].unique():
+ n = (pred[:, -1] == c).sum() # detections per class
+ str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
+ if show or save or render:
+ for *box, conf, cls in pred: # xyxy, confidence, class
+ label = f'{self.names[int(cls)]} {conf:.2f}'
+ plot_one_box(box, img, label=label, color=colors[int(cls) % 10])
+ img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
+ if pprint:
+ print(str.rstrip(', '))
+ if show:
+ img.show(self.files[i]) # show
+ if save:
+ f = self.files[i]
+ img.save(Path(save_dir) / f) # save
+ print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n')
+ if render:
+ self.imgs[i] = np.asarray(img)
+
+ def print(self):
+ self.display(pprint=True) # print results
+ print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
+
+ def show(self):
+ self.display(show=True) # show results
+
+ def save(self, save_dir='runs/hub/exp'):
+ save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp') # increment save_dir
+ Path(save_dir).mkdir(parents=True, exist_ok=True)
+ self.display(save=True, save_dir=save_dir) # save results
+
+ def render(self):
+ self.display(render=True) # render results
+ return self.imgs
+
+ def pandas(self):
+ # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
+ new = copy(self) # return copy
+ ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
+ cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
+ for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
+ a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
+ setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
+ return new
+
+ def tolist(self):
+ # return a list of Detections objects, i.e. 'for result in results.tolist():'
+ x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)]
+ for d in x:
+ for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
+ setattr(d, k, getattr(d, k)[0]) # pop out of list
+ return x
+
+ def __len__(self):
+ return self.n
+
+
+class Classify(nn.Module):
+ # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
+ super(Classify, self).__init__()
+ self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
+ self.flat = nn.Flatten()
+
+ def forward(self, x):
+ z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
+ return self.flat(self.conv(z)) # flatten to x(b,c2)
+
+##### end of yolov5 ######
+
+
+##### orepa #####
+
+def transI_fusebn(kernel, bn):
+ gamma = bn.weight
+ std = (bn.running_var + bn.eps).sqrt()
+ return kernel * ((gamma / std).reshape(-1, 1, 1, 1)), bn.bias - bn.running_mean * gamma / std
+
+
+class ConvBN(nn.Module):
+ def __init__(self, in_channels, out_channels, kernel_size,
+ stride=1, padding=0, dilation=1, groups=1, deploy=False, nonlinear=None):
+ super().__init__()
+ if nonlinear is None:
+ self.nonlinear = nn.Identity()
+ else:
+ self.nonlinear = nonlinear
+ if deploy:
+ self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
+ stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)
+ else:
+ self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
+ stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False)
+ self.bn = nn.BatchNorm2d(num_features=out_channels)
+
+ def forward(self, x):
+ if hasattr(self, 'bn'):
+ return self.nonlinear(self.bn(self.conv(x)))
+ else:
+ return self.nonlinear(self.conv(x))
+
+ def switch_to_deploy(self):
+ kernel, bias = transI_fusebn(self.conv.weight, self.bn)
+ conv = nn.Conv2d(in_channels=self.conv.in_channels, out_channels=self.conv.out_channels, kernel_size=self.conv.kernel_size,
+ stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups, bias=True)
+ conv.weight.data = kernel
+ conv.bias.data = bias
+ for para in self.parameters():
+ para.detach_()
+ self.__delattr__('conv')
+ self.__delattr__('bn')
+ self.conv = conv
+
+class OREPA_3x3_RepConv(nn.Module):
+
+ def __init__(self, in_channels, out_channels, kernel_size,
+ stride=1, padding=0, dilation=1, groups=1,
+ internal_channels_1x1_3x3=None,
+ deploy=False, nonlinear=None, single_init=False):
+ super(OREPA_3x3_RepConv, self).__init__()
+ self.deploy = deploy
+
+ if nonlinear is None:
+ self.nonlinear = nn.Identity()
+ else:
+ self.nonlinear = nonlinear
+
+ self.kernel_size = kernel_size
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.groups = groups
+ assert padding == kernel_size // 2
+
+ self.stride = stride
+ self.padding = padding
+ self.dilation = dilation
+
+ self.branch_counter = 0
+
+ self.weight_rbr_origin = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), kernel_size, kernel_size))
+ nn.init.kaiming_uniform_(self.weight_rbr_origin, a=math.sqrt(1.0))
+ self.branch_counter += 1
+
+
+ if groups < out_channels:
+ self.weight_rbr_avg_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
+ self.weight_rbr_pfir_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
+ nn.init.kaiming_uniform_(self.weight_rbr_avg_conv, a=1.0)
+ nn.init.kaiming_uniform_(self.weight_rbr_pfir_conv, a=1.0)
+ self.weight_rbr_avg_conv.data
+ self.weight_rbr_pfir_conv.data
+ self.register_buffer('weight_rbr_avg_avg', torch.ones(kernel_size, kernel_size).mul(1.0/kernel_size/kernel_size))
+ self.branch_counter += 1
+
+ else:
+ raise NotImplementedError
+ self.branch_counter += 1
+
+ if internal_channels_1x1_3x3 is None:
+ internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels # For mobilenet, it is better to have 2X internal channels
+
+ if internal_channels_1x1_3x3 == in_channels:
+ self.weight_rbr_1x1_kxk_idconv1 = nn.Parameter(torch.zeros(in_channels, int(in_channels/self.groups), 1, 1))
+ id_value = np.zeros((in_channels, int(in_channels/self.groups), 1, 1))
+ for i in range(in_channels):
+ id_value[i, i % int(in_channels/self.groups), 0, 0] = 1
+ id_tensor = torch.from_numpy(id_value).type_as(self.weight_rbr_1x1_kxk_idconv1)
+ self.register_buffer('id_tensor', id_tensor)
+
+ else:
+ self.weight_rbr_1x1_kxk_conv1 = nn.Parameter(torch.Tensor(internal_channels_1x1_3x3, int(in_channels/self.groups), 1, 1))
+ nn.init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv1, a=math.sqrt(1.0))
+ self.weight_rbr_1x1_kxk_conv2 = nn.Parameter(torch.Tensor(out_channels, int(internal_channels_1x1_3x3/self.groups), kernel_size, kernel_size))
+ nn.init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv2, a=math.sqrt(1.0))
+ self.branch_counter += 1
+
+ expand_ratio = 8
+ self.weight_rbr_gconv_dw = nn.Parameter(torch.Tensor(in_channels*expand_ratio, 1, kernel_size, kernel_size))
+ self.weight_rbr_gconv_pw = nn.Parameter(torch.Tensor(out_channels, in_channels*expand_ratio, 1, 1))
+ nn.init.kaiming_uniform_(self.weight_rbr_gconv_dw, a=math.sqrt(1.0))
+ nn.init.kaiming_uniform_(self.weight_rbr_gconv_pw, a=math.sqrt(1.0))
+ self.branch_counter += 1
+
+ if out_channels == in_channels and stride == 1:
+ self.branch_counter += 1
+
+ self.vector = nn.Parameter(torch.Tensor(self.branch_counter, self.out_channels))
+ self.bn = nn.BatchNorm2d(out_channels)
+
+ self.fre_init()
+
+ nn.init.constant_(self.vector[0, :], 0.25) #origin
+ nn.init.constant_(self.vector[1, :], 0.25) #avg
+ nn.init.constant_(self.vector[2, :], 0.0) #prior
+ nn.init.constant_(self.vector[3, :], 0.5) #1x1_kxk
+ nn.init.constant_(self.vector[4, :], 0.5) #dws_conv
+
+
+ def fre_init(self):
+ prior_tensor = torch.Tensor(self.out_channels, self.kernel_size, self.kernel_size)
+ half_fg = self.out_channels/2
+ for i in range(self.out_channels):
+ for h in range(3):
+ for w in range(3):
+ if i < half_fg:
+ prior_tensor[i, h, w] = math.cos(math.pi*(h+0.5)*(i+1)/3)
+ else:
+ prior_tensor[i, h, w] = math.cos(math.pi*(w+0.5)*(i+1-half_fg)/3)
+
+ self.register_buffer('weight_rbr_prior', prior_tensor)
+
+ def weight_gen(self):
+
+ weight_rbr_origin = torch.einsum('oihw,o->oihw', self.weight_rbr_origin, self.vector[0, :])
+
+ weight_rbr_avg = torch.einsum('oihw,o->oihw', torch.einsum('oihw,hw->oihw', self.weight_rbr_avg_conv, self.weight_rbr_avg_avg), self.vector[1, :])
+
+ weight_rbr_pfir = torch.einsum('oihw,o->oihw', torch.einsum('oihw,ohw->oihw', self.weight_rbr_pfir_conv, self.weight_rbr_prior), self.vector[2, :])
+
+ weight_rbr_1x1_kxk_conv1 = None
+ if hasattr(self, 'weight_rbr_1x1_kxk_idconv1'):
+ weight_rbr_1x1_kxk_conv1 = (self.weight_rbr_1x1_kxk_idconv1 + self.id_tensor).squeeze()
+ elif hasattr(self, 'weight_rbr_1x1_kxk_conv1'):
+ weight_rbr_1x1_kxk_conv1 = self.weight_rbr_1x1_kxk_conv1.squeeze()
+ else:
+ raise NotImplementedError
+ weight_rbr_1x1_kxk_conv2 = self.weight_rbr_1x1_kxk_conv2
+
+ if self.groups > 1:
+ g = self.groups
+ t, ig = weight_rbr_1x1_kxk_conv1.size()
+ o, tg, h, w = weight_rbr_1x1_kxk_conv2.size()
+ weight_rbr_1x1_kxk_conv1 = weight_rbr_1x1_kxk_conv1.view(g, int(t/g), ig)
+ weight_rbr_1x1_kxk_conv2 = weight_rbr_1x1_kxk_conv2.view(g, int(o/g), tg, h, w)
+ weight_rbr_1x1_kxk = torch.einsum('gti,gothw->goihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2).view(o, ig, h, w)
+ else:
+ weight_rbr_1x1_kxk = torch.einsum('ti,othw->oihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2)
+
+ weight_rbr_1x1_kxk = torch.einsum('oihw,o->oihw', weight_rbr_1x1_kxk, self.vector[3, :])
+
+ weight_rbr_gconv = self.dwsc2full(self.weight_rbr_gconv_dw, self.weight_rbr_gconv_pw, self.in_channels)
+ weight_rbr_gconv = torch.einsum('oihw,o->oihw', weight_rbr_gconv, self.vector[4, :])
+
+ weight = weight_rbr_origin + weight_rbr_avg + weight_rbr_1x1_kxk + weight_rbr_pfir + weight_rbr_gconv
+
+ return weight
+
+ def dwsc2full(self, weight_dw, weight_pw, groups):
+
+ t, ig, h, w = weight_dw.size()
+ o, _, _, _ = weight_pw.size()
+ tg = int(t/groups)
+ i = int(ig*groups)
+ weight_dw = weight_dw.view(groups, tg, ig, h, w)
+ weight_pw = weight_pw.squeeze().view(o, groups, tg)
+
+ weight_dsc = torch.einsum('gtihw,ogt->ogihw', weight_dw, weight_pw)
+ return weight_dsc.view(o, i, h, w)
+
+ def forward(self, inputs):
+ weight = self.weight_gen()
+ out = F.conv2d(inputs, weight, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
+
+ return self.nonlinear(self.bn(out))
+
+class RepConv_OREPA(nn.Module):
+
+ def __init__(self, c1, c2, k=3, s=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False, nonlinear=nn.SiLU()):
+ super(RepConv_OREPA, self).__init__()
+ self.deploy = deploy
+ self.groups = groups
+ self.in_channels = c1
+ self.out_channels = c2
+
+ self.padding = padding
+ self.dilation = dilation
+ self.groups = groups
+
+ assert k == 3
+ assert padding == 1
+
+ padding_11 = padding - k // 2
+
+ if nonlinear is None:
+ self.nonlinearity = nn.Identity()
+ else:
+ self.nonlinearity = nonlinear
+
+ if use_se:
+ self.se = SEBlock(self.out_channels, internal_neurons=self.out_channels // 16)
+ else:
+ self.se = nn.Identity()
+
+ if deploy:
+ self.rbr_reparam = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=k, stride=s,
+ padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode)
+
+ else:
+ self.rbr_identity = nn.BatchNorm2d(num_features=self.in_channels) if self.out_channels == self.in_channels and s == 1 else None
+ self.rbr_dense = OREPA_3x3_RepConv(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=k, stride=s, padding=padding, groups=groups, dilation=1)
+ self.rbr_1x1 = ConvBN(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=1, stride=s, padding=padding_11, groups=groups, dilation=1)
+ print('RepVGG Block, identity = ', self.rbr_identity)
+
+
+ def forward(self, inputs):
+ if hasattr(self, 'rbr_reparam'):
+ return self.nonlinearity(self.se(self.rbr_reparam(inputs)))
+
+ if self.rbr_identity is None:
+ id_out = 0
+ else:
+ id_out = self.rbr_identity(inputs)
+
+ out1 = self.rbr_dense(inputs)
+ out2 = self.rbr_1x1(inputs)
+ out3 = id_out
+ out = out1 + out2 + out3
+
+ return self.nonlinearity(self.se(out))
+
+
+ # Optional. This improves the accuracy and facilitates quantization.
+ # 1. Cancel the original weight decay on rbr_dense.conv.weight and rbr_1x1.conv.weight.
+ # 2. Use like this.
+ # loss = criterion(....)
+ # for every RepVGGBlock blk:
+ # loss += weight_decay_coefficient * 0.5 * blk.get_cust_L2()
+ # optimizer.zero_grad()
+ # loss.backward()
+
+ # Not used for OREPA
+ def get_custom_L2(self):
+ K3 = self.rbr_dense.weight_gen()
+ K1 = self.rbr_1x1.conv.weight
+ t3 = (self.rbr_dense.bn.weight / ((self.rbr_dense.bn.running_var + self.rbr_dense.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
+ t1 = (self.rbr_1x1.bn.weight / ((self.rbr_1x1.bn.running_var + self.rbr_1x1.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
+
+ l2_loss_circle = (K3 ** 2).sum() - (K3[:, :, 1:2, 1:2] ** 2).sum() # The L2 loss of the "circle" of weights in 3x3 kernel. Use regular L2 on them.
+ eq_kernel = K3[:, :, 1:2, 1:2] * t3 + K1 * t1 # The equivalent resultant central point of 3x3 kernel.
+ l2_loss_eq_kernel = (eq_kernel ** 2 / (t3 ** 2 + t1 ** 2)).sum() # Normalize for an L2 coefficient comparable to regular L2.
+ return l2_loss_eq_kernel + l2_loss_circle
+
+ def get_equivalent_kernel_bias(self):
+ kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
+ kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
+ kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
+ return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
+
+ def _pad_1x1_to_3x3_tensor(self, kernel1x1):
+ if kernel1x1 is None:
+ return 0
+ else:
+ return torch.nn.functional.pad(kernel1x1, [1,1,1,1])
+
+ def _fuse_bn_tensor(self, branch):
+ if branch is None:
+ return 0, 0
+ if not isinstance(branch, nn.BatchNorm2d):
+ if isinstance(branch, OREPA_3x3_RepConv):
+ kernel = branch.weight_gen()
+ elif isinstance(branch, ConvBN):
+ kernel = branch.conv.weight
+ else:
+ raise NotImplementedError
+ running_mean = branch.bn.running_mean
+ running_var = branch.bn.running_var
+ gamma = branch.bn.weight
+ beta = branch.bn.bias
+ eps = branch.bn.eps
+ else:
+ if not hasattr(self, 'id_tensor'):
+ input_dim = self.in_channels // self.groups
+ kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
+ for i in range(self.in_channels):
+ kernel_value[i, i % input_dim, 1, 1] = 1
+ self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
+ kernel = self.id_tensor
+ running_mean = branch.running_mean
+ running_var = branch.running_var
+ gamma = branch.weight
+ beta = branch.bias
+ eps = branch.eps
+ std = (running_var + eps).sqrt()
+ t = (gamma / std).reshape(-1, 1, 1, 1)
+ return kernel * t, beta - running_mean * gamma / std
+
+ def switch_to_deploy(self):
+ if hasattr(self, 'rbr_reparam'):
+ return
+ print(f"RepConv_OREPA.switch_to_deploy")
+ kernel, bias = self.get_equivalent_kernel_bias()
+ self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.in_channels, out_channels=self.rbr_dense.out_channels,
+ kernel_size=self.rbr_dense.kernel_size, stride=self.rbr_dense.stride,
+ padding=self.rbr_dense.padding, dilation=self.rbr_dense.dilation, groups=self.rbr_dense.groups, bias=True)
+ self.rbr_reparam.weight.data = kernel
+ self.rbr_reparam.bias.data = bias
+ for para in self.parameters():
+ para.detach_()
+ self.__delattr__('rbr_dense')
+ self.__delattr__('rbr_1x1')
+ if hasattr(self, 'rbr_identity'):
+ self.__delattr__('rbr_identity')
+
+##### end of orepa #####
+
+
+##### swin transformer #####
+
+class WindowAttention(nn.Module):
+
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
+
+ super().__init__()
+ self.dim = dim
+ self.window_size = window_size # Wh, Ww
+ self.num_heads = num_heads
+ head_dim = dim // num_heads
+ self.scale = qk_scale or head_dim ** -0.5
+
+ # define a parameter table of relative position bias
+ self.relative_position_bias_table = nn.Parameter(
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
+
+ # get pair-wise relative position index for each token inside the window
+ coords_h = torch.arange(self.window_size[0])
+ coords_w = torch.arange(self.window_size[1])
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
+ relative_coords[:, :, 1] += self.window_size[1] - 1
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
+ self.register_buffer("relative_position_index", relative_position_index)
+
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
+ self.attn_drop = nn.Dropout(attn_drop)
+ self.proj = nn.Linear(dim, dim)
+ self.proj_drop = nn.Dropout(proj_drop)
+
+ nn.init.normal_(self.relative_position_bias_table, std=.02)
+ self.softmax = nn.Softmax(dim=-1)
+
+ def forward(self, x, mask=None):
+
+ B_, N, C = x.shape
+ qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
+
+ q = q * self.scale
+ attn = (q @ k.transpose(-2, -1))
+
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
+ attn = attn + relative_position_bias.unsqueeze(0)
+
+ if mask is not None:
+ nW = mask.shape[0]
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
+ attn = attn.view(-1, self.num_heads, N, N)
+ attn = self.softmax(attn)
+ else:
+ attn = self.softmax(attn)
+
+ attn = self.attn_drop(attn)
+
+ # print(attn.dtype, v.dtype)
+ try:
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
+ except:
+ #print(attn.dtype, v.dtype)
+ x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
+ x = self.proj(x)
+ x = self.proj_drop(x)
+ return x
+
+class Mlp(nn.Module):
+
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
+ super().__init__()
+ out_features = out_features or in_features
+ hidden_features = hidden_features or in_features
+ self.fc1 = nn.Linear(in_features, hidden_features)
+ self.act = act_layer()
+ self.fc2 = nn.Linear(hidden_features, out_features)
+ self.drop = nn.Dropout(drop)
+
+ def forward(self, x):
+ x = self.fc1(x)
+ x = self.act(x)
+ x = self.drop(x)
+ x = self.fc2(x)
+ x = self.drop(x)
+ return x
+
+def window_partition(x, window_size):
+
+ B, H, W, C = x.shape
+ assert H % window_size == 0, 'feature map h and w can not divide by window size'
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
+ return windows
+
+def window_reverse(windows, window_size, H, W):
+
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
+ return x
+
+
+class SwinTransformerLayer(nn.Module):
+
+ def __init__(self, dim, num_heads, window_size=8, shift_size=0,
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
+ act_layer=nn.SiLU, norm_layer=nn.LayerNorm):
+ super().__init__()
+ self.dim = dim
+ self.num_heads = num_heads
+ self.window_size = window_size
+ self.shift_size = shift_size
+ self.mlp_ratio = mlp_ratio
+ # if min(self.input_resolution) <= self.window_size:
+ # # if window size is larger than input resolution, we don't partition windows
+ # self.shift_size = 0
+ # self.window_size = min(self.input_resolution)
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
+
+ self.norm1 = norm_layer(dim)
+ self.attn = WindowAttention(
+ dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
+ qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
+
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
+ self.norm2 = norm_layer(dim)
+ mlp_hidden_dim = int(dim * mlp_ratio)
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
+
+ def create_mask(self, H, W):
+ # calculate attention mask for SW-MSA
+ img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
+ h_slices = (slice(0, -self.window_size),
+ slice(-self.window_size, -self.shift_size),
+ slice(-self.shift_size, None))
+ w_slices = (slice(0, -self.window_size),
+ slice(-self.window_size, -self.shift_size),
+ slice(-self.shift_size, None))
+ cnt = 0
+ for h in h_slices:
+ for w in w_slices:
+ img_mask[:, h, w, :] = cnt
+ cnt += 1
+
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
+
+ return attn_mask
+
+ def forward(self, x):
+ # reshape x[b c h w] to x[b l c]
+ _, _, H_, W_ = x.shape
+
+ Padding = False
+ if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
+ Padding = True
+ # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
+ pad_r = (self.window_size - W_ % self.window_size) % self.window_size
+ pad_b = (self.window_size - H_ % self.window_size) % self.window_size
+ x = F.pad(x, (0, pad_r, 0, pad_b))
+
+ # print('2', x.shape)
+ B, C, H, W = x.shape
+ L = H * W
+ x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
+
+ # create mask from init to forward
+ if self.shift_size > 0:
+ attn_mask = self.create_mask(H, W).to(x.device)
+ else:
+ attn_mask = None
+
+ shortcut = x
+ x = self.norm1(x)
+ x = x.view(B, H, W, C)
+
+ # cyclic shift
+ if self.shift_size > 0:
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
+ else:
+ shifted_x = x
+
+ # partition windows
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
+
+ # W-MSA/SW-MSA
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
+
+ # merge windows
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
+ shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
+
+ # reverse cyclic shift
+ if self.shift_size > 0:
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
+ else:
+ x = shifted_x
+ x = x.view(B, H * W, C)
+
+ # FFN
+ x = shortcut + self.drop_path(x)
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
+
+ x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
+
+ if Padding:
+ x = x[:, :, :H_, :W_] # reverse padding
+
+ return x
+
+
+class SwinTransformerBlock(nn.Module):
+ def __init__(self, c1, c2, num_heads, num_layers, window_size=8):
+ super().__init__()
+ self.conv = None
+ if c1 != c2:
+ self.conv = Conv(c1, c2)
+
+ # remove input_resolution
+ self.blocks = nn.Sequential(*[SwinTransformerLayer(dim=c2, num_heads=num_heads, window_size=window_size,
+ shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])
+
+ def forward(self, x):
+ if self.conv is not None:
+ x = self.conv(x)
+ x = self.blocks(x)
+ return x
+
+
+class STCSPA(nn.Module):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super(STCSPA, self).__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c1, c_, 1, 1)
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
+ num_heads = c_ // 32
+ self.m = SwinTransformerBlock(c_, c_, num_heads, n)
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+ def forward(self, x):
+ y1 = self.m(self.cv1(x))
+ y2 = self.cv2(x)
+ return self.cv3(torch.cat((y1, y2), dim=1))
+
+
+class STCSPB(nn.Module):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super(STCSPB, self).__init__()
+ c_ = int(c2) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c_, c_, 1, 1)
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
+ num_heads = c_ // 32
+ self.m = SwinTransformerBlock(c_, c_, num_heads, n)
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+ def forward(self, x):
+ x1 = self.cv1(x)
+ y1 = self.m(x1)
+ y2 = self.cv2(x1)
+ return self.cv3(torch.cat((y1, y2), dim=1))
+
+
+class STCSPC(nn.Module):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super(STCSPC, self).__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c1, c_, 1, 1)
+ self.cv3 = Conv(c_, c_, 1, 1)
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
+ num_heads = c_ // 32
+ self.m = SwinTransformerBlock(c_, c_, num_heads, n)
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+ def forward(self, x):
+ y1 = self.cv3(self.m(self.cv1(x)))
+ y2 = self.cv2(x)
+ return self.cv4(torch.cat((y1, y2), dim=1))
+
+##### end of swin transformer #####
+
+
+##### swin transformer v2 #####
+
+class WindowAttention_v2(nn.Module):
+
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
+ pretrained_window_size=[0, 0]):
+
+ super().__init__()
+ self.dim = dim
+ self.window_size = window_size # Wh, Ww
+ self.pretrained_window_size = pretrained_window_size
+ self.num_heads = num_heads
+
+ self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
+
+ # mlp to generate continuous relative position bias
+ self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
+ nn.ReLU(inplace=True),
+ nn.Linear(512, num_heads, bias=False))
+
+ # get relative_coords_table
+ relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
+ relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
+ relative_coords_table = torch.stack(
+ torch.meshgrid([relative_coords_h,
+ relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
+ if pretrained_window_size[0] > 0:
+ relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
+ relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
+ else:
+ relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
+ relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
+ relative_coords_table *= 8 # normalize to -8, 8
+ relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
+ torch.abs(relative_coords_table) + 1.0) / np.log2(8)
+
+ self.register_buffer("relative_coords_table", relative_coords_table)
+
+ # get pair-wise relative position index for each token inside the window
+ coords_h = torch.arange(self.window_size[0])
+ coords_w = torch.arange(self.window_size[1])
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
+ relative_coords[:, :, 1] += self.window_size[1] - 1
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
+ self.register_buffer("relative_position_index", relative_position_index)
+
+ self.qkv = nn.Linear(dim, dim * 3, bias=False)
+ if qkv_bias:
+ self.q_bias = nn.Parameter(torch.zeros(dim))
+ self.v_bias = nn.Parameter(torch.zeros(dim))
+ else:
+ self.q_bias = None
+ self.v_bias = None
+ self.attn_drop = nn.Dropout(attn_drop)
+ self.proj = nn.Linear(dim, dim)
+ self.proj_drop = nn.Dropout(proj_drop)
+ self.softmax = nn.Softmax(dim=-1)
+
+ def forward(self, x, mask=None):
+
+ B_, N, C = x.shape
+ qkv_bias = None
+ if self.q_bias is not None:
+ qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
+ qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
+ qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
+
+ # cosine attention
+ attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
+ logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01))).exp()
+ attn = attn * logit_scale
+
+ relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
+ relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
+ relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
+ attn = attn + relative_position_bias.unsqueeze(0)
+
+ if mask is not None:
+ nW = mask.shape[0]
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
+ attn = attn.view(-1, self.num_heads, N, N)
+ attn = self.softmax(attn)
+ else:
+ attn = self.softmax(attn)
+
+ attn = self.attn_drop(attn)
+
+ try:
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
+ except:
+ x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
+
+ x = self.proj(x)
+ x = self.proj_drop(x)
+ return x
+
+ def extra_repr(self) -> str:
+ return f'dim={self.dim}, window_size={self.window_size}, ' \
+ f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
+
+ def flops(self, N):
+ # calculate flops for 1 window with token length of N
+ flops = 0
+ # qkv = self.qkv(x)
+ flops += N * self.dim * 3 * self.dim
+ # attn = (q @ k.transpose(-2, -1))
+ flops += self.num_heads * N * (self.dim // self.num_heads) * N
+ # x = (attn @ v)
+ flops += self.num_heads * N * N * (self.dim // self.num_heads)
+ # x = self.proj(x)
+ flops += N * self.dim * self.dim
+ return flops
+
+class Mlp_v2(nn.Module):
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
+ super().__init__()
+ out_features = out_features or in_features
+ hidden_features = hidden_features or in_features
+ self.fc1 = nn.Linear(in_features, hidden_features)
+ self.act = act_layer()
+ self.fc2 = nn.Linear(hidden_features, out_features)
+ self.drop = nn.Dropout(drop)
+
+ def forward(self, x):
+ x = self.fc1(x)
+ x = self.act(x)
+ x = self.drop(x)
+ x = self.fc2(x)
+ x = self.drop(x)
+ return x
+
+
+def window_partition_v2(x, window_size):
+
+ B, H, W, C = x.shape
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
+ return windows
+
+
+def window_reverse_v2(windows, window_size, H, W):
+
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
+ return x
+
+
+class SwinTransformerLayer_v2(nn.Module):
+
+ def __init__(self, dim, num_heads, window_size=7, shift_size=0,
+ mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
+ act_layer=nn.SiLU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
+ super().__init__()
+ self.dim = dim
+ #self.input_resolution = input_resolution
+ self.num_heads = num_heads
+ self.window_size = window_size
+ self.shift_size = shift_size
+ self.mlp_ratio = mlp_ratio
+ #if min(self.input_resolution) <= self.window_size:
+ # # if window size is larger than input resolution, we don't partition windows
+ # self.shift_size = 0
+ # self.window_size = min(self.input_resolution)
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
+
+ self.norm1 = norm_layer(dim)
+ self.attn = WindowAttention_v2(
+ dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
+ qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
+ pretrained_window_size=(pretrained_window_size, pretrained_window_size))
+
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
+ self.norm2 = norm_layer(dim)
+ mlp_hidden_dim = int(dim * mlp_ratio)
+ self.mlp = Mlp_v2(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
+
+ def create_mask(self, H, W):
+ # calculate attention mask for SW-MSA
+ img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
+ h_slices = (slice(0, -self.window_size),
+ slice(-self.window_size, -self.shift_size),
+ slice(-self.shift_size, None))
+ w_slices = (slice(0, -self.window_size),
+ slice(-self.window_size, -self.shift_size),
+ slice(-self.shift_size, None))
+ cnt = 0
+ for h in h_slices:
+ for w in w_slices:
+ img_mask[:, h, w, :] = cnt
+ cnt += 1
+
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
+
+ return attn_mask
+
+ def forward(self, x):
+ # reshape x[b c h w] to x[b l c]
+ _, _, H_, W_ = x.shape
+
+ Padding = False
+ if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
+ Padding = True
+ # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
+ pad_r = (self.window_size - W_ % self.window_size) % self.window_size
+ pad_b = (self.window_size - H_ % self.window_size) % self.window_size
+ x = F.pad(x, (0, pad_r, 0, pad_b))
+
+ # print('2', x.shape)
+ B, C, H, W = x.shape
+ L = H * W
+ x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
+
+ # create mask from init to forward
+ if self.shift_size > 0:
+ attn_mask = self.create_mask(H, W).to(x.device)
+ else:
+ attn_mask = None
+
+ shortcut = x
+ x = x.view(B, H, W, C)
+
+ # cyclic shift
+ if self.shift_size > 0:
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
+ else:
+ shifted_x = x
+
+ # partition windows
+ x_windows = window_partition_v2(shifted_x, self.window_size) # nW*B, window_size, window_size, C
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
+
+ # W-MSA/SW-MSA
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
+
+ # merge windows
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
+ shifted_x = window_reverse_v2(attn_windows, self.window_size, H, W) # B H' W' C
+
+ # reverse cyclic shift
+ if self.shift_size > 0:
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
+ else:
+ x = shifted_x
+ x = x.view(B, H * W, C)
+ x = shortcut + self.drop_path(self.norm1(x))
+
+ # FFN
+ x = x + self.drop_path(self.norm2(self.mlp(x)))
+ x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
+
+ if Padding:
+ x = x[:, :, :H_, :W_] # reverse padding
+
+ return x
+
+ def extra_repr(self) -> str:
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
+ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
+
+ def flops(self):
+ flops = 0
+ H, W = self.input_resolution
+ # norm1
+ flops += self.dim * H * W
+ # W-MSA/SW-MSA
+ nW = H * W / self.window_size / self.window_size
+ flops += nW * self.attn.flops(self.window_size * self.window_size)
+ # mlp
+ flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
+ # norm2
+ flops += self.dim * H * W
+ return flops
+
+
+class SwinTransformer2Block(nn.Module):
+ def __init__(self, c1, c2, num_heads, num_layers, window_size=7):
+ super().__init__()
+ self.conv = None
+ if c1 != c2:
+ self.conv = Conv(c1, c2)
+
+ # remove input_resolution
+ self.blocks = nn.Sequential(*[SwinTransformerLayer_v2(dim=c2, num_heads=num_heads, window_size=window_size,
+ shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])
+
+ def forward(self, x):
+ if self.conv is not None:
+ x = self.conv(x)
+ x = self.blocks(x)
+ return x
+
+
+class ST2CSPA(nn.Module):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super(ST2CSPA, self).__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c1, c_, 1, 1)
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
+ num_heads = c_ // 32
+ self.m = SwinTransformer2Block(c_, c_, num_heads, n)
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+ def forward(self, x):
+ y1 = self.m(self.cv1(x))
+ y2 = self.cv2(x)
+ return self.cv3(torch.cat((y1, y2), dim=1))
+
+
+class ST2CSPB(nn.Module):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super(ST2CSPB, self).__init__()
+ c_ = int(c2) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c_, c_, 1, 1)
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
+ num_heads = c_ // 32
+ self.m = SwinTransformer2Block(c_, c_, num_heads, n)
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+ def forward(self, x):
+ x1 = self.cv1(x)
+ y1 = self.m(x1)
+ y2 = self.cv2(x1)
+ return self.cv3(torch.cat((y1, y2), dim=1))
+
+
+class ST2CSPC(nn.Module):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super(ST2CSPC, self).__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c1, c_, 1, 1)
+ self.cv3 = Conv(c_, c_, 1, 1)
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
+ num_heads = c_ // 32
+ self.m = SwinTransformer2Block(c_, c_, num_heads, n)
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+ def forward(self, x):
+ y1 = self.cv3(self.m(self.cv1(x)))
+ y2 = self.cv2(x)
+ return self.cv4(torch.cat((y1, y2), dim=1))
+
+##### end of swin transformer v2 #####
diff --git a/models/experimental.py b/models/experimental.py
new file mode 100644
index 0000000000000000000000000000000000000000..1cf881beeab255778c293f209e2bf83575f9f712
--- /dev/null
+++ b/models/experimental.py
@@ -0,0 +1,106 @@
+import numpy as np
+import torch
+import torch.nn as nn
+
+from models.common import Conv, DWConv
+from utils.google_utils import attempt_download
+
+
+class CrossConv(nn.Module):
+ # Cross Convolution Downsample
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
+ # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
+ super(CrossConv, self).__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, (1, k), (1, s))
+ self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
+ self.add = shortcut and c1 == c2
+
+ def forward(self, x):
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class Sum(nn.Module):
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+ def __init__(self, n, weight=False): # n: number of inputs
+ super(Sum, self).__init__()
+ self.weight = weight # apply weights boolean
+ self.iter = range(n - 1) # iter object
+ if weight:
+ self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
+
+ def forward(self, x):
+ y = x[0] # no weight
+ if self.weight:
+ w = torch.sigmoid(self.w) * 2
+ for i in self.iter:
+ y = y + x[i + 1] * w[i]
+ else:
+ for i in self.iter:
+ y = y + x[i + 1]
+ return y
+
+
+class MixConv2d(nn.Module):
+ # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
+ super(MixConv2d, self).__init__()
+ groups = len(k)
+ if equal_ch: # equal c_ per group
+ i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
+ c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
+ else: # equal weight.numel() per group
+ b = [c2] + [0] * groups
+ a = np.eye(groups + 1, groups, k=-1)
+ a -= np.roll(a, 1, axis=1)
+ a *= np.array(k) ** 2
+ a[0] = 1
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
+
+ self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
+ self.bn = nn.BatchNorm2d(c2)
+ self.act = nn.LeakyReLU(0.1, inplace=True)
+
+ def forward(self, x):
+ return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
+
+
+class Ensemble(nn.ModuleList):
+ # Ensemble of models
+ def __init__(self):
+ super(Ensemble, self).__init__()
+
+ def forward(self, x, augment=False):
+ y = []
+ for module in self:
+ y.append(module(x, augment)[0])
+ # y = torch.stack(y).max(0)[0] # max ensemble
+ # y = torch.stack(y).mean(0) # mean ensemble
+ y = torch.cat(y, 1) # nms ensemble
+ return y, None # inference, train output
+
+
+def attempt_load(weights, map_location=None):
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
+ model = Ensemble()
+ for w in weights if isinstance(weights, list) else [weights]:
+ attempt_download(w)
+ ckpt = torch.load(w, map_location=map_location) # load
+ model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
+
+ # Compatibility updates
+ for m in model.modules():
+ if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
+ m.inplace = True # pytorch 1.7.0 compatibility
+ elif type(m) is nn.Upsample:
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
+ elif type(m) is Conv:
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
+
+ if len(model) == 1:
+ return model[-1] # return model
+ else:
+ print('Ensemble created with %s\n' % weights)
+ for k in ['names', 'stride']:
+ setattr(model, k, getattr(model[-1], k))
+ return model # return ensemble
diff --git a/models/export.py b/models/export.py
new file mode 100644
index 0000000000000000000000000000000000000000..dc12559416b4510311f289dc1f93a11473bbd8f7
--- /dev/null
+++ b/models/export.py
@@ -0,0 +1,98 @@
+import argparse
+import sys
+import time
+
+sys.path.append('./') # to run '$ python *.py' files in subdirectories
+
+import torch
+import torch.nn as nn
+
+import models
+from models.experimental import attempt_load
+from utils.activations import Hardswish, SiLU
+from utils.general import set_logging, check_img_size
+from utils.torch_utils import select_device
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
+ parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
+ parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
+ parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ opt = parser.parse_args()
+ opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
+ print(opt)
+ set_logging()
+ t = time.time()
+
+ # Load PyTorch model
+ device = select_device(opt.device)
+ model = attempt_load(opt.weights, map_location=device) # load FP32 model
+ labels = model.names
+
+ # Checks
+ gs = int(max(model.stride)) # grid size (max stride)
+ opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
+
+ # Input
+ img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
+
+ # Update model
+ for k, m in model.named_modules():
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
+ if isinstance(m, models.common.Conv): # assign export-friendly activations
+ if isinstance(m.act, nn.Hardswish):
+ m.act = Hardswish()
+ elif isinstance(m.act, nn.SiLU):
+ m.act = SiLU()
+ # elif isinstance(m, models.yolo.Detect):
+ # m.forward = m.forward_export # assign forward (optional)
+ model.model[-1].export = not opt.grid # set Detect() layer grid export
+ y = model(img) # dry run
+
+ # TorchScript export
+ try:
+ print('\nStarting TorchScript export with torch %s...' % torch.__version__)
+ f = opt.weights.replace('.pt', '.torchscript.pt') # filename
+ ts = torch.jit.trace(model, img, strict=False)
+ ts.save(f)
+ print('TorchScript export success, saved as %s' % f)
+ except Exception as e:
+ print('TorchScript export failure: %s' % e)
+
+ # ONNX export
+ try:
+ import onnx
+
+ print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
+ f = opt.weights.replace('.pt', '.onnx') # filename
+ torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
+ output_names=['classes', 'boxes'] if y is None else ['output'],
+ dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
+ 'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
+
+ # Checks
+ onnx_model = onnx.load(f) # load onnx model
+ onnx.checker.check_model(onnx_model) # check onnx model
+ # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
+ print('ONNX export success, saved as %s' % f)
+ except Exception as e:
+ print('ONNX export failure: %s' % e)
+
+ # CoreML export
+ try:
+ import coremltools as ct
+
+ print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
+ # convert model from torchscript and apply pixel scaling as per detect.py
+ model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
+ f = opt.weights.replace('.pt', '.mlmodel') # filename
+ model.save(f)
+ print('CoreML export success, saved as %s' % f)
+ except Exception as e:
+ print('CoreML export failure: %s' % e)
+
+ # Finish
+ print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
diff --git a/models/yolo.py b/models/yolo.py
new file mode 100644
index 0000000000000000000000000000000000000000..7e1b3da17252dd574c4ddbb00ab522f2d522f5c9
--- /dev/null
+++ b/models/yolo.py
@@ -0,0 +1,550 @@
+import argparse
+import logging
+import sys
+from copy import deepcopy
+
+sys.path.append('./') # to run '$ python *.py' files in subdirectories
+logger = logging.getLogger(__name__)
+
+from models.common import *
+from models.experimental import *
+from utils.autoanchor import check_anchor_order
+from utils.general import make_divisible, check_file, set_logging
+from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
+ select_device, copy_attr
+from utils.loss import SigmoidBin
+
+try:
+ import thop # for FLOPS computation
+except ImportError:
+ thop = None
+
+
+class Detect(nn.Module):
+ stride = None # strides computed during build
+ export = False # onnx export
+
+ def __init__(self, nc=80, anchors=(), ch=()): # detection layer
+ super(Detect, self).__init__()
+ self.nc = nc # number of classes
+ self.no = nc + 5 # number of outputs per anchor
+ self.nl = len(anchors) # number of detection layers
+ self.na = len(anchors[0]) // 2 # number of anchors
+ self.grid = [torch.zeros(1)] * self.nl # init grid
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
+ self.register_buffer('anchors', a) # shape(nl,na,2)
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
+
+ def forward(self, x):
+ # x = x.copy() # for profiling
+ z = [] # inference output
+ self.training |= self.export
+ for i in range(self.nl):
+ x[i] = self.m[i](x[i]) # conv
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
+
+ if not self.training: # inference
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
+
+ y = x[i].sigmoid()
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
+ z.append(y.view(bs, -1, self.no))
+
+ return x if self.training else (torch.cat(z, 1), x)
+
+ @staticmethod
+ def _make_grid(nx=20, ny=20):
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
+
+
+class IDetect(nn.Module):
+ stride = None # strides computed during build
+ export = False # onnx export
+
+ def __init__(self, nc=80, anchors=(), ch=()): # detection layer
+ super(IDetect, self).__init__()
+ self.nc = nc # number of classes
+ self.no = nc + 5 # number of outputs per anchor
+ self.nl = len(anchors) # number of detection layers
+ self.na = len(anchors[0]) // 2 # number of anchors
+ self.grid = [torch.zeros(1)] * self.nl # init grid
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
+ self.register_buffer('anchors', a) # shape(nl,na,2)
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
+
+ self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
+ self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
+
+ def forward(self, x):
+ # x = x.copy() # for profiling
+ z = [] # inference output
+ self.training |= self.export
+ for i in range(self.nl):
+ x[i] = self.m[i](self.ia[i](x[i])) # conv
+ x[i] = self.im[i](x[i])
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
+
+ if not self.training: # inference
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
+
+ y = x[i].sigmoid()
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
+ z.append(y.view(bs, -1, self.no))
+
+ return x if self.training else (torch.cat(z, 1), x)
+
+ @staticmethod
+ def _make_grid(nx=20, ny=20):
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
+
+
+class IAuxDetect(nn.Module):
+ stride = None # strides computed during build
+ export = False # onnx export
+
+ def __init__(self, nc=80, anchors=(), ch=()): # detection layer
+ super(IAuxDetect, self).__init__()
+ self.nc = nc # number of classes
+ self.no = nc + 5 # number of outputs per anchor
+ self.nl = len(anchors) # number of detection layers
+ self.na = len(anchors[0]) // 2 # number of anchors
+ self.grid = [torch.zeros(1)] * self.nl # init grid
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
+ self.register_buffer('anchors', a) # shape(nl,na,2)
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[:self.nl]) # output conv
+ self.m2 = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[self.nl:]) # output conv
+
+ self.ia = nn.ModuleList(ImplicitA(x) for x in ch[:self.nl])
+ self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch[:self.nl])
+
+ def forward(self, x):
+ # x = x.copy() # for profiling
+ z = [] # inference output
+ self.training |= self.export
+ for i in range(self.nl):
+ x[i] = self.m[i](self.ia[i](x[i])) # conv
+ x[i] = self.im[i](x[i])
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
+
+ x[i+self.nl] = self.m2[i](x[i+self.nl])
+ x[i+self.nl] = x[i+self.nl].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
+
+ if not self.training: # inference
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
+
+ y = x[i].sigmoid()
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
+ z.append(y.view(bs, -1, self.no))
+
+ return x if self.training else (torch.cat(z, 1), x[:self.nl])
+
+ @staticmethod
+ def _make_grid(nx=20, ny=20):
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
+
+
+class IBin(nn.Module):
+ stride = None # strides computed during build
+ export = False # onnx export
+
+ def __init__(self, nc=80, anchors=(), ch=(), bin_count=21): # detection layer
+ super(IBin, self).__init__()
+ self.nc = nc # number of classes
+ self.bin_count = bin_count
+
+ self.w_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0)
+ self.h_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0)
+ # classes, x,y,obj
+ self.no = nc + 3 + \
+ self.w_bin_sigmoid.get_length() + self.h_bin_sigmoid.get_length() # w-bce, h-bce
+ # + self.x_bin_sigmoid.get_length() + self.y_bin_sigmoid.get_length()
+
+ self.nl = len(anchors) # number of detection layers
+ self.na = len(anchors[0]) // 2 # number of anchors
+ self.grid = [torch.zeros(1)] * self.nl # init grid
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
+ self.register_buffer('anchors', a) # shape(nl,na,2)
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
+
+ self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
+ self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
+
+ def forward(self, x):
+
+ #self.x_bin_sigmoid.use_fw_regression = True
+ #self.y_bin_sigmoid.use_fw_regression = True
+ self.w_bin_sigmoid.use_fw_regression = True
+ self.h_bin_sigmoid.use_fw_regression = True
+
+ # x = x.copy() # for profiling
+ z = [] # inference output
+ self.training |= self.export
+ for i in range(self.nl):
+ x[i] = self.m[i](self.ia[i](x[i])) # conv
+ x[i] = self.im[i](x[i])
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
+
+ if not self.training: # inference
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
+
+ y = x[i].sigmoid()
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
+ #y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
+
+
+ #px = (self.x_bin_sigmoid.forward(y[..., 0:12]) + self.grid[i][..., 0]) * self.stride[i]
+ #py = (self.y_bin_sigmoid.forward(y[..., 12:24]) + self.grid[i][..., 1]) * self.stride[i]
+
+ pw = self.w_bin_sigmoid.forward(y[..., 2:24]) * self.anchor_grid[i][..., 0]
+ ph = self.h_bin_sigmoid.forward(y[..., 24:46]) * self.anchor_grid[i][..., 1]
+
+ #y[..., 0] = px
+ #y[..., 1] = py
+ y[..., 2] = pw
+ y[..., 3] = ph
+
+ y = torch.cat((y[..., 0:4], y[..., 46:]), dim=-1)
+
+ z.append(y.view(bs, -1, y.shape[-1]))
+
+ return x if self.training else (torch.cat(z, 1), x)
+
+ @staticmethod
+ def _make_grid(nx=20, ny=20):
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
+
+
+class Model(nn.Module):
+ def __init__(self, cfg='yolor-csp-c.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
+ super(Model, self).__init__()
+ self.traced = False
+ if isinstance(cfg, dict):
+ self.yaml = cfg # model dict
+ else: # is *.yaml
+ import yaml # for torch hub
+ self.yaml_file = Path(cfg).name
+ with open(cfg) as f:
+ self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict
+
+ # Define model
+ ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
+ if nc and nc != self.yaml['nc']:
+ logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
+ self.yaml['nc'] = nc # override yaml value
+ if anchors:
+ logger.info(f'Overriding model.yaml anchors with anchors={anchors}')
+ self.yaml['anchors'] = round(anchors) # override yaml value
+ self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
+ self.names = [str(i) for i in range(self.yaml['nc'])] # default names
+ # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
+
+ # Build strides, anchors
+ m = self.model[-1] # Detect()
+ if isinstance(m, Detect):
+ s = 256 # 2x min stride
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
+ m.anchors /= m.stride.view(-1, 1, 1)
+ check_anchor_order(m)
+ self.stride = m.stride
+ self._initialize_biases() # only run once
+ # print('Strides: %s' % m.stride.tolist())
+ if isinstance(m, IDetect):
+ s = 256 # 2x min stride
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
+ m.anchors /= m.stride.view(-1, 1, 1)
+ check_anchor_order(m)
+ self.stride = m.stride
+ self._initialize_biases() # only run once
+ # print('Strides: %s' % m.stride.tolist())
+ if isinstance(m, IAuxDetect):
+ s = 256 # 2x min stride
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))[:4]]) # forward
+ #print(m.stride)
+ m.anchors /= m.stride.view(-1, 1, 1)
+ check_anchor_order(m)
+ self.stride = m.stride
+ self._initialize_aux_biases() # only run once
+ # print('Strides: %s' % m.stride.tolist())
+ if isinstance(m, IBin):
+ s = 256 # 2x min stride
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
+ m.anchors /= m.stride.view(-1, 1, 1)
+ check_anchor_order(m)
+ self.stride = m.stride
+ self._initialize_biases_bin() # only run once
+ # print('Strides: %s' % m.stride.tolist())
+
+ # Init weights, biases
+ initialize_weights(self)
+ self.info()
+ logger.info('')
+
+ def forward(self, x, augment=False, profile=False):
+ if augment:
+ img_size = x.shape[-2:] # height, width
+ s = [1, 0.83, 0.67] # scales
+ f = [None, 3, None] # flips (2-ud, 3-lr)
+ y = [] # outputs
+ for si, fi in zip(s, f):
+ xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
+ yi = self.forward_once(xi)[0] # forward
+ # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
+ yi[..., :4] /= si # de-scale
+ if fi == 2:
+ yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
+ elif fi == 3:
+ yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
+ y.append(yi)
+ return torch.cat(y, 1), None # augmented inference, train
+ else:
+ return self.forward_once(x, profile) # single-scale inference, train
+
+ def forward_once(self, x, profile=False):
+ y, dt = [], [] # outputs
+ for m in self.model:
+ if m.f != -1: # if not from previous layer
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
+
+ if not hasattr(self, 'traced'):
+ self.traced=False
+
+ if self.traced:
+ if isinstance(m, Detect) or isinstance(m, IDetect) or isinstance(m, IAuxDetect):
+ break
+
+ if profile:
+ c = isinstance(m, (Detect, IDetect, IAuxDetect, IBin))
+ o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
+ for _ in range(10):
+ m(x.copy() if c else x)
+ t = time_synchronized()
+ for _ in range(10):
+ m(x.copy() if c else x)
+ dt.append((time_synchronized() - t) * 100)
+ print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
+
+ x = m(x) # run
+
+ y.append(x if m.i in self.save else None) # save output
+
+ if profile:
+ print('%.1fms total' % sum(dt))
+ return x
+
+ def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
+ # https://arxiv.org/abs/1708.02002 section 3.3
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
+ m = self.model[-1] # Detect() module
+ for mi, s in zip(m.m, m.stride): # from
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
+ b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
+ b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+
+ def _initialize_aux_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
+ # https://arxiv.org/abs/1708.02002 section 3.3
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
+ m = self.model[-1] # Detect() module
+ for mi, mi2, s in zip(m.m, m.m2, m.stride): # from
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
+ b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
+ b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+ b2 = mi2.bias.view(m.na, -1) # conv.bias(255) to (3,85)
+ b2.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
+ b2.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
+ mi2.bias = torch.nn.Parameter(b2.view(-1), requires_grad=True)
+
+ def _initialize_biases_bin(self, cf=None): # initialize biases into Detect(), cf is class frequency
+ # https://arxiv.org/abs/1708.02002 section 3.3
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
+ m = self.model[-1] # Bin() module
+ bc = m.bin_count
+ for mi, s in zip(m.m, m.stride): # from
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
+ old = b[:, (0,1,2,bc+3)].data
+ obj_idx = 2*bc+4
+ b[:, :obj_idx].data += math.log(0.6 / (bc + 1 - 0.99))
+ b[:, obj_idx].data += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
+ b[:, (obj_idx+1):].data += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
+ b[:, (0,1,2,bc+3)].data = old
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+
+ def _print_biases(self):
+ m = self.model[-1] # Detect() module
+ for mi in m.m: # from
+ b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
+ print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
+
+ # def _print_weights(self):
+ # for m in self.model.modules():
+ # if type(m) is Bottleneck:
+ # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
+
+ def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
+ print('Fusing layers... ')
+ for m in self.model.modules():
+ if isinstance(m, RepConv):
+ #print(f" fuse_repvgg_block")
+ m.fuse_repvgg_block()
+ elif isinstance(m, RepConv_OREPA):
+ #print(f" switch_to_deploy")
+ m.switch_to_deploy()
+ elif type(m) is Conv and hasattr(m, 'bn'):
+ m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
+ delattr(m, 'bn') # remove batchnorm
+ m.forward = m.fuseforward # update forward
+ self.info()
+ return self
+
+ def nms(self, mode=True): # add or remove NMS module
+ present = type(self.model[-1]) is NMS # last layer is NMS
+ if mode and not present:
+ print('Adding NMS... ')
+ m = NMS() # module
+ m.f = -1 # from
+ m.i = self.model[-1].i + 1 # index
+ self.model.add_module(name='%s' % m.i, module=m) # add
+ self.eval()
+ elif not mode and present:
+ print('Removing NMS... ')
+ self.model = self.model[:-1] # remove
+ return self
+
+ def autoshape(self): # add autoShape module
+ print('Adding autoShape... ')
+ m = autoShape(self) # wrap model
+ copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
+ return m
+
+ def info(self, verbose=False, img_size=640): # print model information
+ model_info(self, verbose, img_size)
+
+
+def parse_model(d, ch): # model_dict, input_channels(3)
+ logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
+ anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
+
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
+ for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
+ m = eval(m) if isinstance(m, str) else m # eval strings
+ for j, a in enumerate(args):
+ try:
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
+ except:
+ pass
+
+ n = max(round(n * gd), 1) if n > 1 else n # depth gain
+ if m in [nn.Conv2d, Conv, RobustConv, RobustConv2, DWConv, GhostConv, RepConv, RepConv_OREPA, DownC,
+ SPP, SPPF, SPPCSPC, GhostSPPCSPC, MixConv2d, Focus, Stem, GhostStem, CrossConv,
+ Bottleneck, BottleneckCSPA, BottleneckCSPB, BottleneckCSPC,
+ RepBottleneck, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC,
+ Res, ResCSPA, ResCSPB, ResCSPC,
+ RepRes, RepResCSPA, RepResCSPB, RepResCSPC,
+ ResX, ResXCSPA, ResXCSPB, ResXCSPC,
+ RepResX, RepResXCSPA, RepResXCSPB, RepResXCSPC,
+ Ghost, GhostCSPA, GhostCSPB, GhostCSPC,
+ SwinTransformerBlock, STCSPA, STCSPB, STCSPC,
+ SwinTransformer2Block, ST2CSPA, ST2CSPB, ST2CSPC]:
+ c1, c2 = ch[f], args[0]
+ if c2 != no: # if not output
+ c2 = make_divisible(c2 * gw, 8)
+
+ args = [c1, c2, *args[1:]]
+ if m in [DownC, SPPCSPC, GhostSPPCSPC,
+ BottleneckCSPA, BottleneckCSPB, BottleneckCSPC,
+ RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC,
+ ResCSPA, ResCSPB, ResCSPC,
+ RepResCSPA, RepResCSPB, RepResCSPC,
+ ResXCSPA, ResXCSPB, ResXCSPC,
+ RepResXCSPA, RepResXCSPB, RepResXCSPC,
+ GhostCSPA, GhostCSPB, GhostCSPC,
+ STCSPA, STCSPB, STCSPC,
+ ST2CSPA, ST2CSPB, ST2CSPC]:
+ args.insert(2, n) # number of repeats
+ n = 1
+ elif m is nn.BatchNorm2d:
+ args = [ch[f]]
+ elif m is Concat:
+ c2 = sum([ch[x] for x in f])
+ elif m is Chuncat:
+ c2 = sum([ch[x] for x in f])
+ elif m is Shortcut:
+ c2 = ch[f[0]]
+ elif m is Foldcut:
+ c2 = ch[f] // 2
+ elif m in [Detect, IDetect, IAuxDetect, IBin]:
+ args.append([ch[x] for x in f])
+ if isinstance(args[1], int): # number of anchors
+ args[1] = [list(range(args[1] * 2))] * len(f)
+ elif m is ReOrg:
+ c2 = ch[f] * 4
+ elif m is Contract:
+ c2 = ch[f] * args[0] ** 2
+ elif m is Expand:
+ c2 = ch[f] // args[0] ** 2
+ else:
+ c2 = ch[f]
+
+ m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
+ t = str(m)[8:-2].replace('__main__.', '') # module type
+ np = sum([x.numel() for x in m_.parameters()]) # number params
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
+ logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
+ layers.append(m_)
+ if i == 0:
+ ch = []
+ ch.append(c2)
+ return nn.Sequential(*layers), sorted(save)
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--cfg', type=str, default='yolor-csp-c.yaml', help='model.yaml')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--profile', action='store_true', help='profile model speed')
+ opt = parser.parse_args()
+ opt.cfg = check_file(opt.cfg) # check file
+ set_logging()
+ device = select_device(opt.device)
+
+ # Create model
+ model = Model(opt.cfg).to(device)
+ model.train()
+
+ if opt.profile:
+ img = torch.rand(1, 3, 640, 640).to(device)
+ y = model(img, profile=True)
+
+ # Profile
+ # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
+ # y = model(img, profile=True)
+
+ # Tensorboard
+ # from torch.utils.tensorboard import SummaryWriter
+ # tb_writer = SummaryWriter()
+ # print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
+ # tb_writer.add_graph(model.model, img) # add model to tensorboard
+ # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
diff --git a/scripts/get_coco.sh b/scripts/get_coco.sh
new file mode 100644
index 0000000000000000000000000000000000000000..524f8dd9e2cae992a4047476520a7e4e1402e6de
--- /dev/null
+++ b/scripts/get_coco.sh
@@ -0,0 +1,22 @@
+#!/bin/bash
+# COCO 2017 dataset http://cocodataset.org
+# Download command: bash ./scripts/get_coco.sh
+
+# Download/unzip labels
+d='./' # unzip directory
+url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
+f='coco2017labels-segments.zip' # or 'coco2017labels.zip', 68 MB
+echo 'Downloading' $url$f ' ...'
+curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
+
+# Download/unzip images
+d='./coco/images' # unzip directory
+url=http://images.cocodataset.org/zips/
+f1='train2017.zip' # 19G, 118k images
+f2='val2017.zip' # 1G, 5k images
+f3='test2017.zip' # 7G, 41k images (optional)
+for f in $f1 $f2 $f3; do
+ echo 'Downloading' $url$f '...'
+ curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
+done
+wait # finish background tasks
diff --git a/test.py b/test.py
new file mode 100644
index 0000000000000000000000000000000000000000..8478f5ef35be52400eb495dab354b3781c6699f0
--- /dev/null
+++ b/test.py
@@ -0,0 +1,347 @@
+import argparse
+import json
+import os
+from pathlib import Path
+from threading import Thread
+
+import numpy as np
+import torch
+import yaml
+from tqdm import tqdm
+
+from models.experimental import attempt_load
+from utils.datasets import create_dataloader
+from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
+ box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
+from utils.metrics import ap_per_class, ConfusionMatrix
+from utils.plots import plot_images, output_to_target, plot_study_txt
+from utils.torch_utils import select_device, time_synchronized, TracedModel
+
+
+def test(data,
+ weights=None,
+ batch_size=32,
+ imgsz=640,
+ conf_thres=0.001,
+ iou_thres=0.6, # for NMS
+ save_json=False,
+ single_cls=False,
+ augment=False,
+ verbose=False,
+ model=None,
+ dataloader=None,
+ save_dir=Path(''), # for saving images
+ save_txt=False, # for auto-labelling
+ save_hybrid=False, # for hybrid auto-labelling
+ save_conf=False, # save auto-label confidences
+ plots=True,
+ wandb_logger=None,
+ compute_loss=None,
+ half_precision=True,
+ trace=False,
+ is_coco=False):
+ # Initialize/load model and set device
+ training = model is not None
+ if training: # called by train.py
+ device = next(model.parameters()).device # get model device
+
+ else: # called directly
+ set_logging()
+ device = select_device(opt.device, batch_size=batch_size)
+
+ # Directories
+ save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
+
+ # Load model
+ model = attempt_load(weights, map_location=device) # load FP32 model
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
+ imgsz = check_img_size(imgsz, s=gs) # check img_size
+
+ if trace:
+ model = TracedModel(model, device, opt.img_size)
+
+ # Half
+ half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
+ if half:
+ model.half()
+
+ # Configure
+ model.eval()
+ if isinstance(data, str):
+ is_coco = data.endswith('coco.yaml')
+ with open(data) as f:
+ data = yaml.load(f, Loader=yaml.SafeLoader)
+ check_dataset(data) # check
+ nc = 1 if single_cls else int(data['nc']) # number of classes
+ iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
+ niou = iouv.numel()
+
+ # Logging
+ log_imgs = 0
+ if wandb_logger and wandb_logger.wandb:
+ log_imgs = min(wandb_logger.log_imgs, 100)
+ # Dataloader
+ if not training:
+ if device.type != 'cpu':
+ model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
+ task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
+ dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
+ prefix=colorstr(f'{task}: '))[0]
+
+ seen = 0
+ confusion_matrix = ConfusionMatrix(nc=nc)
+ names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
+ coco91class = coco80_to_coco91_class()
+ s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
+ p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
+ loss = torch.zeros(3, device=device)
+ jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
+ for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
+ img = img.to(device, non_blocking=True)
+ img = img.half() if half else img.float() # uint8 to fp16/32
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
+ targets = targets.to(device)
+ nb, _, height, width = img.shape # batch size, channels, height, width
+
+ with torch.no_grad():
+ # Run model
+ t = time_synchronized()
+ out, train_out = model(img, augment=augment) # inference and training outputs
+ t0 += time_synchronized() - t
+
+ # Compute loss
+ if compute_loss:
+ loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
+
+ # Run NMS
+ targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
+ lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
+ t = time_synchronized()
+ out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
+ t1 += time_synchronized() - t
+
+ # Statistics per image
+ for si, pred in enumerate(out):
+ labels = targets[targets[:, 0] == si, 1:]
+ nl = len(labels)
+ tcls = labels[:, 0].tolist() if nl else [] # target class
+ path = Path(paths[si])
+ seen += 1
+
+ if len(pred) == 0:
+ if nl:
+ stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
+ continue
+
+ # Predictions
+ predn = pred.clone()
+ scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
+
+ # Append to text file
+ if save_txt:
+ gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
+ for *xyxy, conf, cls in predn.tolist():
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
+ with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+ # W&B logging - Media Panel Plots
+ if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
+ if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
+ box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
+ "class_id": int(cls),
+ "box_caption": "%s %.3f" % (names[cls], conf),
+ "scores": {"class_score": conf},
+ "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
+ boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
+ wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
+ wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
+
+ # Append to pycocotools JSON dictionary
+ if save_json:
+ # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+ box = xyxy2xywh(predn[:, :4]) # xywh
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
+ for p, b in zip(pred.tolist(), box.tolist()):
+ jdict.append({'image_id': image_id,
+ 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
+ 'bbox': [round(x, 3) for x in b],
+ 'score': round(p[4], 5)})
+
+ # Assign all predictions as incorrect
+ correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
+ if nl:
+ detected = [] # target indices
+ tcls_tensor = labels[:, 0]
+
+ # target boxes
+ tbox = xywh2xyxy(labels[:, 1:5])
+ scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
+ if plots:
+ confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
+
+ # Per target class
+ for cls in torch.unique(tcls_tensor):
+ ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
+ pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
+
+ # Search for detections
+ if pi.shape[0]:
+ # Prediction to target ious
+ ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
+
+ # Append detections
+ detected_set = set()
+ for j in (ious > iouv[0]).nonzero(as_tuple=False):
+ d = ti[i[j]] # detected target
+ if d.item() not in detected_set:
+ detected_set.add(d.item())
+ detected.append(d)
+ correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
+ if len(detected) == nl: # all targets already located in image
+ break
+
+ # Append statistics (correct, conf, pcls, tcls)
+ stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
+
+ # Plot images
+ if plots and batch_i < 3:
+ f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
+ Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
+ f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
+ Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
+
+ # Compute statistics
+ stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
+ if len(stats) and stats[0].any():
+ p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
+ ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
+ mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
+ nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
+ else:
+ nt = torch.zeros(1)
+
+ # Print results
+ pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
+ print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
+
+ # Print results per class
+ if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
+ for i, c in enumerate(ap_class):
+ print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
+
+ # Print speeds
+ t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
+ if not training:
+ print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
+
+ # Plots
+ if plots:
+ confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
+ if wandb_logger and wandb_logger.wandb:
+ val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
+ wandb_logger.log({"Validation": val_batches})
+ if wandb_images:
+ wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
+
+ # Save JSON
+ if save_json and len(jdict):
+ w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
+ anno_json = '../coco/annotations/instances_val2017.json' # annotations json
+ pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
+ print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
+ with open(pred_json, 'w') as f:
+ json.dump(jdict, f)
+
+ try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+ from pycocotools.coco import COCO
+ from pycocotools.cocoeval import COCOeval
+
+ anno = COCO(anno_json) # init annotations api
+ pred = anno.loadRes(pred_json) # init predictions api
+ eval = COCOeval(anno, pred, 'bbox')
+ if is_coco:
+ eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
+ eval.evaluate()
+ eval.accumulate()
+ eval.summarize()
+ map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
+ except Exception as e:
+ print(f'pycocotools unable to run: {e}')
+
+ # Return results
+ model.float() # for training
+ if not training:
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+ print(f"Results saved to {save_dir}{s}")
+ maps = np.zeros(nc) + map
+ for i, c in enumerate(ap_class):
+ maps[c] = ap[i]
+ return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(prog='test.py')
+ parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
+ parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
+ parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
+ parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
+ parser.add_argument('--task', default='val', help='train, val, test, speed or study')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+ parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+ parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
+ parser.add_argument('--project', default='runs/test', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--trace', action='store_true', help='trace model')
+ opt = parser.parse_args()
+ opt.save_json |= opt.data.endswith('coco.yaml')
+ opt.data = check_file(opt.data) # check file
+ print(opt)
+ #check_requirements()
+
+ if opt.task in ('train', 'val', 'test'): # run normally
+ test(opt.data,
+ opt.weights,
+ opt.batch_size,
+ opt.img_size,
+ opt.conf_thres,
+ opt.iou_thres,
+ opt.save_json,
+ opt.single_cls,
+ opt.augment,
+ opt.verbose,
+ save_txt=opt.save_txt | opt.save_hybrid,
+ save_hybrid=opt.save_hybrid,
+ save_conf=opt.save_conf,
+ trace=opt.trace,
+ )
+
+ elif opt.task == 'speed': # speed benchmarks
+ for w in opt.weights:
+ test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False)
+
+ elif opt.task == 'study': # run over a range of settings and save/plot
+ # python test.py --task study --data coco.yaml --iou 0.65 --weights yolov7.pt
+ x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
+ for w in opt.weights:
+ f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
+ y = [] # y axis
+ for i in x: # img-size
+ print(f'\nRunning {f} point {i}...')
+ r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
+ plots=False)
+ y.append(r + t) # results and times
+ np.savetxt(f, y, fmt='%10.4g') # save
+ os.system('zip -r study.zip study_*.txt')
+ plot_study_txt(x=x) # plot
diff --git a/train.py b/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..00b8b24f514123c86e9884ae0d6a99dcf69bd1b2
--- /dev/null
+++ b/train.py
@@ -0,0 +1,691 @@
+import argparse
+import logging
+import math
+import os
+import random
+import time
+from copy import deepcopy
+from pathlib import Path
+from threading import Thread
+
+import numpy as np
+import torch.distributed as dist
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.optim as optim
+import torch.optim.lr_scheduler as lr_scheduler
+import torch.utils.data
+import yaml
+from torch.cuda import amp
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.utils.tensorboard import SummaryWriter
+from tqdm import tqdm
+
+import test # import test.py to get mAP after each epoch
+from models.experimental import attempt_load
+from models.yolo import Model
+from utils.autoanchor import check_anchors
+from utils.datasets import create_dataloader
+from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
+ fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
+ check_requirements, print_mutation, set_logging, one_cycle, colorstr
+from utils.google_utils import attempt_download
+from utils.loss import ComputeLoss, ComputeLossOTA
+from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
+from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
+from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
+
+logger = logging.getLogger(__name__)
+
+
+def train(hyp, opt, device, tb_writer=None):
+ logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
+ save_dir, epochs, batch_size, total_batch_size, weights, rank = \
+ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
+
+ # Directories
+ wdir = save_dir / 'weights'
+ wdir.mkdir(parents=True, exist_ok=True) # make dir
+ last = wdir / 'last.pt'
+ best = wdir / 'best.pt'
+ results_file = save_dir / 'results.txt'
+
+ # Save run settings
+ with open(save_dir / 'hyp.yaml', 'w') as f:
+ yaml.dump(hyp, f, sort_keys=False)
+ with open(save_dir / 'opt.yaml', 'w') as f:
+ yaml.dump(vars(opt), f, sort_keys=False)
+
+ # Configure
+ plots = not opt.evolve # create plots
+ cuda = device.type != 'cpu'
+ init_seeds(2 + rank)
+ with open(opt.data) as f:
+ data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
+ is_coco = opt.data.endswith('coco.yaml')
+
+ # Logging- Doing this before checking the dataset. Might update data_dict
+ loggers = {'wandb': None} # loggers dict
+ if rank in [-1, 0]:
+ opt.hyp = hyp # add hyperparameters
+ run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
+ wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
+ loggers['wandb'] = wandb_logger.wandb
+ data_dict = wandb_logger.data_dict
+ if wandb_logger.wandb:
+ weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming
+
+ nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
+ names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
+ assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
+
+ # Model
+ pretrained = weights.endswith('.pt')
+ if pretrained:
+ with torch_distributed_zero_first(rank):
+ attempt_download(weights) # download if not found locally
+ ckpt = torch.load(weights, map_location=device) # load checkpoint
+ model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
+ exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
+ state_dict = ckpt['model'].float().state_dict() # to FP32
+ state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
+ model.load_state_dict(state_dict, strict=False) # load
+ logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
+ else:
+ model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
+ with torch_distributed_zero_first(rank):
+ check_dataset(data_dict) # check
+ train_path = data_dict['train']
+ test_path = data_dict['val']
+
+ # Freeze
+ freeze = [] # parameter names to freeze (full or partial)
+ for k, v in model.named_parameters():
+ v.requires_grad = True # train all layers
+ if any(x in k for x in freeze):
+ print('freezing %s' % k)
+ v.requires_grad = False
+
+ # Optimizer
+ nbs = 64 # nominal batch size
+ accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
+ hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
+ logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
+
+ pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
+ for k, v in model.named_modules():
+ if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
+ pg2.append(v.bias) # biases
+ if isinstance(v, nn.BatchNorm2d):
+ pg0.append(v.weight) # no decay
+ elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
+ pg1.append(v.weight) # apply decay
+ if hasattr(v, 'im'):
+ if hasattr(v.im, 'implicit'):
+ pg0.append(v.im.implicit)
+ else:
+ for iv in v.im:
+ pg0.append(iv.implicit)
+ if hasattr(v, 'imc'):
+ if hasattr(v.imc, 'implicit'):
+ pg0.append(v.imc.implicit)
+ else:
+ for iv in v.imc:
+ pg0.append(iv.implicit)
+ if hasattr(v, 'imb'):
+ if hasattr(v.imb, 'implicit'):
+ pg0.append(v.imb.implicit)
+ else:
+ for iv in v.imb:
+ pg0.append(iv.implicit)
+ if hasattr(v, 'imo'):
+ if hasattr(v.imo, 'implicit'):
+ pg0.append(v.imo.implicit)
+ else:
+ for iv in v.imo:
+ pg0.append(iv.implicit)
+ if hasattr(v, 'ia'):
+ if hasattr(v.ia, 'implicit'):
+ pg0.append(v.ia.implicit)
+ else:
+ for iv in v.ia:
+ pg0.append(iv.implicit)
+ if hasattr(v, 'attn'):
+ if hasattr(v.attn, 'logit_scale'):
+ pg0.append(v.attn.logit_scale)
+ if hasattr(v.attn, 'q_bias'):
+ pg0.append(v.attn.q_bias)
+ if hasattr(v.attn, 'v_bias'):
+ pg0.append(v.attn.v_bias)
+ if hasattr(v.attn, 'relative_position_bias_table'):
+ pg0.append(v.attn.relative_position_bias_table)
+ if hasattr(v, 'rbr_dense'):
+ if hasattr(v.rbr_dense, 'weight_rbr_origin'):
+ pg0.append(v.rbr_dense.weight_rbr_origin)
+ if hasattr(v.rbr_dense, 'weight_rbr_avg_conv'):
+ pg0.append(v.rbr_dense.weight_rbr_avg_conv)
+ if hasattr(v.rbr_dense, 'weight_rbr_pfir_conv'):
+ pg0.append(v.rbr_dense.weight_rbr_pfir_conv)
+ if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_idconv1'):
+ pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_idconv1)
+ if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_conv2'):
+ pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_conv2)
+ if hasattr(v.rbr_dense, 'weight_rbr_gconv_dw'):
+ pg0.append(v.rbr_dense.weight_rbr_gconv_dw)
+ if hasattr(v.rbr_dense, 'weight_rbr_gconv_pw'):
+ pg0.append(v.rbr_dense.weight_rbr_gconv_pw)
+ if hasattr(v.rbr_dense, 'vector'):
+ pg0.append(v.rbr_dense.vector)
+
+ if opt.adam:
+ optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
+ else:
+ optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
+
+ optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
+ optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
+ logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
+ del pg0, pg1, pg2
+
+ # Scheduler https://arxiv.org/pdf/1812.01187.pdf
+ # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
+ if opt.linear_lr:
+ lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
+ else:
+ lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
+ # plot_lr_scheduler(optimizer, scheduler, epochs)
+
+ # EMA
+ ema = ModelEMA(model) if rank in [-1, 0] else None
+
+ # Resume
+ start_epoch, best_fitness = 0, 0.0
+ if pretrained:
+ # Optimizer
+ if ckpt['optimizer'] is not None:
+ optimizer.load_state_dict(ckpt['optimizer'])
+ best_fitness = ckpt['best_fitness']
+
+ # EMA
+ if ema and ckpt.get('ema'):
+ ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
+ ema.updates = ckpt['updates']
+
+ # Results
+ if ckpt.get('training_results') is not None:
+ results_file.write_text(ckpt['training_results']) # write results.txt
+
+ # Epochs
+ start_epoch = ckpt['epoch'] + 1
+ if opt.resume:
+ assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
+ if epochs < start_epoch:
+ logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
+ (weights, ckpt['epoch'], epochs))
+ epochs += ckpt['epoch'] # finetune additional epochs
+
+ del ckpt, state_dict
+
+ # Image sizes
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
+ nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
+ imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
+
+ # DP mode
+ if cuda and rank == -1 and torch.cuda.device_count() > 1:
+ model = torch.nn.DataParallel(model)
+
+ # SyncBatchNorm
+ if opt.sync_bn and cuda and rank != -1:
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
+ logger.info('Using SyncBatchNorm()')
+
+ # Trainloader
+ dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
+ hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
+ world_size=opt.world_size, workers=opt.workers,
+ image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
+ mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
+ nb = len(dataloader) # number of batches
+ assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
+
+ # Process 0
+ if rank in [-1, 0]:
+ testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader
+ hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
+ world_size=opt.world_size, workers=opt.workers,
+ pad=0.5, prefix=colorstr('val: '))[0]
+
+ if not opt.resume:
+ labels = np.concatenate(dataset.labels, 0)
+ c = torch.tensor(labels[:, 0]) # classes
+ # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
+ # model._initialize_biases(cf.to(device))
+ if plots:
+ #plot_labels(labels, names, save_dir, loggers)
+ if tb_writer:
+ tb_writer.add_histogram('classes', c, 0)
+
+ # Anchors
+ if not opt.noautoanchor:
+ check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
+ model.half().float() # pre-reduce anchor precision
+
+ # DDP mode
+ if cuda and rank != -1:
+ model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
+ # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
+ find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
+
+ # Model parameters
+ hyp['box'] *= 3. / nl # scale to layers
+ hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
+ hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
+ hyp['label_smoothing'] = opt.label_smoothing
+ model.nc = nc # attach number of classes to model
+ model.hyp = hyp # attach hyperparameters to model
+ model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
+ model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
+ model.names = names
+
+ # Start training
+ t0 = time.time()
+ nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
+ maps = np.zeros(nc) # mAP per class
+ results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+ scheduler.last_epoch = start_epoch - 1 # do not move
+ scaler = amp.GradScaler(enabled=cuda)
+ compute_loss_ota = ComputeLossOTA(model) # init loss class
+ compute_loss = ComputeLoss(model) # init loss class
+ logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
+ f'Using {dataloader.num_workers} dataloader workers\n'
+ f'Logging results to {save_dir}\n'
+ f'Starting training for {epochs} epochs...')
+ torch.save(model, wdir / 'init.pt')
+ for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
+ model.train()
+
+ # Update image weights (optional)
+ if opt.image_weights:
+ # Generate indices
+ if rank in [-1, 0]:
+ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
+ iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
+ dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
+ # Broadcast if DDP
+ if rank != -1:
+ indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
+ dist.broadcast(indices, 0)
+ if rank != 0:
+ dataset.indices = indices.cpu().numpy()
+
+ # Update mosaic border
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
+
+ mloss = torch.zeros(4, device=device) # mean losses
+ if rank != -1:
+ dataloader.sampler.set_epoch(epoch)
+ pbar = enumerate(dataloader)
+ logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
+ if rank in [-1, 0]:
+ pbar = tqdm(pbar, total=nb) # progress bar
+ optimizer.zero_grad()
+ for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
+ ni = i + nb * epoch # number integrated batches (since train start)
+ imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
+
+ # Warmup
+ if ni <= nw:
+ xi = [0, nw] # x interp
+ # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
+ accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
+ for j, x in enumerate(optimizer.param_groups):
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+ x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
+ if 'momentum' in x:
+ x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
+
+ # Multi-scale
+ if opt.multi_scale:
+ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
+ sf = sz / max(imgs.shape[2:]) # scale factor
+ if sf != 1:
+ ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
+ imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
+
+ # Forward
+ with amp.autocast(enabled=cuda):
+ pred = model(imgs) # forward
+ loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs) # loss scaled by batch_size
+ if rank != -1:
+ loss *= opt.world_size # gradient averaged between devices in DDP mode
+ if opt.quad:
+ loss *= 4.
+
+ # Backward
+ scaler.scale(loss).backward()
+
+ # Optimize
+ if ni % accumulate == 0:
+ scaler.step(optimizer) # optimizer.step
+ scaler.update()
+ optimizer.zero_grad()
+ if ema:
+ ema.update(model)
+
+ # Print
+ if rank in [-1, 0]:
+ mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
+ mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
+ s = ('%10s' * 2 + '%10.4g' * 6) % (
+ '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
+ pbar.set_description(s)
+
+ # Plot
+ if plots and ni < 10:
+ f = save_dir / f'train_batch{ni}.jpg' # filename
+ Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
+ # if tb_writer:
+ # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
+ # tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph
+ elif plots and ni == 10 and wandb_logger.wandb:
+ wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
+ save_dir.glob('train*.jpg') if x.exists()]})
+
+ # end batch ------------------------------------------------------------------------------------------------
+ # end epoch ----------------------------------------------------------------------------------------------------
+
+ # Scheduler
+ lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
+ scheduler.step()
+
+ # DDP process 0 or single-GPU
+ if rank in [-1, 0]:
+ # mAP
+ ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
+ final_epoch = epoch + 1 == epochs
+ if not opt.notest or final_epoch: # Calculate mAP
+ wandb_logger.current_epoch = epoch + 1
+ results, maps, times = test.test(data_dict,
+ batch_size=batch_size * 2,
+ imgsz=imgsz_test,
+ model=ema.ema,
+ single_cls=opt.single_cls,
+ dataloader=testloader,
+ save_dir=save_dir,
+ verbose=nc < 50 and final_epoch,
+ plots=plots and final_epoch,
+ wandb_logger=wandb_logger,
+ compute_loss=compute_loss,
+ is_coco=is_coco)
+
+ # Write
+ with open(results_file, 'a') as f:
+ f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
+ if len(opt.name) and opt.bucket:
+ os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
+
+ # Log
+ tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
+ 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
+ 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
+ 'x/lr0', 'x/lr1', 'x/lr2'] # params
+ for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
+ if tb_writer:
+ tb_writer.add_scalar(tag, x, epoch) # tensorboard
+ if wandb_logger.wandb:
+ wandb_logger.log({tag: x}) # W&B
+
+ # Update best mAP
+ fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ if fi > best_fitness:
+ best_fitness = fi
+ wandb_logger.end_epoch(best_result=best_fitness == fi)
+
+ # Save model
+ if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
+ ckpt = {'epoch': epoch,
+ 'best_fitness': best_fitness,
+ 'training_results': results_file.read_text(),
+ 'model': deepcopy(model.module if is_parallel(model) else model).half(),
+ 'ema': deepcopy(ema.ema).half(),
+ 'updates': ema.updates,
+ 'optimizer': optimizer.state_dict(),
+ 'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
+
+ # Save last, best and delete
+ torch.save(ckpt, last)
+ if best_fitness == fi:
+ torch.save(ckpt, best)
+ if (best_fitness == fi) and (epoch >= 200):
+ torch.save(ckpt, wdir / 'best_{:03d}.pt'.format(epoch))
+ if epoch == 0:
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
+ elif ((epoch+1) % 25) == 0:
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
+ elif epoch >= (epochs-5):
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
+ if wandb_logger.wandb:
+ if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
+ wandb_logger.log_model(
+ last.parent, opt, epoch, fi, best_model=best_fitness == fi)
+ del ckpt
+
+ # end epoch ----------------------------------------------------------------------------------------------------
+ # end training
+ if rank in [-1, 0]:
+ # Plots
+ if plots:
+ plot_results(save_dir=save_dir) # save as results.png
+ if wandb_logger.wandb:
+ files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
+ wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
+ if (save_dir / f).exists()]})
+ # Test best.pt
+ logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
+ if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
+ for m in (last, best) if best.exists() else (last): # speed, mAP tests
+ results, _, _ = test.test(opt.data,
+ batch_size=batch_size * 2,
+ imgsz=imgsz_test,
+ conf_thres=0.001,
+ iou_thres=0.7,
+ model=attempt_load(m, device).half(),
+ single_cls=opt.single_cls,
+ dataloader=testloader,
+ save_dir=save_dir,
+ save_json=True,
+ plots=False,
+ is_coco=is_coco)
+
+ # Strip optimizers
+ final = best if best.exists() else last # final model
+ for f in last, best:
+ if f.exists():
+ strip_optimizer(f) # strip optimizers
+ if opt.bucket:
+ os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
+ if wandb_logger.wandb and not opt.evolve: # Log the stripped model
+ wandb_logger.wandb.log_artifact(str(final), type='model',
+ name='run_' + wandb_logger.wandb_run.id + '_model',
+ aliases=['last', 'best', 'stripped'])
+ wandb_logger.finish_run()
+ else:
+ dist.destroy_process_group()
+ torch.cuda.empty_cache()
+ return results
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default='yolo7.pt', help='initial weights path')
+ parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
+ parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
+ parser.add_argument('--hyp', type=str, default='data/hyp.scratch.p5.yaml', help='hyperparameters path')
+ parser.add_argument('--epochs', type=int, default=300)
+ parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+ parser.add_argument('--notest', action='store_true', help='only test final epoch')
+ parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
+ parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
+ parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
+ parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
+ parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
+ parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
+ parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
+ parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
+ parser.add_argument('--project', default='runs/train', help='save to project/name')
+ parser.add_argument('--entity', default=None, help='W&B entity')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--quad', action='store_true', help='quad dataloader')
+ parser.add_argument('--linear-lr', action='store_true', help='linear LR')
+ parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
+ parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
+ parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
+ parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
+ parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
+ opt = parser.parse_args()
+
+ # Set DDP variables
+ opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
+ opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
+ set_logging(opt.global_rank)
+ #if opt.global_rank in [-1, 0]:
+ # check_git_status()
+ # check_requirements()
+
+ # Resume
+ wandb_run = check_wandb_resume(opt)
+ if opt.resume and not wandb_run: # resume an interrupted run
+ ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
+ assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
+ apriori = opt.global_rank, opt.local_rank
+ with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
+ opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
+ opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate
+ logger.info('Resuming training from %s' % ckpt)
+ else:
+ # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
+ opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
+ assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
+ opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
+ opt.name = 'evolve' if opt.evolve else opt.name
+ opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
+
+ # DDP mode
+ opt.total_batch_size = opt.batch_size
+ device = select_device(opt.device, batch_size=opt.batch_size)
+ if opt.local_rank != -1:
+ assert torch.cuda.device_count() > opt.local_rank
+ torch.cuda.set_device(opt.local_rank)
+ device = torch.device('cuda', opt.local_rank)
+ dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
+ assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
+ opt.batch_size = opt.total_batch_size // opt.world_size
+
+ # Hyperparameters
+ with open(opt.hyp) as f:
+ hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
+
+ # Train
+ logger.info(opt)
+ if not opt.evolve:
+ tb_writer = None # init loggers
+ if opt.global_rank in [-1, 0]:
+ prefix = colorstr('tensorboard: ')
+ logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
+ tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
+ train(hyp, opt, device, tb_writer)
+
+ # Evolve hyperparameters (optional)
+ else:
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
+ meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
+ 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
+ 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
+ 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
+ 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
+ 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
+ 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
+ 'box': (1, 0.02, 0.2), # box loss gain
+ 'cls': (1, 0.2, 4.0), # cls loss gain
+ 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
+ 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
+ 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
+ 'iou_t': (0, 0.1, 0.7), # IoU training threshold
+ 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
+ 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
+ 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
+ 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
+ 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
+ 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
+ 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
+ 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
+ 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
+ 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
+ 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
+ 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
+ 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
+ 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
+ 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
+
+ assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
+ opt.notest, opt.nosave = True, True # only test/save final epoch
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
+ yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
+ if opt.bucket:
+ os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
+
+ for _ in range(300): # generations to evolve
+ if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
+ # Select parent(s)
+ parent = 'single' # parent selection method: 'single' or 'weighted'
+ x = np.loadtxt('evolve.txt', ndmin=2)
+ n = min(5, len(x)) # number of previous results to consider
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
+ w = fitness(x) - fitness(x).min() # weights
+ if parent == 'single' or len(x) == 1:
+ # x = x[random.randint(0, n - 1)] # random selection
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
+ elif parent == 'weighted':
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
+
+ # Mutate
+ mp, s = 0.8, 0.2 # mutation probability, sigma
+ npr = np.random
+ npr.seed(int(time.time()))
+ g = np.array([x[0] for x in meta.values()]) # gains 0-1
+ ng = len(meta)
+ v = np.ones(ng)
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
+ v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
+ hyp[k] = float(x[i + 7] * v[i]) # mutate
+
+ # Constrain to limits
+ for k, v in meta.items():
+ hyp[k] = max(hyp[k], v[1]) # lower limit
+ hyp[k] = min(hyp[k], v[2]) # upper limit
+ hyp[k] = round(hyp[k], 5) # significant digits
+
+ # Train mutation
+ results = train(hyp.copy(), opt, device)
+
+ # Write mutation results
+ print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
+
+ # Plot results
+ plot_evolution(yaml_file)
+ print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
+ f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
diff --git a/utils/__init__.py b/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..84952a8167bc2975913a6def6b4f027d566552a9
--- /dev/null
+++ b/utils/__init__.py
@@ -0,0 +1 @@
+# init
\ No newline at end of file
diff --git a/utils/activations.py b/utils/activations.py
new file mode 100644
index 0000000000000000000000000000000000000000..aa3ddf071d28daa3061b6d796cb60cd7a88f557c
--- /dev/null
+++ b/utils/activations.py
@@ -0,0 +1,72 @@
+# Activation functions
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
+class SiLU(nn.Module): # export-friendly version of nn.SiLU()
+ @staticmethod
+ def forward(x):
+ return x * torch.sigmoid(x)
+
+
+class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
+ @staticmethod
+ def forward(x):
+ # return x * F.hardsigmoid(x) # for torchscript and CoreML
+ return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
+
+
+class MemoryEfficientSwish(nn.Module):
+ class F(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, x):
+ ctx.save_for_backward(x)
+ return x * torch.sigmoid(x)
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ x = ctx.saved_tensors[0]
+ sx = torch.sigmoid(x)
+ return grad_output * (sx * (1 + x * (1 - sx)))
+
+ def forward(self, x):
+ return self.F.apply(x)
+
+
+# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
+class Mish(nn.Module):
+ @staticmethod
+ def forward(x):
+ return x * F.softplus(x).tanh()
+
+
+class MemoryEfficientMish(nn.Module):
+ class F(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, x):
+ ctx.save_for_backward(x)
+ return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ x = ctx.saved_tensors[0]
+ sx = torch.sigmoid(x)
+ fx = F.softplus(x).tanh()
+ return grad_output * (fx + x * sx * (1 - fx * fx))
+
+ def forward(self, x):
+ return self.F.apply(x)
+
+
+# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
+class FReLU(nn.Module):
+ def __init__(self, c1, k=3): # ch_in, kernel
+ super().__init__()
+ self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
+ self.bn = nn.BatchNorm2d(c1)
+
+ def forward(self, x):
+ return torch.max(x, self.bn(self.conv(x)))
diff --git a/utils/autoanchor.py b/utils/autoanchor.py
new file mode 100644
index 0000000000000000000000000000000000000000..bec9017711006fae4f34cf96e1a28ebbafd0c516
--- /dev/null
+++ b/utils/autoanchor.py
@@ -0,0 +1,160 @@
+# Auto-anchor utils
+
+import numpy as np
+import torch
+import yaml
+from scipy.cluster.vq import kmeans
+from tqdm import tqdm
+
+from utils.general import colorstr
+
+
+def check_anchor_order(m):
+ # Check anchor order against stride order for YOLO Detect() module m, and correct if necessary
+ a = m.anchor_grid.prod(-1).view(-1) # anchor area
+ da = a[-1] - a[0] # delta a
+ ds = m.stride[-1] - m.stride[0] # delta s
+ if da.sign() != ds.sign(): # same order
+ print('Reversing anchor order')
+ m.anchors[:] = m.anchors.flip(0)
+ m.anchor_grid[:] = m.anchor_grid.flip(0)
+
+
+def check_anchors(dataset, model, thr=4.0, imgsz=640):
+ # Check anchor fit to data, recompute if necessary
+ prefix = colorstr('autoanchor: ')
+ print(f'\n{prefix}Analyzing anchors... ', end='')
+ m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
+ shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
+ scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
+ wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
+
+ def metric(k): # compute metric
+ r = wh[:, None] / k[None]
+ x = torch.min(r, 1. / r).min(2)[0] # ratio metric
+ best = x.max(1)[0] # best_x
+ aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
+ bpr = (best > 1. / thr).float().mean() # best possible recall
+ return bpr, aat
+
+ anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
+ bpr, aat = metric(anchors)
+ print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
+ if bpr < 0.98: # threshold to recompute
+ print('. Attempting to improve anchors, please wait...')
+ na = m.anchor_grid.numel() // 2 # number of anchors
+ try:
+ anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
+ except Exception as e:
+ print(f'{prefix}ERROR: {e}')
+ new_bpr = metric(anchors)[0]
+ if new_bpr > bpr: # replace anchors
+ anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
+ m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
+ m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
+ check_anchor_order(m)
+ print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
+ else:
+ print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
+ print('') # newline
+
+
+def kmean_anchors(path='./data/coco.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
+ """ Creates kmeans-evolved anchors from training dataset
+
+ Arguments:
+ path: path to dataset *.yaml, or a loaded dataset
+ n: number of anchors
+ img_size: image size used for training
+ thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
+ gen: generations to evolve anchors using genetic algorithm
+ verbose: print all results
+
+ Return:
+ k: kmeans evolved anchors
+
+ Usage:
+ from utils.autoanchor import *; _ = kmean_anchors()
+ """
+ thr = 1. / thr
+ prefix = colorstr('autoanchor: ')
+
+ def metric(k, wh): # compute metrics
+ r = wh[:, None] / k[None]
+ x = torch.min(r, 1. / r).min(2)[0] # ratio metric
+ # x = wh_iou(wh, torch.tensor(k)) # iou metric
+ return x, x.max(1)[0] # x, best_x
+
+ def anchor_fitness(k): # mutation fitness
+ _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
+ return (best * (best > thr).float()).mean() # fitness
+
+ def print_results(k):
+ k = k[np.argsort(k.prod(1))] # sort small to large
+ x, best = metric(k, wh0)
+ bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
+ print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
+ print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
+ f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
+ for i, x in enumerate(k):
+ print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
+ return k
+
+ if isinstance(path, str): # *.yaml file
+ with open(path) as f:
+ data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
+ from utils.datasets import LoadImagesAndLabels
+ dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
+ else:
+ dataset = path # dataset
+
+ # Get label wh
+ shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
+ wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
+
+ # Filter
+ i = (wh0 < 3.0).any(1).sum()
+ if i:
+ print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
+ wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
+ # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
+
+ # Kmeans calculation
+ print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
+ s = wh.std(0) # sigmas for whitening
+ k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
+ assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
+ k *= s
+ wh = torch.tensor(wh, dtype=torch.float32) # filtered
+ wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
+ k = print_results(k)
+
+ # Plot
+ # k, d = [None] * 20, [None] * 20
+ # for i in tqdm(range(1, 21)):
+ # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
+ # ax = ax.ravel()
+ # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
+ # ax[0].hist(wh[wh[:, 0]<100, 0],400)
+ # ax[1].hist(wh[wh[:, 1]<100, 1],400)
+ # fig.savefig('wh.png', dpi=200)
+
+ # Evolve
+ npr = np.random
+ f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
+ pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
+ for _ in pbar:
+ v = np.ones(sh)
+ while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
+ v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
+ kg = (k.copy() * v).clip(min=2.0)
+ fg = anchor_fitness(kg)
+ if fg > f:
+ f, k = fg, kg.copy()
+ pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
+ if verbose:
+ print_results(k)
+
+ return print_results(k)
diff --git a/utils/aws/__init__.py b/utils/aws/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e9691f241edc06ad981b36ca27f7eff9e46686ed
--- /dev/null
+++ b/utils/aws/__init__.py
@@ -0,0 +1 @@
+#init
\ No newline at end of file
diff --git a/utils/aws/mime.sh b/utils/aws/mime.sh
new file mode 100644
index 0000000000000000000000000000000000000000..c319a83cfbdf09bea634c3bd9fca737c0b1dd505
--- /dev/null
+++ b/utils/aws/mime.sh
@@ -0,0 +1,26 @@
+# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
+# This script will run on every instance restart, not only on first start
+# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
+
+Content-Type: multipart/mixed; boundary="//"
+MIME-Version: 1.0
+
+--//
+Content-Type: text/cloud-config; charset="us-ascii"
+MIME-Version: 1.0
+Content-Transfer-Encoding: 7bit
+Content-Disposition: attachment; filename="cloud-config.txt"
+
+#cloud-config
+cloud_final_modules:
+- [scripts-user, always]
+
+--//
+Content-Type: text/x-shellscript; charset="us-ascii"
+MIME-Version: 1.0
+Content-Transfer-Encoding: 7bit
+Content-Disposition: attachment; filename="userdata.txt"
+
+#!/bin/bash
+# --- paste contents of userdata.sh here ---
+--//
diff --git a/utils/aws/resume.py b/utils/aws/resume.py
new file mode 100644
index 0000000000000000000000000000000000000000..338685b19c19ddb47aa2fde22a535a8efcf17802
--- /dev/null
+++ b/utils/aws/resume.py
@@ -0,0 +1,37 @@
+# Resume all interrupted trainings in yolor/ dir including DDP trainings
+# Usage: $ python utils/aws/resume.py
+
+import os
+import sys
+from pathlib import Path
+
+import torch
+import yaml
+
+sys.path.append('./') # to run '$ python *.py' files in subdirectories
+
+port = 0 # --master_port
+path = Path('').resolve()
+for last in path.rglob('*/**/last.pt'):
+ ckpt = torch.load(last)
+ if ckpt['optimizer'] is None:
+ continue
+
+ # Load opt.yaml
+ with open(last.parent.parent / 'opt.yaml') as f:
+ opt = yaml.load(f, Loader=yaml.SafeLoader)
+
+ # Get device count
+ d = opt['device'].split(',') # devices
+ nd = len(d) # number of devices
+ ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
+
+ if ddp: # multi-GPU
+ port += 1
+ cmd = f'python -m torch.distributed.launch --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
+ else: # single-GPU
+ cmd = f'python train.py --resume {last}'
+
+ cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
+ print(cmd)
+ os.system(cmd)
diff --git a/utils/aws/userdata.sh b/utils/aws/userdata.sh
new file mode 100644
index 0000000000000000000000000000000000000000..5762ae575f5b64df9b438180840fce0a2bafec42
--- /dev/null
+++ b/utils/aws/userdata.sh
@@ -0,0 +1,27 @@
+#!/bin/bash
+# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
+# This script will run only once on first instance start (for a re-start script see mime.sh)
+# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
+# Use >300 GB SSD
+
+cd home/ubuntu
+if [ ! -d yolor ]; then
+ echo "Running first-time script." # install dependencies, download COCO, pull Docker
+ git clone -b paper https://github.com/WongKinYiu/yolor && sudo chmod -R 777 yolor
+ cd yolor
+ bash data/scripts/get_coco.sh && echo "Data done." &
+ sudo docker pull nvcr.io/nvidia/pytorch:21.08-py3 && echo "Docker done." &
+ python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
+ wait && echo "All tasks done." # finish background tasks
+else
+ echo "Running re-start script." # resume interrupted runs
+ i=0
+ list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
+ while IFS= read -r id; do
+ ((i++))
+ echo "restarting container $i: $id"
+ sudo docker start $id
+ # sudo docker exec -it $id python train.py --resume # single-GPU
+ sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
+ done <<<"$list"
+fi
diff --git a/utils/datasets.py b/utils/datasets.py
new file mode 100644
index 0000000000000000000000000000000000000000..0cdc72ccb3de0d9e7408830369b22bdc2bfe0e5f
--- /dev/null
+++ b/utils/datasets.py
@@ -0,0 +1,1320 @@
+# Dataset utils and dataloaders
+
+import glob
+import logging
+import math
+import os
+import random
+import shutil
+import time
+from itertools import repeat
+from multiprocessing.pool import ThreadPool
+from pathlib import Path
+from threading import Thread
+
+import cv2
+import numpy as np
+import torch
+import torch.nn.functional as F
+from PIL import Image, ExifTags
+from torch.utils.data import Dataset
+from tqdm import tqdm
+
+import pickle
+from copy import deepcopy
+#from pycocotools import mask as maskUtils
+from torchvision.utils import save_image
+from torchvision.ops import roi_pool, roi_align, ps_roi_pool, ps_roi_align
+
+from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \
+ resample_segments, clean_str
+from utils.torch_utils import torch_distributed_zero_first
+
+# Parameters
+help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
+img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes
+vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
+logger = logging.getLogger(__name__)
+
+# Get orientation exif tag
+for orientation in ExifTags.TAGS.keys():
+ if ExifTags.TAGS[orientation] == 'Orientation':
+ break
+
+
+def get_hash(files):
+ # Returns a single hash value of a list of files
+ return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
+
+
+def exif_size(img):
+ # Returns exif-corrected PIL size
+ s = img.size # (width, height)
+ try:
+ rotation = dict(img._getexif().items())[orientation]
+ if rotation == 6: # rotation 270
+ s = (s[1], s[0])
+ elif rotation == 8: # rotation 90
+ s = (s[1], s[0])
+ except:
+ pass
+
+ return s
+
+
+def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
+ rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
+ # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
+ with torch_distributed_zero_first(rank):
+ dataset = LoadImagesAndLabels(path, imgsz, batch_size,
+ augment=augment, # augment images
+ hyp=hyp, # augmentation hyperparameters
+ rect=rect, # rectangular training
+ cache_images=cache,
+ single_cls=opt.single_cls,
+ stride=int(stride),
+ pad=pad,
+ image_weights=image_weights,
+ prefix=prefix)
+
+ batch_size = min(batch_size, len(dataset))
+ nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
+ sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
+ loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
+ # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
+ dataloader = loader(dataset,
+ batch_size=batch_size,
+ num_workers=nw,
+ sampler=sampler,
+ pin_memory=True,
+ collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
+ return dataloader, dataset
+
+
+class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
+ """ Dataloader that reuses workers
+
+ Uses same syntax as vanilla DataLoader
+ """
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
+ self.iterator = super().__iter__()
+
+ def __len__(self):
+ return len(self.batch_sampler.sampler)
+
+ def __iter__(self):
+ for i in range(len(self)):
+ yield next(self.iterator)
+
+
+class _RepeatSampler(object):
+ """ Sampler that repeats forever
+
+ Args:
+ sampler (Sampler)
+ """
+
+ def __init__(self, sampler):
+ self.sampler = sampler
+
+ def __iter__(self):
+ while True:
+ yield from iter(self.sampler)
+
+
+class LoadImages: # for inference
+ def __init__(self, path, img_size=640, stride=32):
+ p = str(Path(path).absolute()) # os-agnostic absolute path
+ if '*' in p:
+ files = sorted(glob.glob(p, recursive=True)) # glob
+ elif os.path.isdir(p):
+ files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
+ elif os.path.isfile(p):
+ files = [p] # files
+ else:
+ raise Exception(f'ERROR: {p} does not exist')
+
+ images = [x for x in files if x.split('.')[-1].lower() in img_formats]
+ videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
+ ni, nv = len(images), len(videos)
+
+ self.img_size = img_size
+ self.stride = stride
+ self.files = images + videos
+ self.nf = ni + nv # number of files
+ self.video_flag = [False] * ni + [True] * nv
+ self.mode = 'image'
+ if any(videos):
+ self.new_video(videos[0]) # new video
+ else:
+ self.cap = None
+ assert self.nf > 0, f'No images or videos found in {p}. ' \
+ f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
+
+ def __iter__(self):
+ self.count = 0
+ return self
+
+ def __next__(self):
+ if self.count == self.nf:
+ raise StopIteration
+ path = self.files[self.count]
+
+ if self.video_flag[self.count]:
+ # Read video
+ self.mode = 'video'
+ ret_val, img0 = self.cap.read()
+ if not ret_val:
+ self.count += 1
+ self.cap.release()
+ if self.count == self.nf: # last video
+ raise StopIteration
+ else:
+ path = self.files[self.count]
+ self.new_video(path)
+ ret_val, img0 = self.cap.read()
+
+ self.frame += 1
+ print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='')
+
+ else:
+ # Read image
+ self.count += 1
+ img0 = cv2.imread(path) # BGR
+ assert img0 is not None, 'Image Not Found ' + path
+ #print(f'image {self.count}/{self.nf} {path}: ', end='')
+
+ # Padded resize
+ img = letterbox(img0, self.img_size, stride=self.stride)[0]
+
+ # Convert
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
+ img = np.ascontiguousarray(img)
+
+ return path, img, img0, self.cap
+
+ def new_video(self, path):
+ self.frame = 0
+ self.cap = cv2.VideoCapture(path)
+ self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
+
+ def __len__(self):
+ return self.nf # number of files
+
+
+class LoadWebcam: # for inference
+ def __init__(self, pipe='0', img_size=640, stride=32):
+ self.img_size = img_size
+ self.stride = stride
+
+ if pipe.isnumeric():
+ pipe = eval(pipe) # local camera
+ # pipe = 'rtsp://192.168.1.64/1' # IP camera
+ # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
+ # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
+
+ self.pipe = pipe
+ self.cap = cv2.VideoCapture(pipe) # video capture object
+ self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
+
+ def __iter__(self):
+ self.count = -1
+ return self
+
+ def __next__(self):
+ self.count += 1
+ if cv2.waitKey(1) == ord('q'): # q to quit
+ self.cap.release()
+ cv2.destroyAllWindows()
+ raise StopIteration
+
+ # Read frame
+ if self.pipe == 0: # local camera
+ ret_val, img0 = self.cap.read()
+ img0 = cv2.flip(img0, 1) # flip left-right
+ else: # IP camera
+ n = 0
+ while True:
+ n += 1
+ self.cap.grab()
+ if n % 30 == 0: # skip frames
+ ret_val, img0 = self.cap.retrieve()
+ if ret_val:
+ break
+
+ # Print
+ assert ret_val, f'Camera Error {self.pipe}'
+ img_path = 'webcam.jpg'
+ print(f'webcam {self.count}: ', end='')
+
+ # Padded resize
+ img = letterbox(img0, self.img_size, stride=self.stride)[0]
+
+ # Convert
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
+ img = np.ascontiguousarray(img)
+
+ return img_path, img, img0, None
+
+ def __len__(self):
+ return 0
+
+
+class LoadStreams: # multiple IP or RTSP cameras
+ def __init__(self, sources='streams.txt', img_size=640, stride=32):
+ self.mode = 'stream'
+ self.img_size = img_size
+ self.stride = stride
+
+ if os.path.isfile(sources):
+ with open(sources, 'r') as f:
+ sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
+ else:
+ sources = [sources]
+
+ n = len(sources)
+ self.imgs = [None] * n
+ self.sources = [clean_str(x) for x in sources] # clean source names for later
+ for i, s in enumerate(sources):
+ # Start the thread to read frames from the video stream
+ print(f'{i + 1}/{n}: {s}... ', end='')
+ url = eval(s) if s.isnumeric() else s
+ if 'youtube.com/' in url or 'youtu.be/' in url: # if source is YouTube video
+ check_requirements(('pafy', 'youtube_dl'))
+ import pafy
+ url = pafy.new(url).getbest(preftype="mp4").url
+ cap = cv2.VideoCapture(url)
+ assert cap.isOpened(), f'Failed to open {s}'
+ w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+ h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+ self.fps = cap.get(cv2.CAP_PROP_FPS) % 100
+
+ _, self.imgs[i] = cap.read() # guarantee first frame
+ thread = Thread(target=self.update, args=([i, cap]), daemon=True)
+ print(f' success ({w}x{h} at {self.fps:.2f} FPS).')
+ thread.start()
+ print('') # newline
+
+ # check for common shapes
+ s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) # shapes
+ self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
+ if not self.rect:
+ print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
+
+ def update(self, index, cap):
+ # Read next stream frame in a daemon thread
+ n = 0
+ while cap.isOpened():
+ n += 1
+ # _, self.imgs[index] = cap.read()
+ cap.grab()
+ if n == 4: # read every 4th frame
+ success, im = cap.retrieve()
+ self.imgs[index] = im if success else self.imgs[index] * 0
+ n = 0
+ time.sleep(1 / self.fps) # wait time
+
+ def __iter__(self):
+ self.count = -1
+ return self
+
+ def __next__(self):
+ self.count += 1
+ img0 = self.imgs.copy()
+ if cv2.waitKey(1) == ord('q'): # q to quit
+ cv2.destroyAllWindows()
+ raise StopIteration
+
+ # Letterbox
+ img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0]
+
+ # Stack
+ img = np.stack(img, 0)
+
+ # Convert
+ img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
+ img = np.ascontiguousarray(img)
+
+ return self.sources, img, img0, None
+
+ def __len__(self):
+ return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
+
+
+def img2label_paths(img_paths):
+ # Define label paths as a function of image paths
+ sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
+ return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths]
+
+
+class LoadImagesAndLabels(Dataset): # for training/testing
+ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
+ cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
+ self.img_size = img_size
+ self.augment = augment
+ self.hyp = hyp
+ self.image_weights = image_weights
+ self.rect = False if image_weights else rect
+ self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
+ self.mosaic_border = [-img_size // 2, -img_size // 2]
+ self.stride = stride
+ self.path = path
+ #self.albumentations = Albumentations() if augment else None
+
+ try:
+ f = [] # image files
+ for p in path if isinstance(path, list) else [path]:
+ p = Path(p) # os-agnostic
+ if p.is_dir(): # dir
+ f += glob.glob(str(p / '**' / '*.*'), recursive=True)
+ # f = list(p.rglob('**/*.*')) # pathlib
+ elif p.is_file(): # file
+ with open(p, 'r') as t:
+ t = t.read().strip().splitlines()
+ parent = str(p.parent) + os.sep
+ f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
+ # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
+ else:
+ raise Exception(f'{prefix}{p} does not exist')
+ self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
+ # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib
+ assert self.img_files, f'{prefix}No images found'
+ except Exception as e:
+ raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')
+
+ # Check cache
+ self.label_files = img2label_paths(self.img_files) # labels
+ cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') # cached labels
+ if cache_path.is_file():
+ cache, exists = torch.load(cache_path), True # load
+ #if cache['hash'] != get_hash(self.label_files + self.img_files) or 'version' not in cache: # changed
+ # cache, exists = self.cache_labels(cache_path, prefix), False # re-cache
+ else:
+ cache, exists = self.cache_labels(cache_path, prefix), False # cache
+
+ # Display cache
+ nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total
+ if exists:
+ d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
+ tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
+ assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
+
+ # Read cache
+ cache.pop('hash') # remove hash
+ cache.pop('version') # remove version
+ labels, shapes, self.segments = zip(*cache.values())
+ self.labels = list(labels)
+ self.shapes = np.array(shapes, dtype=np.float64)
+ self.img_files = list(cache.keys()) # update
+ self.label_files = img2label_paths(cache.keys()) # update
+ if single_cls:
+ for x in self.labels:
+ x[:, 0] = 0
+
+ n = len(shapes) # number of images
+ bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
+ nb = bi[-1] + 1 # number of batches
+ self.batch = bi # batch index of image
+ self.n = n
+ self.indices = range(n)
+
+ # Rectangular Training
+ if self.rect:
+ # Sort by aspect ratio
+ s = self.shapes # wh
+ ar = s[:, 1] / s[:, 0] # aspect ratio
+ irect = ar.argsort()
+ self.img_files = [self.img_files[i] for i in irect]
+ self.label_files = [self.label_files[i] for i in irect]
+ self.labels = [self.labels[i] for i in irect]
+ self.shapes = s[irect] # wh
+ ar = ar[irect]
+
+ # Set training image shapes
+ shapes = [[1, 1]] * nb
+ for i in range(nb):
+ ari = ar[bi == i]
+ mini, maxi = ari.min(), ari.max()
+ if maxi < 1:
+ shapes[i] = [maxi, 1]
+ elif mini > 1:
+ shapes[i] = [1, 1 / mini]
+
+ self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
+
+ # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
+ self.imgs = [None] * n
+ if cache_images:
+ if cache_images == 'disk':
+ self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy')
+ self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files]
+ self.im_cache_dir.mkdir(parents=True, exist_ok=True)
+ gb = 0 # Gigabytes of cached images
+ self.img_hw0, self.img_hw = [None] * n, [None] * n
+ results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))
+ pbar = tqdm(enumerate(results), total=n)
+ for i, x in pbar:
+ if cache_images == 'disk':
+ if not self.img_npy[i].exists():
+ np.save(self.img_npy[i].as_posix(), x[0])
+ gb += self.img_npy[i].stat().st_size
+ else:
+ self.imgs[i], self.img_hw0[i], self.img_hw[i] = x
+ gb += self.imgs[i].nbytes
+ pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
+ pbar.close()
+
+ def cache_labels(self, path=Path('./labels.cache'), prefix=''):
+ # Cache dataset labels, check images and read shapes
+ x = {} # dict
+ nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
+ pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
+ for i, (im_file, lb_file) in enumerate(pbar):
+ try:
+ # verify images
+ im = Image.open(im_file)
+ im.verify() # PIL verify
+ shape = exif_size(im) # image size
+ segments = [] # instance segments
+ assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
+ assert im.format.lower() in img_formats, f'invalid image format {im.format}'
+
+ # verify labels
+ if os.path.isfile(lb_file):
+ nf += 1 # label found
+ with open(lb_file, 'r') as f:
+ l = [x.split() for x in f.read().strip().splitlines()]
+ if any([len(x) > 8 for x in l]): # is segment
+ classes = np.array([x[0] for x in l], dtype=np.float32)
+ segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
+ l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
+ l = np.array(l, dtype=np.float32)
+ if len(l):
+ assert l.shape[1] == 5, 'labels require 5 columns each'
+ assert (l >= 0).all(), 'negative labels'
+ assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
+ assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
+ else:
+ ne += 1 # label empty
+ l = np.zeros((0, 5), dtype=np.float32)
+ else:
+ nm += 1 # label missing
+ l = np.zeros((0, 5), dtype=np.float32)
+ x[im_file] = [l, shape, segments]
+ except Exception as e:
+ nc += 1
+ print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
+
+ pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels... " \
+ f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
+ pbar.close()
+
+ if nf == 0:
+ print(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
+
+ x['hash'] = get_hash(self.label_files + self.img_files)
+ x['results'] = nf, nm, ne, nc, i + 1
+ x['version'] = 0.1 # cache version
+ torch.save(x, path) # save for next time
+ logging.info(f'{prefix}New cache created: {path}')
+ return x
+
+ def __len__(self):
+ return len(self.img_files)
+
+ # def __iter__(self):
+ # self.count = -1
+ # print('ran dataset iter')
+ # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
+ # return self
+
+ def __getitem__(self, index):
+ index = self.indices[index] # linear, shuffled, or image_weights
+
+ hyp = self.hyp
+ mosaic = self.mosaic and random.random() < hyp['mosaic']
+ if mosaic:
+ # Load mosaic
+ if random.random() < 0.8:
+ img, labels = load_mosaic(self, index)
+ else:
+ img, labels = load_mosaic9(self, index)
+ shapes = None
+
+ # MixUp https://arxiv.org/pdf/1710.09412.pdf
+ if random.random() < hyp['mixup']:
+ if random.random() < 0.8:
+ img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1))
+ else:
+ img2, labels2 = load_mosaic9(self, random.randint(0, len(self.labels) - 1))
+ r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
+ img = (img * r + img2 * (1 - r)).astype(np.uint8)
+ labels = np.concatenate((labels, labels2), 0)
+
+ else:
+ # Load image
+ img, (h0, w0), (h, w) = load_image(self, index)
+
+ # Letterbox
+ shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
+ img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+ shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
+
+ labels = self.labels[index].copy()
+ if labels.size: # normalized xywh to pixel xyxy format
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
+
+ if self.augment:
+ # Augment imagespace
+ if not mosaic:
+ img, labels = random_perspective(img, labels,
+ degrees=hyp['degrees'],
+ translate=hyp['translate'],
+ scale=hyp['scale'],
+ shear=hyp['shear'],
+ perspective=hyp['perspective'])
+
+
+ #img, labels = self.albumentations(img, labels)
+
+ # Augment colorspace
+ augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
+
+ # Apply cutouts
+ # if random.random() < 0.9:
+ # labels = cutout(img, labels)
+
+ if random.random() < hyp['paste_in']:
+ sample_labels, sample_images, sample_masks = [], [], []
+ while len(sample_labels) < 30:
+ sample_labels_, sample_images_, sample_masks_ = load_samples(self, random.randint(0, len(self.labels) - 1))
+ sample_labels += sample_labels_
+ sample_images += sample_images_
+ sample_masks += sample_masks_
+ #print(len(sample_labels))
+ if len(sample_labels) == 0:
+ break
+ labels = pastein(img, labels, sample_labels, sample_images, sample_masks)
+
+ nL = len(labels) # number of labels
+ if nL:
+ labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
+ labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
+ labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
+
+ if self.augment:
+ # flip up-down
+ if random.random() < hyp['flipud']:
+ img = np.flipud(img)
+ if nL:
+ labels[:, 2] = 1 - labels[:, 2]
+
+ # flip left-right
+ if random.random() < hyp['fliplr']:
+ img = np.fliplr(img)
+ if nL:
+ labels[:, 1] = 1 - labels[:, 1]
+
+ labels_out = torch.zeros((nL, 6))
+ if nL:
+ labels_out[:, 1:] = torch.from_numpy(labels)
+
+ # Convert
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
+ img = np.ascontiguousarray(img)
+
+ return torch.from_numpy(img), labels_out, self.img_files[index], shapes
+
+ @staticmethod
+ def collate_fn(batch):
+ img, label, path, shapes = zip(*batch) # transposed
+ for i, l in enumerate(label):
+ l[:, 0] = i # add target image index for build_targets()
+ return torch.stack(img, 0), torch.cat(label, 0), path, shapes
+
+ @staticmethod
+ def collate_fn4(batch):
+ img, label, path, shapes = zip(*batch) # transposed
+ n = len(shapes) // 4
+ img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
+
+ ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
+ wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
+ s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale
+ for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
+ i *= 4
+ if random.random() < 0.5:
+ im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
+ 0].type(img[i].type())
+ l = label[i]
+ else:
+ im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
+ l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
+ img4.append(im)
+ label4.append(l)
+
+ for i, l in enumerate(label4):
+ l[:, 0] = i # add target image index for build_targets()
+
+ return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
+
+
+# Ancillary functions --------------------------------------------------------------------------------------------------
+def load_image(self, index):
+ # loads 1 image from dataset, returns img, original hw, resized hw
+ img = self.imgs[index]
+ if img is None: # not cached
+ path = self.img_files[index]
+ img = cv2.imread(path) # BGR
+ assert img is not None, 'Image Not Found ' + path
+ h0, w0 = img.shape[:2] # orig hw
+ r = self.img_size / max(h0, w0) # resize image to img_size
+ if r != 1: # always resize down, only resize up if training with augmentation
+ interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
+ img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
+ return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
+ else:
+ return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
+
+
+def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
+ r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
+ hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
+ dtype = img.dtype # uint8
+
+ x = np.arange(0, 256, dtype=np.int16)
+ lut_hue = ((x * r[0]) % 180).astype(dtype)
+ lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
+ lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
+
+ img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
+ cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
+
+
+def hist_equalize(img, clahe=True, bgr=False):
+ # Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
+ yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
+ if clahe:
+ c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
+ yuv[:, :, 0] = c.apply(yuv[:, :, 0])
+ else:
+ yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
+ return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
+
+
+def load_mosaic(self, index):
+ # loads images in a 4-mosaic
+
+ labels4, segments4 = [], []
+ s = self.img_size
+ yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
+ indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
+ for i, index in enumerate(indices):
+ # Load image
+ img, _, (h, w) = load_image(self, index)
+
+ # place img in img4
+ if i == 0: # top left
+ img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
+ x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
+ elif i == 1: # top right
+ x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+ x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+ elif i == 2: # bottom left
+ x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+ elif i == 3: # bottom right
+ x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+ x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+ img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
+ padw = x1a - x1b
+ padh = y1a - y1b
+
+ # Labels
+ labels, segments = self.labels[index].copy(), self.segments[index].copy()
+ if labels.size:
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
+ segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+ labels4.append(labels)
+ segments4.extend(segments)
+
+ # Concat/clip labels
+ labels4 = np.concatenate(labels4, 0)
+ for x in (labels4[:, 1:], *segments4):
+ np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
+ # img4, labels4 = replicate(img4, labels4) # replicate
+
+ # Augment
+ #img4, labels4, segments4 = remove_background(img4, labels4, segments4)
+ #sample_segments(img4, labels4, segments4, probability=self.hyp['copy_paste'])
+ img4, labels4, segments4 = copy_paste(img4, labels4, segments4, probability=self.hyp['copy_paste'])
+ img4, labels4 = random_perspective(img4, labels4, segments4,
+ degrees=self.hyp['degrees'],
+ translate=self.hyp['translate'],
+ scale=self.hyp['scale'],
+ shear=self.hyp['shear'],
+ perspective=self.hyp['perspective'],
+ border=self.mosaic_border) # border to remove
+
+ return img4, labels4
+
+
+def load_mosaic9(self, index):
+ # loads images in a 9-mosaic
+
+ labels9, segments9 = [], []
+ s = self.img_size
+ indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
+ for i, index in enumerate(indices):
+ # Load image
+ img, _, (h, w) = load_image(self, index)
+
+ # place img in img9
+ if i == 0: # center
+ img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
+ h0, w0 = h, w
+ c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
+ elif i == 1: # top
+ c = s, s - h, s + w, s
+ elif i == 2: # top right
+ c = s + wp, s - h, s + wp + w, s
+ elif i == 3: # right
+ c = s + w0, s, s + w0 + w, s + h
+ elif i == 4: # bottom right
+ c = s + w0, s + hp, s + w0 + w, s + hp + h
+ elif i == 5: # bottom
+ c = s + w0 - w, s + h0, s + w0, s + h0 + h
+ elif i == 6: # bottom left
+ c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
+ elif i == 7: # left
+ c = s - w, s + h0 - h, s, s + h0
+ elif i == 8: # top left
+ c = s - w, s + h0 - hp - h, s, s + h0 - hp
+
+ padx, pady = c[:2]
+ x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
+
+ # Labels
+ labels, segments = self.labels[index].copy(), self.segments[index].copy()
+ if labels.size:
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
+ segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
+ labels9.append(labels)
+ segments9.extend(segments)
+
+ # Image
+ img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
+ hp, wp = h, w # height, width previous
+
+ # Offset
+ yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y
+ img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
+
+ # Concat/clip labels
+ labels9 = np.concatenate(labels9, 0)
+ labels9[:, [1, 3]] -= xc
+ labels9[:, [2, 4]] -= yc
+ c = np.array([xc, yc]) # centers
+ segments9 = [x - c for x in segments9]
+
+ for x in (labels9[:, 1:], *segments9):
+ np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
+ # img9, labels9 = replicate(img9, labels9) # replicate
+
+ # Augment
+ #img9, labels9, segments9 = remove_background(img9, labels9, segments9)
+ img9, labels9, segments9 = copy_paste(img9, labels9, segments9, probability=self.hyp['copy_paste'])
+ img9, labels9 = random_perspective(img9, labels9, segments9,
+ degrees=self.hyp['degrees'],
+ translate=self.hyp['translate'],
+ scale=self.hyp['scale'],
+ shear=self.hyp['shear'],
+ perspective=self.hyp['perspective'],
+ border=self.mosaic_border) # border to remove
+
+ return img9, labels9
+
+
+def load_samples(self, index):
+ # loads images in a 4-mosaic
+
+ labels4, segments4 = [], []
+ s = self.img_size
+ yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
+ indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
+ for i, index in enumerate(indices):
+ # Load image
+ img, _, (h, w) = load_image(self, index)
+
+ # place img in img4
+ if i == 0: # top left
+ img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
+ x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
+ elif i == 1: # top right
+ x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+ x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+ elif i == 2: # bottom left
+ x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+ elif i == 3: # bottom right
+ x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+ x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+ img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
+ padw = x1a - x1b
+ padh = y1a - y1b
+
+ # Labels
+ labels, segments = self.labels[index].copy(), self.segments[index].copy()
+ if labels.size:
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
+ segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+ labels4.append(labels)
+ segments4.extend(segments)
+
+ # Concat/clip labels
+ labels4 = np.concatenate(labels4, 0)
+ for x in (labels4[:, 1:], *segments4):
+ np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
+ # img4, labels4 = replicate(img4, labels4) # replicate
+
+ # Augment
+ #img4, labels4, segments4 = remove_background(img4, labels4, segments4)
+ sample_labels, sample_images, sample_masks = sample_segments(img4, labels4, segments4, probability=0.5)
+
+ return sample_labels, sample_images, sample_masks
+
+
+def copy_paste(img, labels, segments, probability=0.5):
+ # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
+ n = len(segments)
+ if probability and n:
+ h, w, c = img.shape # height, width, channels
+ im_new = np.zeros(img.shape, np.uint8)
+ for j in random.sample(range(n), k=round(probability * n)):
+ l, s = labels[j], segments[j]
+ box = w - l[3], l[2], w - l[1], l[4]
+ ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
+ if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
+ labels = np.concatenate((labels, [[l[0], *box]]), 0)
+ segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
+ cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
+
+ result = cv2.bitwise_and(src1=img, src2=im_new)
+ result = cv2.flip(result, 1) # augment segments (flip left-right)
+ i = result > 0 # pixels to replace
+ # i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
+ img[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug
+
+ return img, labels, segments
+
+
+def remove_background(img, labels, segments):
+ # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
+ n = len(segments)
+ h, w, c = img.shape # height, width, channels
+ im_new = np.zeros(img.shape, np.uint8)
+ img_new = np.ones(img.shape, np.uint8) * 114
+ for j in range(n):
+ cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
+
+ result = cv2.bitwise_and(src1=img, src2=im_new)
+
+ i = result > 0 # pixels to replace
+ img_new[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug
+
+ return img_new, labels, segments
+
+
+def sample_segments(img, labels, segments, probability=0.5):
+ # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
+ n = len(segments)
+ sample_labels = []
+ sample_images = []
+ sample_masks = []
+ if probability and n:
+ h, w, c = img.shape # height, width, channels
+ for j in random.sample(range(n), k=round(probability * n)):
+ l, s = labels[j], segments[j]
+ box = l[1].astype(int).clip(0,w-1), l[2].astype(int).clip(0,h-1), l[3].astype(int).clip(0,w-1), l[4].astype(int).clip(0,h-1)
+
+ #print(box)
+ if (box[2] <= box[0]) or (box[3] <= box[1]):
+ continue
+
+ sample_labels.append(l[0])
+
+ mask = np.zeros(img.shape, np.uint8)
+
+ cv2.drawContours(mask, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
+ sample_masks.append(mask[box[1]:box[3],box[0]:box[2],:])
+
+ result = cv2.bitwise_and(src1=img, src2=mask)
+ i = result > 0 # pixels to replace
+ mask[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug
+ #print(box)
+ sample_images.append(mask[box[1]:box[3],box[0]:box[2],:])
+
+ return sample_labels, sample_images, sample_masks
+
+
+def replicate(img, labels):
+ # Replicate labels
+ h, w = img.shape[:2]
+ boxes = labels[:, 1:].astype(int)
+ x1, y1, x2, y2 = boxes.T
+ s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
+ for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
+ x1b, y1b, x2b, y2b = boxes[i]
+ bh, bw = y2b - y1b, x2b - x1b
+ yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
+ x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
+ img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
+ labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
+
+ return img, labels
+
+
+def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
+ # Resize and pad image while meeting stride-multiple constraints
+ shape = img.shape[:2] # current shape [height, width]
+ if isinstance(new_shape, int):
+ new_shape = (new_shape, new_shape)
+
+ # Scale ratio (new / old)
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+ if not scaleup: # only scale down, do not scale up (for better test mAP)
+ r = min(r, 1.0)
+
+ # Compute padding
+ ratio = r, r # width, height ratios
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
+ if auto: # minimum rectangle
+ dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
+ elif scaleFill: # stretch
+ dw, dh = 0.0, 0.0
+ new_unpad = (new_shape[1], new_shape[0])
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
+
+ dw /= 2 # divide padding into 2 sides
+ dh /= 2
+
+ if shape[::-1] != new_unpad: # resize
+ img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+ img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
+ return img, ratio, (dw, dh)
+
+
+def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
+ border=(0, 0)):
+ # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
+ # targets = [cls, xyxy]
+
+ height = img.shape[0] + border[0] * 2 # shape(h,w,c)
+ width = img.shape[1] + border[1] * 2
+
+ # Center
+ C = np.eye(3)
+ C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
+ C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
+
+ # Perspective
+ P = np.eye(3)
+ P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
+ P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
+
+ # Rotation and Scale
+ R = np.eye(3)
+ a = random.uniform(-degrees, degrees)
+ # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
+ s = random.uniform(1 - scale, 1.1 + scale)
+ # s = 2 ** random.uniform(-scale, scale)
+ R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
+
+ # Shear
+ S = np.eye(3)
+ S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
+ S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
+
+ # Translation
+ T = np.eye(3)
+ T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
+ T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
+
+ # Combined rotation matrix
+ M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
+ if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
+ if perspective:
+ img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
+ else: # affine
+ img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
+
+ # Visualize
+ # import matplotlib.pyplot as plt
+ # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
+ # ax[0].imshow(img[:, :, ::-1]) # base
+ # ax[1].imshow(img2[:, :, ::-1]) # warped
+
+ # Transform label coordinates
+ n = len(targets)
+ if n:
+ use_segments = any(x.any() for x in segments)
+ new = np.zeros((n, 4))
+ if use_segments: # warp segments
+ segments = resample_segments(segments) # upsample
+ for i, segment in enumerate(segments):
+ xy = np.ones((len(segment), 3))
+ xy[:, :2] = segment
+ xy = xy @ M.T # transform
+ xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
+
+ # clip
+ new[i] = segment2box(xy, width, height)
+
+ else: # warp boxes
+ xy = np.ones((n * 4, 3))
+ xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
+ xy = xy @ M.T # transform
+ xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
+
+ # create new boxes
+ x = xy[:, [0, 2, 4, 6]]
+ y = xy[:, [1, 3, 5, 7]]
+ new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
+
+ # clip
+ new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
+ new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
+
+ # filter candidates
+ i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
+ targets = targets[i]
+ targets[:, 1:5] = new[i]
+
+ return img, targets
+
+
+def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
+ # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
+ w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
+ w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
+ ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
+ return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
+
+
+def bbox_ioa(box1, box2):
+ # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
+ box2 = box2.transpose()
+
+ # Get the coordinates of bounding boxes
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
+
+ # Intersection area
+ inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
+ (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
+
+ # box2 area
+ box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
+
+ # Intersection over box2 area
+ return inter_area / box2_area
+
+
+def cutout(image, labels):
+ # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
+ h, w = image.shape[:2]
+
+ # create random masks
+ scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
+ for s in scales:
+ mask_h = random.randint(1, int(h * s))
+ mask_w = random.randint(1, int(w * s))
+
+ # box
+ xmin = max(0, random.randint(0, w) - mask_w // 2)
+ ymin = max(0, random.randint(0, h) - mask_h // 2)
+ xmax = min(w, xmin + mask_w)
+ ymax = min(h, ymin + mask_h)
+
+ # apply random color mask
+ image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
+
+ # return unobscured labels
+ if len(labels) and s > 0.03:
+ box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
+ ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
+ labels = labels[ioa < 0.60] # remove >60% obscured labels
+
+ return labels
+
+
+def pastein(image, labels, sample_labels, sample_images, sample_masks):
+ # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
+ h, w = image.shape[:2]
+
+ # create random masks
+ scales = [0.75] * 2 + [0.5] * 4 + [0.25] * 4 + [0.125] * 4 + [0.0625] * 6 # image size fraction
+ for s in scales:
+ if random.random() < 0.2:
+ continue
+ mask_h = random.randint(1, int(h * s))
+ mask_w = random.randint(1, int(w * s))
+
+ # box
+ xmin = max(0, random.randint(0, w) - mask_w // 2)
+ ymin = max(0, random.randint(0, h) - mask_h // 2)
+ xmax = min(w, xmin + mask_w)
+ ymax = min(h, ymin + mask_h)
+
+ box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
+ if len(labels):
+ ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
+ else:
+ ioa = np.zeros(1)
+
+ if (ioa < 0.30).all() and len(sample_labels) and (xmax > xmin+20) and (ymax > ymin+20): # allow 30% obscuration of existing labels
+ sel_ind = random.randint(0, len(sample_labels)-1)
+ #print(len(sample_labels))
+ #print(sel_ind)
+ #print((xmax-xmin, ymax-ymin))
+ #print(image[ymin:ymax, xmin:xmax].shape)
+ #print([[sample_labels[sel_ind], *box]])
+ #print(labels.shape)
+ hs, ws, cs = sample_images[sel_ind].shape
+ r_scale = min((ymax-ymin)/hs, (xmax-xmin)/ws)
+ r_w = int(ws*r_scale)
+ r_h = int(hs*r_scale)
+
+ if (r_w > 10) and (r_h > 10):
+ r_mask = cv2.resize(sample_masks[sel_ind], (r_w, r_h))
+ r_image = cv2.resize(sample_images[sel_ind], (r_w, r_h))
+ temp_crop = image[ymin:ymin+r_h, xmin:xmin+r_w]
+ m_ind = r_mask > 0
+ if m_ind.astype(np.int).sum() > 60:
+ temp_crop[m_ind] = r_image[m_ind]
+ #print(sample_labels[sel_ind])
+ #print(sample_images[sel_ind].shape)
+ #print(temp_crop.shape)
+ box = np.array([xmin, ymin, xmin+r_w, ymin+r_h], dtype=np.float32)
+ if len(labels):
+ labels = np.concatenate((labels, [[sample_labels[sel_ind], *box]]), 0)
+ else:
+ labels = np.array([[sample_labels[sel_ind], *box]])
+
+ image[ymin:ymin+r_h, xmin:xmin+r_w] = temp_crop
+
+ return labels
+
+class Albumentations:
+ # YOLOv5 Albumentations class (optional, only used if package is installed)
+ def __init__(self):
+ self.transform = None
+ import albumentations as A
+
+ self.transform = A.Compose([
+ A.CLAHE(p=0.01),
+ A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.01),
+ A.RandomGamma(gamma_limit=[80, 120], p=0.01),
+ A.Blur(p=0.01),
+ A.MedianBlur(p=0.01),
+ A.ToGray(p=0.01),
+ A.ImageCompression(quality_lower=75, p=0.01),],
+ bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels']))
+
+ #logging.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
+
+ def __call__(self, im, labels, p=1.0):
+ if self.transform and random.random() < p:
+ new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
+ im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
+ return im, labels
+
+
+def create_folder(path='./new'):
+ # Create folder
+ if os.path.exists(path):
+ shutil.rmtree(path) # delete output folder
+ os.makedirs(path) # make new output folder
+
+
+def flatten_recursive(path='../coco'):
+ # Flatten a recursive directory by bringing all files to top level
+ new_path = Path(path + '_flat')
+ create_folder(new_path)
+ for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
+ shutil.copyfile(file, new_path / Path(file).name)
+
+
+def extract_boxes(path='../coco/'): # from utils.datasets import *; extract_boxes('../coco128')
+ # Convert detection dataset into classification dataset, with one directory per class
+
+ path = Path(path) # images dir
+ shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
+ files = list(path.rglob('*.*'))
+ n = len(files) # number of files
+ for im_file in tqdm(files, total=n):
+ if im_file.suffix[1:] in img_formats:
+ # image
+ im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
+ h, w = im.shape[:2]
+
+ # labels
+ lb_file = Path(img2label_paths([str(im_file)])[0])
+ if Path(lb_file).exists():
+ with open(lb_file, 'r') as f:
+ lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
+
+ for j, x in enumerate(lb):
+ c = int(x[0]) # class
+ f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
+ if not f.parent.is_dir():
+ f.parent.mkdir(parents=True)
+
+ b = x[1:] * [w, h, w, h] # box
+ # b[2:] = b[2:].max() # rectangle to square
+ b[2:] = b[2:] * 1.2 + 3 # pad
+ b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
+
+ b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
+ b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
+ assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
+
+
+def autosplit(path='../coco', weights=(0.9, 0.1, 0.0), annotated_only=False):
+ """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
+ Usage: from utils.datasets import *; autosplit('../coco')
+ Arguments
+ path: Path to images directory
+ weights: Train, val, test weights (list)
+ annotated_only: Only use images with an annotated txt file
+ """
+ path = Path(path) # images dir
+ files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], []) # image files only
+ n = len(files) # number of files
+ indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
+
+ txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
+ [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
+
+ print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
+ for i, img in tqdm(zip(indices, files), total=n):
+ if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
+ with open(path / txt[i], 'a') as f:
+ f.write(str(img) + '\n') # add image to txt file
+
+
+def load_segmentations(self, index):
+ key = '/work/handsomejw66/coco17/' + self.img_files[index]
+ #print(key)
+ # /work/handsomejw66/coco17/
+ return self.segs[key]
diff --git a/utils/general.py b/utils/general.py
new file mode 100644
index 0000000000000000000000000000000000000000..b00dc27701303dc3d117f133f5e85207c715b0f5
--- /dev/null
+++ b/utils/general.py
@@ -0,0 +1,790 @@
+# YOLOR general utils
+
+import glob
+import logging
+import math
+import os
+import platform
+import random
+import re
+import subprocess
+import time
+from pathlib import Path
+
+import cv2
+import numpy as np
+import pandas as pd
+import torch
+import torchvision
+import yaml
+
+from utils.google_utils import gsutil_getsize
+from utils.metrics import fitness
+from utils.torch_utils import init_torch_seeds
+
+# Settings
+torch.set_printoptions(linewidth=320, precision=5, profile='long')
+np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
+pd.options.display.max_columns = 10
+cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
+os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
+
+
+def set_logging(rank=-1):
+ logging.basicConfig(
+ format="%(message)s",
+ level=logging.INFO if rank in [-1, 0] else logging.WARN)
+
+
+def init_seeds(seed=0):
+ # Initialize random number generator (RNG) seeds
+ random.seed(seed)
+ np.random.seed(seed)
+ init_torch_seeds(seed)
+
+
+def get_latest_run(search_dir='.'):
+ # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
+ last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
+ return max(last_list, key=os.path.getctime) if last_list else ''
+
+
+def isdocker():
+ # Is environment a Docker container
+ return Path('/workspace').exists() # or Path('/.dockerenv').exists()
+
+
+def emojis(str=''):
+ # Return platform-dependent emoji-safe version of string
+ return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
+
+
+def check_online():
+ # Check internet connectivity
+ import socket
+ try:
+ socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
+ return True
+ except OSError:
+ return False
+
+
+def check_git_status():
+ # Recommend 'git pull' if code is out of date
+ print(colorstr('github: '), end='')
+ try:
+ assert Path('.git').exists(), 'skipping check (not a git repository)'
+ assert not isdocker(), 'skipping check (Docker image)'
+ assert check_online(), 'skipping check (offline)'
+
+ cmd = 'git fetch && git config --get remote.origin.url'
+ url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
+ branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
+ n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
+ if n > 0:
+ s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
+ f"Use 'git pull' to update or 'git clone {url}' to download latest."
+ else:
+ s = f'up to date with {url} ✅'
+ print(emojis(s)) # emoji-safe
+ except Exception as e:
+ print(e)
+
+
+def check_requirements(requirements='requirements.txt', exclude=()):
+ # Check installed dependencies meet requirements (pass *.txt file or list of packages)
+ import pkg_resources as pkg
+ prefix = colorstr('red', 'bold', 'requirements:')
+ if isinstance(requirements, (str, Path)): # requirements.txt file
+ file = Path(requirements)
+ if not file.exists():
+ print(f"{prefix} {file.resolve()} not found, check failed.")
+ return
+ requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
+ else: # list or tuple of packages
+ requirements = [x for x in requirements if x not in exclude]
+
+ n = 0 # number of packages updates
+ for r in requirements:
+ try:
+ pkg.require(r)
+ except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
+ n += 1
+ print(f"{prefix} {e.req} not found and is required by YOLOR, attempting auto-update...")
+ print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode())
+
+ if n: # if packages updated
+ source = file.resolve() if 'file' in locals() else requirements
+ s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
+ f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
+ print(emojis(s)) # emoji-safe
+
+
+def check_img_size(img_size, s=32):
+ # Verify img_size is a multiple of stride s
+ new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
+ if new_size != img_size:
+ print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
+ return new_size
+
+
+def check_imshow():
+ # Check if environment supports image displays
+ try:
+ assert not isdocker(), 'cv2.imshow() is disabled in Docker environments'
+ cv2.imshow('test', np.zeros((1, 1, 3)))
+ cv2.waitKey(1)
+ cv2.destroyAllWindows()
+ cv2.waitKey(1)
+ return True
+ except Exception as e:
+ print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
+ return False
+
+
+def check_file(file):
+ # Search for file if not found
+ if Path(file).is_file() or file == '':
+ return file
+ else:
+ files = glob.glob('./**/' + file, recursive=True) # find file
+ assert len(files), f'File Not Found: {file}' # assert file was found
+ assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
+ return files[0] # return file
+
+
+def check_dataset(dict):
+ # Download dataset if not found locally
+ val, s = dict.get('val'), dict.get('download')
+ if val and len(val):
+ val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
+ if not all(x.exists() for x in val):
+ print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
+ if s and len(s): # download script
+ print('Downloading %s ...' % s)
+ if s.startswith('http') and s.endswith('.zip'): # URL
+ f = Path(s).name # filename
+ torch.hub.download_url_to_file(s, f)
+ r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
+ else: # bash script
+ r = os.system(s)
+ print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
+ else:
+ raise Exception('Dataset not found.')
+
+
+def make_divisible(x, divisor):
+ # Returns x evenly divisible by divisor
+ return math.ceil(x / divisor) * divisor
+
+
+def clean_str(s):
+ # Cleans a string by replacing special characters with underscore _
+ return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
+
+
+def one_cycle(y1=0.0, y2=1.0, steps=100):
+ # lambda function for sinusoidal ramp from y1 to y2
+ return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
+
+
+def colorstr(*input):
+ # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
+ *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
+ colors = {'black': '\033[30m', # basic colors
+ 'red': '\033[31m',
+ 'green': '\033[32m',
+ 'yellow': '\033[33m',
+ 'blue': '\033[34m',
+ 'magenta': '\033[35m',
+ 'cyan': '\033[36m',
+ 'white': '\033[37m',
+ 'bright_black': '\033[90m', # bright colors
+ 'bright_red': '\033[91m',
+ 'bright_green': '\033[92m',
+ 'bright_yellow': '\033[93m',
+ 'bright_blue': '\033[94m',
+ 'bright_magenta': '\033[95m',
+ 'bright_cyan': '\033[96m',
+ 'bright_white': '\033[97m',
+ 'end': '\033[0m', # misc
+ 'bold': '\033[1m',
+ 'underline': '\033[4m'}
+ return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
+
+
+def labels_to_class_weights(labels, nc=80):
+ # Get class weights (inverse frequency) from training labels
+ if labels[0] is None: # no labels loaded
+ return torch.Tensor()
+
+ labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
+ classes = labels[:, 0].astype(np.int) # labels = [class xywh]
+ weights = np.bincount(classes, minlength=nc) # occurrences per class
+
+ # Prepend gridpoint count (for uCE training)
+ # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
+ # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
+
+ weights[weights == 0] = 1 # replace empty bins with 1
+ weights = 1 / weights # number of targets per class
+ weights /= weights.sum() # normalize
+ return torch.from_numpy(weights)
+
+
+def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
+ # Produces image weights based on class_weights and image contents
+ class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
+ image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
+ # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
+ return image_weights
+
+
+def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
+ # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
+ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
+ # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
+ # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
+ # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
+ x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
+ 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+ 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
+ return x
+
+
+def xyxy2xywh(x):
+ # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
+ y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
+ y[:, 2] = x[:, 2] - x[:, 0] # width
+ y[:, 3] = x[:, 3] - x[:, 1] # height
+ return y
+
+
+def xywh2xyxy(x):
+ # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
+ y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
+ y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
+ y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
+ return y
+
+
+def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
+ # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
+ y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
+ y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
+ y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
+ return y
+
+
+def xyn2xy(x, w=640, h=640, padw=0, padh=0):
+ # Convert normalized segments into pixel segments, shape (n,2)
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = w * x[:, 0] + padw # top left x
+ y[:, 1] = h * x[:, 1] + padh # top left y
+ return y
+
+
+def segment2box(segment, width=640, height=640):
+ # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
+ x, y = segment.T # segment xy
+ inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
+ x, y, = x[inside], y[inside]
+ return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
+
+
+def segments2boxes(segments):
+ # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
+ boxes = []
+ for s in segments:
+ x, y = s.T # segment xy
+ boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
+ return xyxy2xywh(np.array(boxes)) # cls, xywh
+
+
+def resample_segments(segments, n=1000):
+ # Up-sample an (n,2) segment
+ for i, s in enumerate(segments):
+ x = np.linspace(0, len(s) - 1, n)
+ xp = np.arange(len(s))
+ segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
+ return segments
+
+
+def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
+ # Rescale coords (xyxy) from img1_shape to img0_shape
+ if ratio_pad is None: # calculate from img0_shape
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
+ else:
+ gain = ratio_pad[0][0]
+ pad = ratio_pad[1]
+
+ coords[:, [0, 2]] -= pad[0] # x padding
+ coords[:, [1, 3]] -= pad[1] # y padding
+ coords[:, :4] /= gain
+ clip_coords(coords, img0_shape)
+ return coords
+
+
+def clip_coords(boxes, img_shape):
+ # Clip bounding xyxy bounding boxes to image shape (height, width)
+ boxes[:, 0].clamp_(0, img_shape[1]) # x1
+ boxes[:, 1].clamp_(0, img_shape[0]) # y1
+ boxes[:, 2].clamp_(0, img_shape[1]) # x2
+ boxes[:, 3].clamp_(0, img_shape[0]) # y2
+
+
+def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
+ # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
+ box2 = box2.T
+
+ # Get the coordinates of bounding boxes
+ if x1y1x2y2: # x1, y1, x2, y2 = box1
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
+ else: # transform from xywh to xyxy
+ b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
+ b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
+ b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
+ b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
+
+ # Intersection area
+ inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
+ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
+
+ # Union Area
+ w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
+ w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
+ union = w1 * h1 + w2 * h2 - inter + eps
+
+ iou = inter / union
+
+ if GIoU or DIoU or CIoU:
+ cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
+ ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
+ if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
+ c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
+ rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
+ (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
+ if DIoU:
+ return iou - rho2 / c2 # DIoU
+ elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
+ v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
+ with torch.no_grad():
+ alpha = v / (v - iou + (1 + eps))
+ return iou - (rho2 / c2 + v * alpha) # CIoU
+ else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
+ c_area = cw * ch + eps # convex area
+ return iou - (c_area - union) / c_area # GIoU
+ else:
+ return iou # IoU
+
+
+
+
+def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=2, eps=1e-9):
+ # Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4
+ box2 = box2.T
+
+ # Get the coordinates of bounding boxes
+ if x1y1x2y2: # x1, y1, x2, y2 = box1
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
+ else: # transform from xywh to xyxy
+ b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
+ b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
+ b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
+ b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
+
+ # Intersection area
+ inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
+ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
+
+ # Union Area
+ w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
+ w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
+ union = w1 * h1 + w2 * h2 - inter + eps
+
+ # change iou into pow(iou+eps)
+ # iou = inter / union
+ iou = torch.pow(inter/union + eps, alpha)
+ # beta = 2 * alpha
+ if GIoU or DIoU or CIoU:
+ cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
+ ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
+ if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
+ c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal
+ rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
+ rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
+ rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha # center distance
+ if DIoU:
+ return iou - rho2 / c2 # DIoU
+ elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
+ v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
+ with torch.no_grad():
+ alpha_ciou = v / ((1 + eps) - inter / union + v)
+ # return iou - (rho2 / c2 + v * alpha_ciou) # CIoU
+ return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU
+ else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
+ # c_area = cw * ch + eps # convex area
+ # return iou - (c_area - union) / c_area # GIoU
+ c_area = torch.max(cw * ch + eps, union) # convex area
+ return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU
+ else:
+ return iou # torch.log(iou+eps) or iou
+
+
+def box_iou(box1, box2):
+ # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
+ """
+ Return intersection-over-union (Jaccard index) of boxes.
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+ Arguments:
+ box1 (Tensor[N, 4])
+ box2 (Tensor[M, 4])
+ Returns:
+ iou (Tensor[N, M]): the NxM matrix containing the pairwise
+ IoU values for every element in boxes1 and boxes2
+ """
+
+ def box_area(box):
+ # box = 4xn
+ return (box[2] - box[0]) * (box[3] - box[1])
+
+ area1 = box_area(box1.T)
+ area2 = box_area(box2.T)
+
+ # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
+ return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
+
+
+def wh_iou(wh1, wh2):
+ # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
+ wh1 = wh1[:, None] # [N,1,2]
+ wh2 = wh2[None] # [1,M,2]
+ inter = torch.min(wh1, wh2).prod(2) # [N,M]
+ return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
+
+
+def box_giou(box1, box2):
+ """
+ Return generalized intersection-over-union (Jaccard index) between two sets of boxes.
+ Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
+ ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
+ Args:
+ boxes1 (Tensor[N, 4]): first set of boxes
+ boxes2 (Tensor[M, 4]): second set of boxes
+ Returns:
+ Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values
+ for every element in boxes1 and boxes2
+ """
+
+ def box_area(box):
+ # box = 4xn
+ return (box[2] - box[0]) * (box[3] - box[1])
+
+ area1 = box_area(box1.T)
+ area2 = box_area(box2.T)
+
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
+ union = (area1[:, None] + area2 - inter)
+
+ iou = inter / union
+
+ lti = torch.min(box1[:, None, :2], box2[:, :2])
+ rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
+
+ whi = (rbi - lti).clamp(min=0) # [N,M,2]
+ areai = whi[:, :, 0] * whi[:, :, 1]
+
+ return iou - (areai - union) / areai
+
+
+def box_ciou(box1, box2, eps: float = 1e-7):
+ """
+ Return complete intersection-over-union (Jaccard index) between two sets of boxes.
+ Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
+ ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
+ Args:
+ boxes1 (Tensor[N, 4]): first set of boxes
+ boxes2 (Tensor[M, 4]): second set of boxes
+ eps (float, optional): small number to prevent division by zero. Default: 1e-7
+ Returns:
+ Tensor[N, M]: the NxM matrix containing the pairwise complete IoU values
+ for every element in boxes1 and boxes2
+ """
+
+ def box_area(box):
+ # box = 4xn
+ return (box[2] - box[0]) * (box[3] - box[1])
+
+ area1 = box_area(box1.T)
+ area2 = box_area(box2.T)
+
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
+ union = (area1[:, None] + area2 - inter)
+
+ iou = inter / union
+
+ lti = torch.min(box1[:, None, :2], box2[:, :2])
+ rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
+
+ whi = (rbi - lti).clamp(min=0) # [N,M,2]
+ diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
+
+ # centers of boxes
+ x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
+ y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
+ x_g = (box2[:, 0] + box2[:, 2]) / 2
+ y_g = (box2[:, 1] + box2[:, 3]) / 2
+ # The distance between boxes' centers squared.
+ centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
+
+ w_pred = box1[:, None, 2] - box1[:, None, 0]
+ h_pred = box1[:, None, 3] - box1[:, None, 1]
+
+ w_gt = box2[:, 2] - box2[:, 0]
+ h_gt = box2[:, 3] - box2[:, 1]
+
+ v = (4 / (torch.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2)
+ with torch.no_grad():
+ alpha = v / (1 - iou + v + eps)
+ return iou - (centers_distance_squared / diagonal_distance_squared) - alpha * v
+
+
+def box_diou(box1, box2, eps: float = 1e-7):
+ """
+ Return distance intersection-over-union (Jaccard index) between two sets of boxes.
+ Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
+ ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
+ Args:
+ boxes1 (Tensor[N, 4]): first set of boxes
+ boxes2 (Tensor[M, 4]): second set of boxes
+ eps (float, optional): small number to prevent division by zero. Default: 1e-7
+ Returns:
+ Tensor[N, M]: the NxM matrix containing the pairwise distance IoU values
+ for every element in boxes1 and boxes2
+ """
+
+ def box_area(box):
+ # box = 4xn
+ return (box[2] - box[0]) * (box[3] - box[1])
+
+ area1 = box_area(box1.T)
+ area2 = box_area(box2.T)
+
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
+ union = (area1[:, None] + area2 - inter)
+
+ iou = inter / union
+
+ lti = torch.min(box1[:, None, :2], box2[:, :2])
+ rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
+
+ whi = (rbi - lti).clamp(min=0) # [N,M,2]
+ diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
+
+ # centers of boxes
+ x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
+ y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
+ x_g = (box2[:, 0] + box2[:, 2]) / 2
+ y_g = (box2[:, 1] + box2[:, 3]) / 2
+ # The distance between boxes' centers squared.
+ centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
+
+ # The distance IoU is the IoU penalized by a normalized
+ # distance between boxes' centers squared.
+ return iou - (centers_distance_squared / diagonal_distance_squared)
+
+
+def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
+ labels=()):
+ """Runs Non-Maximum Suppression (NMS) on inference results
+
+ Returns:
+ list of detections, on (n,6) tensor per image [xyxy, conf, cls]
+ """
+
+ nc = prediction.shape[2] - 5 # number of classes
+ xc = prediction[..., 4] > conf_thres # candidates
+
+ # Settings
+ min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
+ max_det = 300 # maximum number of detections per image
+ max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
+ time_limit = 10.0 # seconds to quit after
+ redundant = True # require redundant detections
+ multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
+ merge = False # use merge-NMS
+
+ t = time.time()
+ output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
+ for xi, x in enumerate(prediction): # image index, image inference
+ # Apply constraints
+ # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
+ x = x[xc[xi]] # confidence
+
+ # Cat apriori labels if autolabelling
+ if labels and len(labels[xi]):
+ l = labels[xi]
+ v = torch.zeros((len(l), nc + 5), device=x.device)
+ v[:, :4] = l[:, 1:5] # box
+ v[:, 4] = 1.0 # conf
+ v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
+ x = torch.cat((x, v), 0)
+
+ # If none remain process next image
+ if not x.shape[0]:
+ continue
+
+ # Compute conf
+ x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
+
+ # Box (center x, center y, width, height) to (x1, y1, x2, y2)
+ box = xywh2xyxy(x[:, :4])
+
+ # Detections matrix nx6 (xyxy, conf, cls)
+ if multi_label:
+ i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
+ x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
+ else: # best class only
+ conf, j = x[:, 5:].max(1, keepdim=True)
+ x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
+
+ # Filter by class
+ if classes is not None:
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
+
+ # Apply finite constraint
+ # if not torch.isfinite(x).all():
+ # x = x[torch.isfinite(x).all(1)]
+
+ # Check shape
+ n = x.shape[0] # number of boxes
+ if not n: # no boxes
+ continue
+ elif n > max_nms: # excess boxes
+ x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
+
+ # Batched NMS
+ c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
+ boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
+ i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
+ if i.shape[0] > max_det: # limit detections
+ i = i[:max_det]
+ if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
+ # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
+ iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
+ weights = iou * scores[None] # box weights
+ x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
+ if redundant:
+ i = i[iou.sum(1) > 1] # require redundancy
+
+ output[xi] = x[i]
+ if (time.time() - t) > time_limit:
+ print(f'WARNING: NMS time limit {time_limit}s exceeded')
+ break # time limit exceeded
+
+ return output
+
+
+def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
+ # Strip optimizer from 'f' to finalize training, optionally save as 's'
+ x = torch.load(f, map_location=torch.device('cpu'))
+ if x.get('ema'):
+ x['model'] = x['ema'] # replace model with ema
+ for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
+ x[k] = None
+ x['epoch'] = -1
+ x['model'].half() # to FP16
+ for p in x['model'].parameters():
+ p.requires_grad = False
+ torch.save(x, s or f)
+ mb = os.path.getsize(s or f) / 1E6 # filesize
+ print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
+
+
+def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
+ # Print mutation results to evolve.txt (for use with train.py --evolve)
+ a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
+ b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
+ c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
+ print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
+
+ if bucket:
+ url = 'gs://%s/evolve.txt' % bucket
+ if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
+ os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
+
+ with open('evolve.txt', 'a') as f: # append result
+ f.write(c + b + '\n')
+ x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
+ x = x[np.argsort(-fitness(x))] # sort
+ np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
+
+ # Save yaml
+ for i, k in enumerate(hyp.keys()):
+ hyp[k] = float(x[0, i + 7])
+ with open(yaml_file, 'w') as f:
+ results = tuple(x[0, :7])
+ c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
+ f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
+ yaml.dump(hyp, f, sort_keys=False)
+
+ if bucket:
+ os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
+
+
+def apply_classifier(x, model, img, im0):
+ # applies a second stage classifier to yolo outputs
+ im0 = [im0] if isinstance(im0, np.ndarray) else im0
+ for i, d in enumerate(x): # per image
+ if d is not None and len(d):
+ d = d.clone()
+
+ # Reshape and pad cutouts
+ b = xyxy2xywh(d[:, :4]) # boxes
+ b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
+ b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
+ d[:, :4] = xywh2xyxy(b).long()
+
+ # Rescale boxes from img_size to im0 size
+ scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
+
+ # Classes
+ pred_cls1 = d[:, 5].long()
+ ims = []
+ for j, a in enumerate(d): # per item
+ cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
+ im = cv2.resize(cutout, (224, 224)) # BGR
+ # cv2.imwrite('test%i.jpg' % j, cutout)
+
+ im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
+ im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
+ im /= 255.0 # 0 - 255 to 0.0 - 1.0
+ ims.append(im)
+
+ pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
+ x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
+
+ return x
+
+
+def increment_path(path, exist_ok=True, sep=''):
+ # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
+ path = Path(path) # os-agnostic
+ if (path.exists() and exist_ok) or (not path.exists()):
+ return str(path)
+ else:
+ dirs = glob.glob(f"{path}{sep}*") # similar paths
+ matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
+ i = [int(m.groups()[0]) for m in matches if m] # indices
+ n = max(i) + 1 if i else 2 # increment number
+ return f"{path}{sep}{n}" # update path
diff --git a/utils/google_app_engine/Dockerfile b/utils/google_app_engine/Dockerfile
new file mode 100644
index 0000000000000000000000000000000000000000..0155618f475104e9858b81470339558156c94e13
--- /dev/null
+++ b/utils/google_app_engine/Dockerfile
@@ -0,0 +1,25 @@
+FROM gcr.io/google-appengine/python
+
+# Create a virtualenv for dependencies. This isolates these packages from
+# system-level packages.
+# Use -p python3 or -p python3.7 to select python version. Default is version 2.
+RUN virtualenv /env -p python3
+
+# Setting these environment variables are the same as running
+# source /env/bin/activate.
+ENV VIRTUAL_ENV /env
+ENV PATH /env/bin:$PATH
+
+RUN apt-get update && apt-get install -y python-opencv
+
+# Copy the application's requirements.txt and run pip to install all
+# dependencies into the virtualenv.
+ADD requirements.txt /app/requirements.txt
+RUN pip install -r /app/requirements.txt
+
+# Add the application source code.
+ADD . /app
+
+# Run a WSGI server to serve the application. gunicorn must be declared as
+# a dependency in requirements.txt.
+CMD gunicorn -b :$PORT main:app
diff --git a/utils/google_app_engine/additional_requirements.txt b/utils/google_app_engine/additional_requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5fcc30524a59ca2d3356b07725df7e2b64f81422
--- /dev/null
+++ b/utils/google_app_engine/additional_requirements.txt
@@ -0,0 +1,4 @@
+# add these requirements in your app on top of the existing ones
+pip==18.1
+Flask==1.0.2
+gunicorn==19.9.0
diff --git a/utils/google_app_engine/app.yaml b/utils/google_app_engine/app.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..69b8f68b36a23eaa668699eb80b85ecdb17f9626
--- /dev/null
+++ b/utils/google_app_engine/app.yaml
@@ -0,0 +1,14 @@
+runtime: custom
+env: flex
+
+service: yolorapp
+
+liveness_check:
+ initial_delay_sec: 600
+
+manual_scaling:
+ instances: 1
+resources:
+ cpu: 1
+ memory_gb: 4
+ disk_size_gb: 20
\ No newline at end of file
diff --git a/utils/google_utils.py b/utils/google_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..c2e7293de826d81fa05e01022dabdfbf74fa995e
--- /dev/null
+++ b/utils/google_utils.py
@@ -0,0 +1,122 @@
+# Google utils: https://cloud.google.com/storage/docs/reference/libraries
+
+import os
+import platform
+import subprocess
+import time
+from pathlib import Path
+
+import requests
+import torch
+
+
+def gsutil_getsize(url=''):
+ # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
+ s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
+ return eval(s.split(' ')[0]) if len(s) else 0 # bytes
+
+
+def attempt_download(file, repo='WongKinYiu/yolov6'):
+ # Attempt file download if does not exist
+ file = Path(str(file).strip().replace("'", '').lower())
+
+ if not file.exists():
+ try:
+ response = requests.get(f'https://api.github.com/repos/{repo}/releases/weights').json() # github api
+ assets = [x['name'] for x in response['assets']] # release assets
+ tag = response['tag_name'] # i.e. 'v1.0'
+ except: # fallback plan
+ assets = ['yolov6.pt']
+ tag = subprocess.check_output('git tag', shell=True).decode().split()[-1]
+
+ name = file.name
+ if name in assets:
+ msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
+ redundant = False # second download option
+ try: # GitHub
+ url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
+ print(f'Downloading {url} to {file}...')
+ torch.hub.download_url_to_file(url, file)
+ assert file.exists() and file.stat().st_size > 1E6 # check
+ except Exception as e: # GCP
+ print(f'Download error: {e}')
+ assert redundant, 'No secondary mirror'
+ url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
+ print(f'Downloading {url} to {file}...')
+ os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
+ finally:
+ if not file.exists() or file.stat().st_size < 1E6: # check
+ file.unlink(missing_ok=True) # remove partial downloads
+ print(f'ERROR: Download failure: {msg}')
+ print('')
+ return
+
+
+def gdrive_download(id='', file='tmp.zip'):
+ # Downloads a file from Google Drive. from yolov6.utils.google_utils import *; gdrive_download()
+ t = time.time()
+ file = Path(file)
+ cookie = Path('cookie') # gdrive cookie
+ print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
+ file.unlink(missing_ok=True) # remove existing file
+ cookie.unlink(missing_ok=True) # remove existing cookie
+
+ # Attempt file download
+ out = "NUL" if platform.system() == "Windows" else "/dev/null"
+ os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
+ if os.path.exists('cookie'): # large file
+ s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
+ else: # small file
+ s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
+ r = os.system(s) # execute, capture return
+ cookie.unlink(missing_ok=True) # remove existing cookie
+
+ # Error check
+ if r != 0:
+ file.unlink(missing_ok=True) # remove partial
+ print('Download error ') # raise Exception('Download error')
+ return r
+
+ # Unzip if archive
+ if file.suffix == '.zip':
+ print('unzipping... ', end='')
+ os.system(f'unzip -q {file}') # unzip
+ file.unlink() # remove zip to free space
+
+ print(f'Done ({time.time() - t:.1f}s)')
+ return r
+
+
+def get_token(cookie="./cookie"):
+ with open(cookie) as f:
+ for line in f:
+ if "download" in line:
+ return line.split()[-1]
+ return ""
+
+# def upload_blob(bucket_name, source_file_name, destination_blob_name):
+# # Uploads a file to a bucket
+# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
+#
+# storage_client = storage.Client()
+# bucket = storage_client.get_bucket(bucket_name)
+# blob = bucket.blob(destination_blob_name)
+#
+# blob.upload_from_filename(source_file_name)
+#
+# print('File {} uploaded to {}.'.format(
+# source_file_name,
+# destination_blob_name))
+#
+#
+# def download_blob(bucket_name, source_blob_name, destination_file_name):
+# # Uploads a blob from a bucket
+# storage_client = storage.Client()
+# bucket = storage_client.get_bucket(bucket_name)
+# blob = bucket.blob(source_blob_name)
+#
+# blob.download_to_filename(destination_file_name)
+#
+# print('Blob {} downloaded to {}.'.format(
+# source_blob_name,
+# destination_file_name))
diff --git a/utils/loss.py b/utils/loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..31386328ec1564bb13cab9f5de1a2fdabdf922f7
--- /dev/null
+++ b/utils/loss.py
@@ -0,0 +1,1157 @@
+# Loss functions
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from utils.general import bbox_iou, bbox_alpha_iou, box_iou, box_giou, box_diou, box_ciou, xywh2xyxy
+from utils.torch_utils import is_parallel
+
+
+def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
+ # return positive, negative label smoothing BCE targets
+ return 1.0 - 0.5 * eps, 0.5 * eps
+
+
+class BCEBlurWithLogitsLoss(nn.Module):
+ # BCEwithLogitLoss() with reduced missing label effects.
+ def __init__(self, alpha=0.05):
+ super(BCEBlurWithLogitsLoss, self).__init__()
+ self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
+ self.alpha = alpha
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+ pred = torch.sigmoid(pred) # prob from logits
+ dx = pred - true # reduce only missing label effects
+ # dx = (pred - true).abs() # reduce missing label and false label effects
+ alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
+ loss *= alpha_factor
+ return loss.mean()
+
+
+class SigmoidBin(nn.Module):
+ stride = None # strides computed during build
+ export = False # onnx export
+
+ def __init__(self, bin_count=10, min=0.0, max=1.0, reg_scale = 2.0, use_loss_regression=True, use_fw_regression=True, BCE_weight=1.0, smooth_eps=0.0):
+ super(SigmoidBin, self).__init__()
+
+ self.bin_count = bin_count
+ self.length = bin_count + 1
+ self.min = min
+ self.max = max
+ self.scale = float(max - min)
+ self.shift = self.scale / 2.0
+
+ self.use_loss_regression = use_loss_regression
+ self.use_fw_regression = use_fw_regression
+ self.reg_scale = reg_scale
+ self.BCE_weight = BCE_weight
+
+ start = min + (self.scale/2.0) / self.bin_count
+ end = max - (self.scale/2.0) / self.bin_count
+ step = self.scale / self.bin_count
+ self.step = step
+ #print(f" start = {start}, end = {end}, step = {step} ")
+
+ bins = torch.range(start, end + 0.0001, step).float()
+ self.register_buffer('bins', bins)
+
+
+ self.cp = 1.0 - 0.5 * smooth_eps
+ self.cn = 0.5 * smooth_eps
+
+ self.BCEbins = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([BCE_weight]))
+ self.MSELoss = nn.MSELoss()
+
+ def get_length(self):
+ return self.length
+
+ def forward(self, pred):
+ assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length)
+
+ pred_reg = (pred[..., 0] * self.reg_scale - self.reg_scale/2.0) * self.step
+ pred_bin = pred[..., 1:(1+self.bin_count)]
+
+ _, bin_idx = torch.max(pred_bin, dim=-1)
+ bin_bias = self.bins[bin_idx]
+
+ if self.use_fw_regression:
+ result = pred_reg + bin_bias
+ else:
+ result = bin_bias
+ result = result.clamp(min=self.min, max=self.max)
+
+ return result
+
+
+ def training_loss(self, pred, target):
+ assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length)
+ assert pred.shape[0] == target.shape[0], 'pred.shape=%d is not equal to the target.shape=%d' % (pred.shape[0], target.shape[0])
+ device = pred.device
+
+ pred_reg = (pred[..., 0].sigmoid() * self.reg_scale - self.reg_scale/2.0) * self.step
+ pred_bin = pred[..., 1:(1+self.bin_count)]
+
+ diff_bin_target = torch.abs(target[..., None] - self.bins)
+ _, bin_idx = torch.min(diff_bin_target, dim=-1)
+
+ bin_bias = self.bins[bin_idx]
+ bin_bias.requires_grad = False
+ result = pred_reg + bin_bias
+
+ target_bins = torch.full_like(pred_bin, self.cn, device=device) # targets
+ n = pred.shape[0]
+ target_bins[range(n), bin_idx] = self.cp
+
+ loss_bin = self.BCEbins(pred_bin, target_bins) # BCE
+
+ if self.use_loss_regression:
+ loss_regression = self.MSELoss(result, target) # MSE
+ loss = loss_bin + loss_regression
+ else:
+ loss = loss_bin
+
+ out_result = result.clamp(min=self.min, max=self.max)
+
+ return loss, out_result
+
+
+class FocalLoss(nn.Module):
+ # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+ super(FocalLoss, self).__init__()
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
+ self.gamma = gamma
+ self.alpha = alpha
+ self.reduction = loss_fcn.reduction
+ self.loss_fcn.reduction = 'none' # required to apply FL to each element
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+ # p_t = torch.exp(-loss)
+ # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
+
+ # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
+ pred_prob = torch.sigmoid(pred) # prob from logits
+ p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+ modulating_factor = (1.0 - p_t) ** self.gamma
+ loss *= alpha_factor * modulating_factor
+
+ if self.reduction == 'mean':
+ return loss.mean()
+ elif self.reduction == 'sum':
+ return loss.sum()
+ else: # 'none'
+ return loss
+
+
+class QFocalLoss(nn.Module):
+ # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+ super(QFocalLoss, self).__init__()
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
+ self.gamma = gamma
+ self.alpha = alpha
+ self.reduction = loss_fcn.reduction
+ self.loss_fcn.reduction = 'none' # required to apply FL to each element
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+
+ pred_prob = torch.sigmoid(pred) # prob from logits
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+ modulating_factor = torch.abs(true - pred_prob) ** self.gamma
+ loss *= alpha_factor * modulating_factor
+
+ if self.reduction == 'mean':
+ return loss.mean()
+ elif self.reduction == 'sum':
+ return loss.sum()
+ else: # 'none'
+ return loss
+
+class RankSort(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, logits, targets, delta_RS=0.50, eps=1e-10):
+
+ classification_grads=torch.zeros(logits.shape).cuda()
+
+ #Filter fg logits
+ fg_labels = (targets > 0.)
+ fg_logits = logits[fg_labels]
+ fg_targets = targets[fg_labels]
+ fg_num = len(fg_logits)
+
+ #Do not use bg with scores less than minimum fg logit
+ #since changing its score does not have an effect on precision
+ threshold_logit = torch.min(fg_logits)-delta_RS
+ relevant_bg_labels=((targets==0) & (logits>=threshold_logit))
+
+ relevant_bg_logits = logits[relevant_bg_labels]
+ relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
+ sorting_error=torch.zeros(fg_num).cuda()
+ ranking_error=torch.zeros(fg_num).cuda()
+ fg_grad=torch.zeros(fg_num).cuda()
+
+ #sort the fg logits
+ order=torch.argsort(fg_logits)
+ #Loops over each positive following the order
+ for ii in order:
+ # Difference Transforms (x_ij)
+ fg_relations=fg_logits-fg_logits[ii]
+ bg_relations=relevant_bg_logits-fg_logits[ii]
+
+ if delta_RS > 0:
+ fg_relations=torch.clamp(fg_relations/(2*delta_RS)+0.5,min=0,max=1)
+ bg_relations=torch.clamp(bg_relations/(2*delta_RS)+0.5,min=0,max=1)
+ else:
+ fg_relations = (fg_relations >= 0).float()
+ bg_relations = (bg_relations >= 0).float()
+
+ # Rank of ii among pos and false positive number (bg with larger scores)
+ rank_pos=torch.sum(fg_relations)
+ FP_num=torch.sum(bg_relations)
+
+ # Rank of ii among all examples
+ rank=rank_pos+FP_num
+
+ # Ranking error of example ii. target_ranking_error is always 0. (Eq. 7)
+ ranking_error[ii]=FP_num/rank
+
+ # Current sorting error of example ii. (Eq. 7)
+ current_sorting_error = torch.sum(fg_relations*(1-fg_targets))/rank_pos
+
+ #Find examples in the target sorted order for example ii
+ iou_relations = (fg_targets >= fg_targets[ii])
+ target_sorted_order = iou_relations * fg_relations
+
+ #The rank of ii among positives in sorted order
+ rank_pos_target = torch.sum(target_sorted_order)
+
+ #Compute target sorting error. (Eq. 8)
+ #Since target ranking error is 0, this is also total target error
+ target_sorting_error= torch.sum(target_sorted_order*(1-fg_targets))/rank_pos_target
+
+ #Compute sorting error on example ii
+ sorting_error[ii] = current_sorting_error - target_sorting_error
+
+ #Identity Update for Ranking Error
+ if FP_num > eps:
+ #For ii the update is the ranking error
+ fg_grad[ii] -= ranking_error[ii]
+ #For negatives, distribute error via ranking pmf (i.e. bg_relations/FP_num)
+ relevant_bg_grad += (bg_relations*(ranking_error[ii]/FP_num))
+
+ #Find the positives that are misranked (the cause of the error)
+ #These are the ones with smaller IoU but larger logits
+ missorted_examples = (~ iou_relations) * fg_relations
+
+ #Denominotor of sorting pmf
+ sorting_pmf_denom = torch.sum(missorted_examples)
+
+ #Identity Update for Sorting Error
+ if sorting_pmf_denom > eps:
+ #For ii the update is the sorting error
+ fg_grad[ii] -= sorting_error[ii]
+ #For positives, distribute error via sorting pmf (i.e. missorted_examples/sorting_pmf_denom)
+ fg_grad += (missorted_examples*(sorting_error[ii]/sorting_pmf_denom))
+
+ #Normalize gradients by number of positives
+ classification_grads[fg_labels]= (fg_grad/fg_num)
+ classification_grads[relevant_bg_labels]= (relevant_bg_grad/fg_num)
+
+ ctx.save_for_backward(classification_grads)
+
+ return ranking_error.mean(), sorting_error.mean()
+
+ @staticmethod
+ def backward(ctx, out_grad1, out_grad2):
+ g1, =ctx.saved_tensors
+ return g1*out_grad1, None, None, None
+
+class aLRPLoss(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, logits, targets, regression_losses, delta=1., eps=1e-5):
+ classification_grads=torch.zeros(logits.shape).cuda()
+
+ #Filter fg logits
+ fg_labels = (targets == 1)
+ fg_logits = logits[fg_labels]
+ fg_num = len(fg_logits)
+
+ #Do not use bg with scores less than minimum fg logit
+ #since changing its score does not have an effect on precision
+ threshold_logit = torch.min(fg_logits)-delta
+
+ #Get valid bg logits
+ relevant_bg_labels=((targets==0)&(logits>=threshold_logit))
+ relevant_bg_logits=logits[relevant_bg_labels]
+ relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
+ rank=torch.zeros(fg_num).cuda()
+ prec=torch.zeros(fg_num).cuda()
+ fg_grad=torch.zeros(fg_num).cuda()
+
+ max_prec=0
+ #sort the fg logits
+ order=torch.argsort(fg_logits)
+ #Loops over each positive following the order
+ for ii in order:
+ #x_ij s as score differences with fgs
+ fg_relations=fg_logits-fg_logits[ii]
+ #Apply piecewise linear function and determine relations with fgs
+ fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1)
+ #Discard i=j in the summation in rank_pos
+ fg_relations[ii]=0
+
+ #x_ij s as score differences with bgs
+ bg_relations=relevant_bg_logits-fg_logits[ii]
+ #Apply piecewise linear function and determine relations with bgs
+ bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1)
+
+ #Compute the rank of the example within fgs and number of bgs with larger scores
+ rank_pos=1+torch.sum(fg_relations)
+ FP_num=torch.sum(bg_relations)
+ #Store the total since it is normalizer also for aLRP Regression error
+ rank[ii]=rank_pos+FP_num
+
+ #Compute precision for this example to compute classification loss
+ prec[ii]=rank_pos/rank[ii]
+ #For stability, set eps to a infinitesmall value (e.g. 1e-6), then compute grads
+ if FP_num > eps:
+ fg_grad[ii] = -(torch.sum(fg_relations*regression_losses)+FP_num)/rank[ii]
+ relevant_bg_grad += (bg_relations*(-fg_grad[ii]/FP_num))
+
+ #aLRP with grad formulation fg gradient
+ classification_grads[fg_labels]= fg_grad
+ #aLRP with grad formulation bg gradient
+ classification_grads[relevant_bg_labels]= relevant_bg_grad
+
+ classification_grads /= (fg_num)
+
+ cls_loss=1-prec.mean()
+ ctx.save_for_backward(classification_grads)
+
+ return cls_loss, rank, order
+
+ @staticmethod
+ def backward(ctx, out_grad1, out_grad2, out_grad3):
+ g1, =ctx.saved_tensors
+ return g1*out_grad1, None, None, None, None
+
+
+class APLoss(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, logits, targets, delta=1.):
+ classification_grads=torch.zeros(logits.shape).cuda()
+
+ #Filter fg logits
+ fg_labels = (targets == 1)
+ fg_logits = logits[fg_labels]
+ fg_num = len(fg_logits)
+
+ #Do not use bg with scores less than minimum fg logit
+ #since changing its score does not have an effect on precision
+ threshold_logit = torch.min(fg_logits)-delta
+
+ #Get valid bg logits
+ relevant_bg_labels=((targets==0)&(logits>=threshold_logit))
+ relevant_bg_logits=logits[relevant_bg_labels]
+ relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
+ rank=torch.zeros(fg_num).cuda()
+ prec=torch.zeros(fg_num).cuda()
+ fg_grad=torch.zeros(fg_num).cuda()
+
+ max_prec=0
+ #sort the fg logits
+ order=torch.argsort(fg_logits)
+ #Loops over each positive following the order
+ for ii in order:
+ #x_ij s as score differences with fgs
+ fg_relations=fg_logits-fg_logits[ii]
+ #Apply piecewise linear function and determine relations with fgs
+ fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1)
+ #Discard i=j in the summation in rank_pos
+ fg_relations[ii]=0
+
+ #x_ij s as score differences with bgs
+ bg_relations=relevant_bg_logits-fg_logits[ii]
+ #Apply piecewise linear function and determine relations with bgs
+ bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1)
+
+ #Compute the rank of the example within fgs and number of bgs with larger scores
+ rank_pos=1+torch.sum(fg_relations)
+ FP_num=torch.sum(bg_relations)
+ #Store the total since it is normalizer also for aLRP Regression error
+ rank[ii]=rank_pos+FP_num
+
+ #Compute precision for this example
+ current_prec=rank_pos/rank[ii]
+
+ #Compute interpolated AP and store gradients for relevant bg examples
+ if (max_prec<=current_prec):
+ max_prec=current_prec
+ relevant_bg_grad += (bg_relations/rank[ii])
+ else:
+ relevant_bg_grad += (bg_relations/rank[ii])*(((1-max_prec)/(1-current_prec)))
+
+ #Store fg gradients
+ fg_grad[ii]=-(1-max_prec)
+ prec[ii]=max_prec
+
+ #aLRP with grad formulation fg gradient
+ classification_grads[fg_labels]= fg_grad
+ #aLRP with grad formulation bg gradient
+ classification_grads[relevant_bg_labels]= relevant_bg_grad
+
+ classification_grads /= fg_num
+
+ cls_loss=1-prec.mean()
+ ctx.save_for_backward(classification_grads)
+
+ return cls_loss
+
+ @staticmethod
+ def backward(ctx, out_grad1):
+ g1, =ctx.saved_tensors
+ return g1*out_grad1, None, None
+
+
+class ComputeLoss:
+ # Compute losses
+ def __init__(self, model, autobalance=False):
+ super(ComputeLoss, self).__init__()
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
+ BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h['fl_gamma'] # focal loss gamma
+ if g > 0:
+ BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
+
+ det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
+ #self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.1, .05]) # P3-P7
+ #self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.5, 0.4, .1]) # P3-P7
+ self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
+ self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
+ for k in 'na', 'nc', 'nl', 'anchors':
+ setattr(self, k, getattr(det, k))
+
+ def __call__(self, p, targets): # predictions, targets, model
+ device = targets.device
+ lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
+ tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
+
+ # Losses
+ for i, pi in enumerate(p): # layer index, layer predictions
+ b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
+ tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
+
+ n = b.shape[0] # number of targets
+ if n:
+ ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
+
+ # Regression
+ pxy = ps[:, :2].sigmoid() * 2. - 0.5
+ pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
+ pbox = torch.cat((pxy, pwh), 1) # predicted box
+ iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
+ lbox += (1.0 - iou).mean() # iou loss
+
+ # Objectness
+ tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
+
+ # Classification
+ if self.nc > 1: # cls loss (only if multiple classes)
+ t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
+ t[range(n), tcls[i]] = self.cp
+ #t[t==self.cp] = iou.detach().clamp(0).type(t.dtype)
+ lcls += self.BCEcls(ps[:, 5:], t) # BCE
+
+ # Append targets to text file
+ # with open('targets.txt', 'a') as file:
+ # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
+
+ obji = self.BCEobj(pi[..., 4], tobj)
+ lobj += obji * self.balance[i] # obj loss
+ if self.autobalance:
+ self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
+
+ if self.autobalance:
+ self.balance = [x / self.balance[self.ssi] for x in self.balance]
+ lbox *= self.hyp['box']
+ lobj *= self.hyp['obj']
+ lcls *= self.hyp['cls']
+ bs = tobj.shape[0] # batch size
+
+ loss = lbox + lobj + lcls
+ return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
+
+ def build_targets(self, p, targets):
+ # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
+ na, nt = self.na, targets.shape[0] # number of anchors, targets
+ tcls, tbox, indices, anch = [], [], [], []
+ gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
+ ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
+ targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
+
+ g = 0.5 # bias
+ off = torch.tensor([[0, 0],
+ [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
+ # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
+ ], device=targets.device).float() * g # offsets
+
+ for i in range(self.nl):
+ anchors = self.anchors[i]
+ gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
+
+ # Match targets to anchors
+ t = targets * gain
+ if nt:
+ # Matches
+ r = t[:, :, 4:6] / anchors[:, None] # wh ratio
+ j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
+ # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
+ t = t[j] # filter
+
+ # Offsets
+ gxy = t[:, 2:4] # grid xy
+ gxi = gain[[2, 3]] - gxy # inverse
+ j, k = ((gxy % 1. < g) & (gxy > 1.)).T
+ l, m = ((gxi % 1. < g) & (gxi > 1.)).T
+ j = torch.stack((torch.ones_like(j), j, k, l, m))
+ t = t.repeat((5, 1, 1))[j]
+ offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
+ else:
+ t = targets[0]
+ offsets = 0
+
+ # Define
+ b, c = t[:, :2].long().T # image, class
+ gxy = t[:, 2:4] # grid xy
+ gwh = t[:, 4:6] # grid wh
+ gij = (gxy - offsets).long()
+ gi, gj = gij.T # grid xy indices
+
+ # Append
+ a = t[:, 6].long() # anchor indices
+ indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
+ tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
+ anch.append(anchors[a]) # anchors
+ tcls.append(c) # class
+
+ return tcls, tbox, indices, anch
+
+
+class ComputeLossOTA:
+ # Compute losses
+ def __init__(self, model, autobalance=False):
+ super(ComputeLossOTA, self).__init__()
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
+ BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h['fl_gamma'] # focal loss gamma
+ if g > 0:
+ BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
+
+ det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
+ self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
+ self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
+ for k in 'na', 'nc', 'nl', 'anchors', 'stride':
+ setattr(self, k, getattr(det, k))
+
+ def __call__(self, p, targets, imgs): # predictions, targets, model
+ device = targets.device
+ lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
+ bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs)
+ pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p]
+
+
+ # Losses
+ for i, pi in enumerate(p): # layer index, layer predictions
+ b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
+ tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
+
+ n = b.shape[0] # number of targets
+ if n:
+ ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
+
+ # Regression
+ grid = torch.stack([gi, gj], dim=1)
+ pxy = ps[:, :2].sigmoid() * 2. - 0.5
+ #pxy = ps[:, :2].sigmoid() * 3. - 1.
+ pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
+ pbox = torch.cat((pxy, pwh), 1) # predicted box
+ selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
+ selected_tbox[:, :2] -= grid
+ iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
+ lbox += (1.0 - iou).mean() # iou loss
+
+ # Objectness
+ tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
+
+ # Classification
+ selected_tcls = targets[i][:, 1].long()
+ if self.nc > 1: # cls loss (only if multiple classes)
+ t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
+ t[range(n), selected_tcls] = self.cp
+ lcls += self.BCEcls(ps[:, 5:], t) # BCE
+
+ # Append targets to text file
+ # with open('targets.txt', 'a') as file:
+ # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
+
+ obji = self.BCEobj(pi[..., 4], tobj)
+ lobj += obji * self.balance[i] # obj loss
+ if self.autobalance:
+ self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
+
+ if self.autobalance:
+ self.balance = [x / self.balance[self.ssi] for x in self.balance]
+ lbox *= self.hyp['box']
+ lobj *= self.hyp['obj']
+ lcls *= self.hyp['cls']
+ bs = tobj.shape[0] # batch size
+
+ loss = lbox + lobj + lcls
+ return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
+
+ def build_targets(self, p, targets, imgs):
+
+ #indices, anch = self.find_positive(p, targets)
+ indices, anch = self.find_3_positive(p, targets)
+ #indices, anch = self.find_4_positive(p, targets)
+ #indices, anch = self.find_5_positive(p, targets)
+ #indices, anch = self.find_9_positive(p, targets)
+
+ matching_bs = [[] for pp in p]
+ matching_as = [[] for pp in p]
+ matching_gjs = [[] for pp in p]
+ matching_gis = [[] for pp in p]
+ matching_targets = [[] for pp in p]
+ matching_anchs = [[] for pp in p]
+
+ nl = len(p)
+
+ for batch_idx in range(p[0].shape[0]):
+
+ b_idx = targets[:, 0]==batch_idx
+ this_target = targets[b_idx]
+ if this_target.shape[0] == 0:
+ continue
+
+ txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
+ txyxy = xywh2xyxy(txywh)
+
+ pxyxys = []
+ p_cls = []
+ p_obj = []
+ from_which_layer = []
+ all_b = []
+ all_a = []
+ all_gj = []
+ all_gi = []
+ all_anch = []
+
+ for i, pi in enumerate(p):
+
+ b, a, gj, gi = indices[i]
+ idx = (b == batch_idx)
+ b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
+ all_b.append(b)
+ all_a.append(a)
+ all_gj.append(gj)
+ all_gi.append(gi)
+ all_anch.append(anch[i][idx])
+ from_which_layer.append(torch.ones(size=(len(b),)) * i)
+
+ fg_pred = pi[b, a, gj, gi]
+ p_obj.append(fg_pred[:, 4:5])
+ p_cls.append(fg_pred[:, 5:])
+
+ grid = torch.stack([gi, gj], dim=1)
+ pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
+ #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
+ pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
+ pxywh = torch.cat([pxy, pwh], dim=-1)
+ pxyxy = xywh2xyxy(pxywh)
+ pxyxys.append(pxyxy)
+
+ pxyxys = torch.cat(pxyxys, dim=0)
+ if pxyxys.shape[0] == 0:
+ continue
+ p_obj = torch.cat(p_obj, dim=0)
+ p_cls = torch.cat(p_cls, dim=0)
+ from_which_layer = torch.cat(from_which_layer, dim=0)
+ all_b = torch.cat(all_b, dim=0)
+ all_a = torch.cat(all_a, dim=0)
+ all_gj = torch.cat(all_gj, dim=0)
+ all_gi = torch.cat(all_gi, dim=0)
+ all_anch = torch.cat(all_anch, dim=0)
+
+ pair_wise_iou = box_iou(txyxy, pxyxys)
+
+ pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
+
+ top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1)
+ dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
+
+ gt_cls_per_image = (
+ F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
+ .float()
+ .unsqueeze(1)
+ .repeat(1, pxyxys.shape[0], 1)
+ )
+
+ num_gt = this_target.shape[0]
+ cls_preds_ = (
+ p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
+ * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
+ )
+
+ y = cls_preds_.sqrt_()
+ pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
+ torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
+ ).sum(-1)
+ del cls_preds_
+
+ cost = (
+ pair_wise_cls_loss
+ + 3.0 * pair_wise_iou_loss
+ )
+
+ matching_matrix = torch.zeros_like(cost)
+
+ for gt_idx in range(num_gt):
+ _, pos_idx = torch.topk(
+ cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
+ )
+ matching_matrix[gt_idx][pos_idx] = 1.0
+
+ del top_k, dynamic_ks
+ anchor_matching_gt = matching_matrix.sum(0)
+ if (anchor_matching_gt > 1).sum() > 0:
+ _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
+ matching_matrix[:, anchor_matching_gt > 1] *= 0.0
+ matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
+ fg_mask_inboxes = matching_matrix.sum(0) > 0.0
+ matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
+
+ from_which_layer = from_which_layer[fg_mask_inboxes]
+ all_b = all_b[fg_mask_inboxes]
+ all_a = all_a[fg_mask_inboxes]
+ all_gj = all_gj[fg_mask_inboxes]
+ all_gi = all_gi[fg_mask_inboxes]
+ all_anch = all_anch[fg_mask_inboxes]
+
+ this_target = this_target[matched_gt_inds]
+
+ for i in range(nl):
+ layer_idx = from_which_layer == i
+ matching_bs[i].append(all_b[layer_idx])
+ matching_as[i].append(all_a[layer_idx])
+ matching_gjs[i].append(all_gj[layer_idx])
+ matching_gis[i].append(all_gi[layer_idx])
+ matching_targets[i].append(this_target[layer_idx])
+ matching_anchs[i].append(all_anch[layer_idx])
+
+ for i in range(nl):
+ matching_bs[i] = torch.cat(matching_bs[i], dim=0)
+ matching_as[i] = torch.cat(matching_as[i], dim=0)
+ matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
+ matching_gis[i] = torch.cat(matching_gis[i], dim=0)
+ matching_targets[i] = torch.cat(matching_targets[i], dim=0)
+ matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
+
+ return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
+
+ def find_3_positive(self, p, targets):
+ # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
+ na, nt = self.na, targets.shape[0] # number of anchors, targets
+ indices, anch = [], []
+ gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
+ ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
+ targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
+
+ g = 0.5 # bias
+ off = torch.tensor([[0, 0],
+ [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
+ # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
+ ], device=targets.device).float() * g # offsets
+
+ for i in range(self.nl):
+ anchors = self.anchors[i]
+ gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
+
+ # Match targets to anchors
+ t = targets * gain
+ if nt:
+ # Matches
+ r = t[:, :, 4:6] / anchors[:, None] # wh ratio
+ j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
+ # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
+ t = t[j] # filter
+
+ # Offsets
+ gxy = t[:, 2:4] # grid xy
+ gxi = gain[[2, 3]] - gxy # inverse
+ j, k = ((gxy % 1. < g) & (gxy > 1.)).T
+ l, m = ((gxi % 1. < g) & (gxi > 1.)).T
+ j = torch.stack((torch.ones_like(j), j, k, l, m))
+ t = t.repeat((5, 1, 1))[j]
+ offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
+ else:
+ t = targets[0]
+ offsets = 0
+
+ # Define
+ b, c = t[:, :2].long().T # image, class
+ gxy = t[:, 2:4] # grid xy
+ gwh = t[:, 4:6] # grid wh
+ gij = (gxy - offsets).long()
+ gi, gj = gij.T # grid xy indices
+
+ # Append
+ a = t[:, 6].long() # anchor indices
+ indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
+ anch.append(anchors[a]) # anchors
+
+ return indices, anch
+
+
+class ComputeLossBinOTA:
+ # Compute losses
+ def __init__(self, model, autobalance=False):
+ super(ComputeLossBinOTA, self).__init__()
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
+ BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
+ #MSEangle = nn.MSELoss().to(device)
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h['fl_gamma'] # focal loss gamma
+ if g > 0:
+ BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
+
+ det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
+ self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
+ self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
+ for k in 'na', 'nc', 'nl', 'anchors', 'stride', 'bin_count':
+ setattr(self, k, getattr(det, k))
+
+ #xy_bin_sigmoid = SigmoidBin(bin_count=11, min=-0.5, max=1.5, use_loss_regression=False).to(device)
+ wh_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0, use_loss_regression=False).to(device)
+ #angle_bin_sigmoid = SigmoidBin(bin_count=31, min=-1.1, max=1.1, use_loss_regression=False).to(device)
+ self.wh_bin_sigmoid = wh_bin_sigmoid
+
+ def __call__(self, p, targets, imgs): # predictions, targets, model
+ device = targets.device
+ lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
+ bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs)
+ pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p]
+
+
+ # Losses
+ for i, pi in enumerate(p): # layer index, layer predictions
+ b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
+ tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
+
+ obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2 # x,y, w-bce, h-bce # xy_bin_sigmoid.get_length()*2
+
+ n = b.shape[0] # number of targets
+ if n:
+ ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
+
+ # Regression
+ grid = torch.stack([gi, gj], dim=1)
+ selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
+ selected_tbox[:, :2] -= grid
+
+ #pxy = ps[:, :2].sigmoid() * 2. - 0.5
+ ##pxy = ps[:, :2].sigmoid() * 3. - 1.
+ #pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
+ #pbox = torch.cat((pxy, pwh), 1) # predicted box
+
+ #x_loss, px = xy_bin_sigmoid.training_loss(ps[..., 0:12], tbox[i][..., 0])
+ #y_loss, py = xy_bin_sigmoid.training_loss(ps[..., 12:24], tbox[i][..., 1])
+ w_loss, pw = self.wh_bin_sigmoid.training_loss(ps[..., 2:(3+self.bin_count)], selected_tbox[..., 2] / anchors[i][..., 0])
+ h_loss, ph = self.wh_bin_sigmoid.training_loss(ps[..., (3+self.bin_count):obj_idx], selected_tbox[..., 3] / anchors[i][..., 1])
+
+ pw *= anchors[i][..., 0]
+ ph *= anchors[i][..., 1]
+
+ px = ps[:, 0].sigmoid() * 2. - 0.5
+ py = ps[:, 1].sigmoid() * 2. - 0.5
+
+ lbox += w_loss + h_loss # + x_loss + y_loss
+
+ #print(f"\n px = {px.shape}, py = {py.shape}, pw = {pw.shape}, ph = {ph.shape} \n")
+
+ pbox = torch.cat((px.unsqueeze(1), py.unsqueeze(1), pw.unsqueeze(1), ph.unsqueeze(1)), 1).to(device) # predicted box
+
+
+
+
+ iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
+ lbox += (1.0 - iou).mean() # iou loss
+
+ # Objectness
+ tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
+
+ # Classification
+ selected_tcls = targets[i][:, 1].long()
+ if self.nc > 1: # cls loss (only if multiple classes)
+ t = torch.full_like(ps[:, (1+obj_idx):], self.cn, device=device) # targets
+ t[range(n), selected_tcls] = self.cp
+ lcls += self.BCEcls(ps[:, (1+obj_idx):], t) # BCE
+
+ # Append targets to text file
+ # with open('targets.txt', 'a') as file:
+ # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
+
+ obji = self.BCEobj(pi[..., obj_idx], tobj)
+ lobj += obji * self.balance[i] # obj loss
+ if self.autobalance:
+ self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
+
+ if self.autobalance:
+ self.balance = [x / self.balance[self.ssi] for x in self.balance]
+ lbox *= self.hyp['box']
+ lobj *= self.hyp['obj']
+ lcls *= self.hyp['cls']
+ bs = tobj.shape[0] # batch size
+
+ loss = lbox + lobj + lcls
+ return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
+
+ def build_targets(self, p, targets, imgs):
+
+ #indices, anch = self.find_positive(p, targets)
+ indices, anch = self.find_3_positive(p, targets)
+ #indices, anch = self.find_4_positive(p, targets)
+ #indices, anch = self.find_5_positive(p, targets)
+ #indices, anch = self.find_9_positive(p, targets)
+
+ matching_bs = [[] for pp in p]
+ matching_as = [[] for pp in p]
+ matching_gjs = [[] for pp in p]
+ matching_gis = [[] for pp in p]
+ matching_targets = [[] for pp in p]
+ matching_anchs = [[] for pp in p]
+
+ nl = len(p)
+
+ for batch_idx in range(p[0].shape[0]):
+
+ b_idx = targets[:, 0]==batch_idx
+ this_target = targets[b_idx]
+ if this_target.shape[0] == 0:
+ continue
+
+ txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
+ txyxy = xywh2xyxy(txywh)
+
+ pxyxys = []
+ p_cls = []
+ p_obj = []
+ from_which_layer = []
+ all_b = []
+ all_a = []
+ all_gj = []
+ all_gi = []
+ all_anch = []
+
+ for i, pi in enumerate(p):
+
+ obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2
+
+ b, a, gj, gi = indices[i]
+ idx = (b == batch_idx)
+ b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
+ all_b.append(b)
+ all_a.append(a)
+ all_gj.append(gj)
+ all_gi.append(gi)
+ all_anch.append(anch[i][idx])
+ from_which_layer.append(torch.ones(size=(len(b),)) * i)
+
+ fg_pred = pi[b, a, gj, gi]
+ p_obj.append(fg_pred[:, obj_idx:(obj_idx+1)])
+ p_cls.append(fg_pred[:, (obj_idx+1):])
+
+ grid = torch.stack([gi, gj], dim=1)
+ pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
+ #pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
+ pw = self.wh_bin_sigmoid.forward(fg_pred[..., 2:(3+self.bin_count)].sigmoid()) * anch[i][idx][:, 0] * self.stride[i]
+ ph = self.wh_bin_sigmoid.forward(fg_pred[..., (3+self.bin_count):obj_idx].sigmoid()) * anch[i][idx][:, 1] * self.stride[i]
+
+ pxywh = torch.cat([pxy, pw.unsqueeze(1), ph.unsqueeze(1)], dim=-1)
+ pxyxy = xywh2xyxy(pxywh)
+ pxyxys.append(pxyxy)
+
+ pxyxys = torch.cat(pxyxys, dim=0)
+ if pxyxys.shape[0] == 0:
+ continue
+ p_obj = torch.cat(p_obj, dim=0)
+ p_cls = torch.cat(p_cls, dim=0)
+ from_which_layer = torch.cat(from_which_layer, dim=0)
+ all_b = torch.cat(all_b, dim=0)
+ all_a = torch.cat(all_a, dim=0)
+ all_gj = torch.cat(all_gj, dim=0)
+ all_gi = torch.cat(all_gi, dim=0)
+ all_anch = torch.cat(all_anch, dim=0)
+
+ pair_wise_iou = box_iou(txyxy, pxyxys)
+
+ pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
+
+ top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1)
+ dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
+
+ gt_cls_per_image = (
+ F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
+ .float()
+ .unsqueeze(1)
+ .repeat(1, pxyxys.shape[0], 1)
+ )
+
+ num_gt = this_target.shape[0]
+ cls_preds_ = (
+ p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
+ * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
+ )
+
+ y = cls_preds_.sqrt_()
+ pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
+ torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
+ ).sum(-1)
+ del cls_preds_
+
+ cost = (
+ pair_wise_cls_loss
+ + 3.0 * pair_wise_iou_loss
+ )
+
+ matching_matrix = torch.zeros_like(cost)
+
+ for gt_idx in range(num_gt):
+ _, pos_idx = torch.topk(
+ cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
+ )
+ matching_matrix[gt_idx][pos_idx] = 1.0
+
+ del top_k, dynamic_ks
+ anchor_matching_gt = matching_matrix.sum(0)
+ if (anchor_matching_gt > 1).sum() > 0:
+ _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
+ matching_matrix[:, anchor_matching_gt > 1] *= 0.0
+ matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
+ fg_mask_inboxes = matching_matrix.sum(0) > 0.0
+ matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
+
+ from_which_layer = from_which_layer[fg_mask_inboxes]
+ all_b = all_b[fg_mask_inboxes]
+ all_a = all_a[fg_mask_inboxes]
+ all_gj = all_gj[fg_mask_inboxes]
+ all_gi = all_gi[fg_mask_inboxes]
+ all_anch = all_anch[fg_mask_inboxes]
+
+ this_target = this_target[matched_gt_inds]
+
+ for i in range(nl):
+ layer_idx = from_which_layer == i
+ matching_bs[i].append(all_b[layer_idx])
+ matching_as[i].append(all_a[layer_idx])
+ matching_gjs[i].append(all_gj[layer_idx])
+ matching_gis[i].append(all_gi[layer_idx])
+ matching_targets[i].append(this_target[layer_idx])
+ matching_anchs[i].append(all_anch[layer_idx])
+
+ for i in range(nl):
+ matching_bs[i] = torch.cat(matching_bs[i], dim=0)
+ matching_as[i] = torch.cat(matching_as[i], dim=0)
+ matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
+ matching_gis[i] = torch.cat(matching_gis[i], dim=0)
+ matching_targets[i] = torch.cat(matching_targets[i], dim=0)
+ matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
+
+ return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
+
+ def find_3_positive(self, p, targets):
+ # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
+ na, nt = self.na, targets.shape[0] # number of anchors, targets
+ indices, anch = [], []
+ gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
+ ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
+ targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
+
+ g = 0.5 # bias
+ off = torch.tensor([[0, 0],
+ [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
+ # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
+ ], device=targets.device).float() * g # offsets
+
+ for i in range(self.nl):
+ anchors = self.anchors[i]
+ gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
+
+ # Match targets to anchors
+ t = targets * gain
+ if nt:
+ # Matches
+ r = t[:, :, 4:6] / anchors[:, None] # wh ratio
+ j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
+ # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
+ t = t[j] # filter
+
+ # Offsets
+ gxy = t[:, 2:4] # grid xy
+ gxi = gain[[2, 3]] - gxy # inverse
+ j, k = ((gxy % 1. < g) & (gxy > 1.)).T
+ l, m = ((gxi % 1. < g) & (gxi > 1.)).T
+ j = torch.stack((torch.ones_like(j), j, k, l, m))
+ t = t.repeat((5, 1, 1))[j]
+ offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
+ else:
+ t = targets[0]
+ offsets = 0
+
+ # Define
+ b, c = t[:, :2].long().T # image, class
+ gxy = t[:, 2:4] # grid xy
+ gwh = t[:, 4:6] # grid wh
+ gij = (gxy - offsets).long()
+ gi, gj = gij.T # grid xy indices
+
+ # Append
+ a = t[:, 6].long() # anchor indices
+ indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
+ anch.append(anchors[a]) # anchors
+
+ return indices, anch
diff --git a/utils/metrics.py b/utils/metrics.py
new file mode 100644
index 0000000000000000000000000000000000000000..666b8c7ec1c0a488eab1b4e7f2f0474973589525
--- /dev/null
+++ b/utils/metrics.py
@@ -0,0 +1,223 @@
+# Model validation metrics
+
+from pathlib import Path
+
+import matplotlib.pyplot as plt
+import numpy as np
+import torch
+
+from . import general
+
+
+def fitness(x):
+ # Model fitness as a weighted combination of metrics
+ w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
+ return (x[:, :4] * w).sum(1)
+
+
+def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()):
+ """ Compute the average precision, given the recall and precision curves.
+ Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
+ # Arguments
+ tp: True positives (nparray, nx1 or nx10).
+ conf: Objectness value from 0-1 (nparray).
+ pred_cls: Predicted object classes (nparray).
+ target_cls: True object classes (nparray).
+ plot: Plot precision-recall curve at mAP@0.5
+ save_dir: Plot save directory
+ # Returns
+ The average precision as computed in py-faster-rcnn.
+ """
+
+ # Sort by objectness
+ i = np.argsort(-conf)
+ tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
+
+ # Find unique classes
+ unique_classes = np.unique(target_cls)
+ nc = unique_classes.shape[0] # number of classes, number of detections
+
+ # Create Precision-Recall curve and compute AP for each class
+ px, py = np.linspace(0, 1, 1000), [] # for plotting
+ ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
+ for ci, c in enumerate(unique_classes):
+ i = pred_cls == c
+ n_l = (target_cls == c).sum() # number of labels
+ n_p = i.sum() # number of predictions
+
+ if n_p == 0 or n_l == 0:
+ continue
+ else:
+ # Accumulate FPs and TPs
+ fpc = (1 - tp[i]).cumsum(0)
+ tpc = tp[i].cumsum(0)
+
+ # Recall
+ recall = tpc / (n_l + 1e-16) # recall curve
+ r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
+
+ # Precision
+ precision = tpc / (tpc + fpc) # precision curve
+ p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
+
+ # AP from recall-precision curve
+ for j in range(tp.shape[1]):
+ ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
+ if plot and j == 0:
+ py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
+
+ # Compute F1 (harmonic mean of precision and recall)
+ f1 = 2 * p * r / (p + r + 1e-16)
+ if plot:
+ plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
+ plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
+ plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
+ plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
+
+ i = f1.mean(0).argmax() # max F1 index
+ return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
+
+
+def compute_ap(recall, precision):
+ """ Compute the average precision, given the recall and precision curves
+ # Arguments
+ recall: The recall curve (list)
+ precision: The precision curve (list)
+ # Returns
+ Average precision, precision curve, recall curve
+ """
+
+ # Append sentinel values to beginning and end
+ mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
+ mpre = np.concatenate(([1.], precision, [0.]))
+
+ # Compute the precision envelope
+ mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
+
+ # Integrate area under curve
+ method = 'interp' # methods: 'continuous', 'interp'
+ if method == 'interp':
+ x = np.linspace(0, 1, 101) # 101-point interp (COCO)
+ ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
+ else: # 'continuous'
+ i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
+ ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
+
+ return ap, mpre, mrec
+
+
+class ConfusionMatrix:
+ # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
+ def __init__(self, nc, conf=0.25, iou_thres=0.45):
+ self.matrix = np.zeros((nc + 1, nc + 1))
+ self.nc = nc # number of classes
+ self.conf = conf
+ self.iou_thres = iou_thres
+
+ def process_batch(self, detections, labels):
+ """
+ Return intersection-over-union (Jaccard index) of boxes.
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+ Arguments:
+ detections (Array[N, 6]), x1, y1, x2, y2, conf, class
+ labels (Array[M, 5]), class, x1, y1, x2, y2
+ Returns:
+ None, updates confusion matrix accordingly
+ """
+ detections = detections[detections[:, 4] > self.conf]
+ gt_classes = labels[:, 0].int()
+ detection_classes = detections[:, 5].int()
+ iou = general.box_iou(labels[:, 1:], detections[:, :4])
+
+ x = torch.where(iou > self.iou_thres)
+ if x[0].shape[0]:
+ matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
+ if x[0].shape[0] > 1:
+ matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+ matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+ else:
+ matches = np.zeros((0, 3))
+
+ n = matches.shape[0] > 0
+ m0, m1, _ = matches.transpose().astype(np.int16)
+ for i, gc in enumerate(gt_classes):
+ j = m0 == i
+ if n and sum(j) == 1:
+ self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
+ else:
+ self.matrix[self.nc, gc] += 1 # background FP
+
+ if n:
+ for i, dc in enumerate(detection_classes):
+ if not any(m1 == i):
+ self.matrix[dc, self.nc] += 1 # background FN
+
+ def matrix(self):
+ return self.matrix
+
+ def plot(self, save_dir='', names=()):
+ try:
+ import seaborn as sn
+
+ array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
+ array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
+
+ fig = plt.figure(figsize=(12, 9), tight_layout=True)
+ sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
+ labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
+ sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
+ xticklabels=names + ['background FP'] if labels else "auto",
+ yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
+ fig.axes[0].set_xlabel('True')
+ fig.axes[0].set_ylabel('Predicted')
+ fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
+ except Exception as e:
+ pass
+
+ def print(self):
+ for i in range(self.nc + 1):
+ print(' '.join(map(str, self.matrix[i])))
+
+
+# Plots ----------------------------------------------------------------------------------------------------------------
+
+def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
+ # Precision-recall curve
+ fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+ py = np.stack(py, axis=1)
+
+ if 0 < len(names) < 21: # display per-class legend if < 21 classes
+ for i, y in enumerate(py.T):
+ ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
+ else:
+ ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
+
+ ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
+ ax.set_xlabel('Recall')
+ ax.set_ylabel('Precision')
+ ax.set_xlim(0, 1)
+ ax.set_ylim(0, 1)
+ plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
+ fig.savefig(Path(save_dir), dpi=250)
+
+
+def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
+ # Metric-confidence curve
+ fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+
+ if 0 < len(names) < 21: # display per-class legend if < 21 classes
+ for i, y in enumerate(py):
+ ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
+ else:
+ ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
+
+ y = py.mean(0)
+ ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
+ ax.set_xlabel(xlabel)
+ ax.set_ylabel(ylabel)
+ ax.set_xlim(0, 1)
+ ax.set_ylim(0, 1)
+ plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
+ fig.savefig(Path(save_dir), dpi=250)
diff --git a/utils/plots.py b/utils/plots.py
new file mode 100644
index 0000000000000000000000000000000000000000..e75bc7b37344062229e73bbb72248adca1075d9b
--- /dev/null
+++ b/utils/plots.py
@@ -0,0 +1,433 @@
+# Plotting utils
+
+import glob
+import math
+import os
+import random
+from copy import copy
+from pathlib import Path
+
+import cv2
+import matplotlib
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import seaborn as sns
+import torch
+import yaml
+from PIL import Image, ImageDraw, ImageFont
+from scipy.signal import butter, filtfilt
+
+from utils.general import xywh2xyxy, xyxy2xywh
+from utils.metrics import fitness
+
+# Settings
+matplotlib.rc('font', **{'size': 11})
+matplotlib.use('Agg') # for writing to files only
+
+
+def color_list():
+ # Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
+ def hex2rgb(h):
+ return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
+
+ return [hex2rgb(h) for h in matplotlib.colors.TABLEAU_COLORS.values()] # or BASE_ (8), CSS4_ (148), XKCD_ (949)
+
+
+def hist2d(x, y, n=100):
+ # 2d histogram used in labels.png and evolve.png
+ xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
+ hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
+ xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
+ yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
+ return np.log(hist[xidx, yidx])
+
+
+def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
+ # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
+ def butter_lowpass(cutoff, fs, order):
+ nyq = 0.5 * fs
+ normal_cutoff = cutoff / nyq
+ return butter(order, normal_cutoff, btype='low', analog=False)
+
+ b, a = butter_lowpass(cutoff, fs, order=order)
+ return filtfilt(b, a, data) # forward-backward filter
+
+
+def plot_one_box(x, img, color=None, label=None, line_thickness=3):
+ # Plots one bounding box on image img
+ tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
+ color = color or [random.randint(0, 255) for _ in range(3)]
+ c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
+ cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
+ if label:
+ tf = max(tl - 1, 1) # font thickness
+ t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
+ c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
+ cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
+ cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
+
+
+def plot_one_box_PIL(box, img, color=None, label=None, line_thickness=None):
+ img = Image.fromarray(img)
+ draw = ImageDraw.Draw(img)
+ line_thickness = line_thickness or max(int(min(img.size) / 200), 2)
+ draw.rectangle(box, width=line_thickness, outline=tuple(color)) # plot
+ if label:
+ fontsize = max(round(max(img.size) / 40), 12)
+ font = ImageFont.truetype("Arial.ttf", fontsize)
+ txt_width, txt_height = font.getsize(label)
+ draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=tuple(color))
+ draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
+ return np.asarray(img)
+
+
+def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
+ # Compares the two methods for width-height anchor multiplication
+ # https://github.com/ultralytics/yolov3/issues/168
+ x = np.arange(-4.0, 4.0, .1)
+ ya = np.exp(x)
+ yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
+
+ fig = plt.figure(figsize=(6, 3), tight_layout=True)
+ plt.plot(x, ya, '.-', label='YOLOv3')
+ plt.plot(x, yb ** 2, '.-', label='YOLOR ^2')
+ plt.plot(x, yb ** 1.6, '.-', label='YOLOR ^1.6')
+ plt.xlim(left=-4, right=4)
+ plt.ylim(bottom=0, top=6)
+ plt.xlabel('input')
+ plt.ylabel('output')
+ plt.grid()
+ plt.legend()
+ fig.savefig('comparison.png', dpi=200)
+
+
+def output_to_target(output):
+ # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
+ targets = []
+ for i, o in enumerate(output):
+ for *box, conf, cls in o.cpu().numpy():
+ targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
+ return np.array(targets)
+
+
+def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
+ # Plot image grid with labels
+
+ if isinstance(images, torch.Tensor):
+ images = images.cpu().float().numpy()
+ if isinstance(targets, torch.Tensor):
+ targets = targets.cpu().numpy()
+
+ # un-normalise
+ if np.max(images[0]) <= 1:
+ images *= 255
+
+ tl = 3 # line thickness
+ tf = max(tl - 1, 1) # font thickness
+ bs, _, h, w = images.shape # batch size, _, height, width
+ bs = min(bs, max_subplots) # limit plot images
+ ns = np.ceil(bs ** 0.5) # number of subplots (square)
+
+ # Check if we should resize
+ scale_factor = max_size / max(h, w)
+ if scale_factor < 1:
+ h = math.ceil(scale_factor * h)
+ w = math.ceil(scale_factor * w)
+
+ colors = color_list() # list of colors
+ mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
+ for i, img in enumerate(images):
+ if i == max_subplots: # if last batch has fewer images than we expect
+ break
+
+ block_x = int(w * (i // ns))
+ block_y = int(h * (i % ns))
+
+ img = img.transpose(1, 2, 0)
+ if scale_factor < 1:
+ img = cv2.resize(img, (w, h))
+
+ mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
+ if len(targets) > 0:
+ image_targets = targets[targets[:, 0] == i]
+ boxes = xywh2xyxy(image_targets[:, 2:6]).T
+ classes = image_targets[:, 1].astype('int')
+ labels = image_targets.shape[1] == 6 # labels if no conf column
+ conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
+
+ if boxes.shape[1]:
+ if boxes.max() <= 1.01: # if normalized with tolerance 0.01
+ boxes[[0, 2]] *= w # scale to pixels
+ boxes[[1, 3]] *= h
+ elif scale_factor < 1: # absolute coords need scale if image scales
+ boxes *= scale_factor
+ boxes[[0, 2]] += block_x
+ boxes[[1, 3]] += block_y
+ for j, box in enumerate(boxes.T):
+ cls = int(classes[j])
+ color = colors[cls % len(colors)]
+ cls = names[cls] if names else cls
+ if labels or conf[j] > 0.25: # 0.25 conf thresh
+ label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
+ plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
+
+ # Draw image filename labels
+ if paths:
+ label = Path(paths[i]).name[:40] # trim to 40 char
+ t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
+ cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
+ lineType=cv2.LINE_AA)
+
+ # Image border
+ cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
+
+ if fname:
+ r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
+ mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
+ # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
+ Image.fromarray(mosaic).save(fname) # PIL save
+ return mosaic
+
+
+def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
+ # Plot LR simulating training for full epochs
+ optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
+ y = []
+ for _ in range(epochs):
+ scheduler.step()
+ y.append(optimizer.param_groups[0]['lr'])
+ plt.plot(y, '.-', label='LR')
+ plt.xlabel('epoch')
+ plt.ylabel('LR')
+ plt.grid()
+ plt.xlim(0, epochs)
+ plt.ylim(0)
+ plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
+ plt.close()
+
+
+def plot_test_txt(): # from utils.plots import *; plot_test()
+ # Plot test.txt histograms
+ x = np.loadtxt('test.txt', dtype=np.float32)
+ box = xyxy2xywh(x[:, :4])
+ cx, cy = box[:, 0], box[:, 1]
+
+ fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
+ ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
+ ax.set_aspect('equal')
+ plt.savefig('hist2d.png', dpi=300)
+
+ fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
+ ax[0].hist(cx, bins=600)
+ ax[1].hist(cy, bins=600)
+ plt.savefig('hist1d.png', dpi=200)
+
+
+def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
+ # Plot targets.txt histograms
+ x = np.loadtxt('targets.txt', dtype=np.float32).T
+ s = ['x targets', 'y targets', 'width targets', 'height targets']
+ fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
+ ax = ax.ravel()
+ for i in range(4):
+ ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
+ ax[i].legend()
+ ax[i].set_title(s[i])
+ plt.savefig('targets.jpg', dpi=200)
+
+
+def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
+ # Plot study.txt generated by test.py
+ fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
+ # ax = ax.ravel()
+
+ fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
+ # for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolor-p6', 'yolor-w6', 'yolor-e6', 'yolor-d6']]:
+ for f in sorted(Path(path).glob('study*.txt')):
+ y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
+ x = np.arange(y.shape[1]) if x is None else np.array(x)
+ s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
+ # for i in range(7):
+ # ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
+ # ax[i].set_title(s[i])
+
+ j = y[3].argmax() + 1
+ ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
+ label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
+
+ ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
+ 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
+
+ ax2.grid(alpha=0.2)
+ ax2.set_yticks(np.arange(20, 60, 5))
+ ax2.set_xlim(0, 57)
+ ax2.set_ylim(30, 55)
+ ax2.set_xlabel('GPU Speed (ms/img)')
+ ax2.set_ylabel('COCO AP val')
+ ax2.legend(loc='lower right')
+ plt.savefig(str(Path(path).name) + '.png', dpi=300)
+
+
+def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
+ # plot dataset labels
+ print('Plotting labels... ')
+ c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
+ nc = int(c.max() + 1) # number of classes
+ colors = color_list()
+ x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
+
+ # seaborn correlogram
+ sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
+ plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
+ plt.close()
+
+ # matplotlib labels
+ matplotlib.use('svg') # faster
+ ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
+ ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
+ ax[0].set_ylabel('instances')
+ if 0 < len(names) < 30:
+ ax[0].set_xticks(range(len(names)))
+ ax[0].set_xticklabels(names, rotation=90, fontsize=10)
+ else:
+ ax[0].set_xlabel('classes')
+ sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
+ sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
+
+ # rectangles
+ labels[:, 1:3] = 0.5 # center
+ labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
+ img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
+ for cls, *box in labels[:1000]:
+ ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot
+ ax[1].imshow(img)
+ ax[1].axis('off')
+
+ for a in [0, 1, 2, 3]:
+ for s in ['top', 'right', 'left', 'bottom']:
+ ax[a].spines[s].set_visible(False)
+
+ plt.savefig(save_dir / 'labels.jpg', dpi=200)
+ matplotlib.use('Agg')
+ plt.close()
+
+ # loggers
+ for k, v in loggers.items() or {}:
+ if k == 'wandb' and v:
+ v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False)
+
+
+def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
+ # Plot hyperparameter evolution results in evolve.txt
+ with open(yaml_file) as f:
+ hyp = yaml.load(f, Loader=yaml.SafeLoader)
+ x = np.loadtxt('evolve.txt', ndmin=2)
+ f = fitness(x)
+ # weights = (f - f.min()) ** 2 # for weighted results
+ plt.figure(figsize=(10, 12), tight_layout=True)
+ matplotlib.rc('font', **{'size': 8})
+ for i, (k, v) in enumerate(hyp.items()):
+ y = x[:, i + 7]
+ # mu = (y * weights).sum() / weights.sum() # best weighted result
+ mu = y[f.argmax()] # best single result
+ plt.subplot(6, 5, i + 1)
+ plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
+ plt.plot(mu, f.max(), 'k+', markersize=15)
+ plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
+ if i % 5 != 0:
+ plt.yticks([])
+ print('%15s: %.3g' % (k, mu))
+ plt.savefig('evolve.png', dpi=200)
+ print('\nPlot saved as evolve.png')
+
+
+def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
+ # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
+ ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
+ s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
+ files = list(Path(save_dir).glob('frames*.txt'))
+ for fi, f in enumerate(files):
+ try:
+ results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
+ n = results.shape[1] # number of rows
+ x = np.arange(start, min(stop, n) if stop else n)
+ results = results[:, x]
+ t = (results[0] - results[0].min()) # set t0=0s
+ results[0] = x
+ for i, a in enumerate(ax):
+ if i < len(results):
+ label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
+ a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
+ a.set_title(s[i])
+ a.set_xlabel('time (s)')
+ # if fi == len(files) - 1:
+ # a.set_ylim(bottom=0)
+ for side in ['top', 'right']:
+ a.spines[side].set_visible(False)
+ else:
+ a.remove()
+ except Exception as e:
+ print('Warning: Plotting error for %s; %s' % (f, e))
+
+ ax[1].legend()
+ plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
+
+
+def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
+ # Plot training 'results*.txt', overlaying train and val losses
+ s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
+ t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
+ for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
+ results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
+ n = results.shape[1] # number of rows
+ x = range(start, min(stop, n) if stop else n)
+ fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
+ ax = ax.ravel()
+ for i in range(5):
+ for j in [i, i + 5]:
+ y = results[j, x]
+ ax[i].plot(x, y, marker='.', label=s[j])
+ # y_smooth = butter_lowpass_filtfilt(y)
+ # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
+
+ ax[i].set_title(t[i])
+ ax[i].legend()
+ ax[i].set_ylabel(f) if i == 0 else None # add filename
+ fig.savefig(f.replace('.txt', '.png'), dpi=200)
+
+
+def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
+ # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
+ fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
+ ax = ax.ravel()
+ s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
+ 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
+ if bucket:
+ # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
+ files = ['results%g.txt' % x for x in id]
+ c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
+ os.system(c)
+ else:
+ files = list(Path(save_dir).glob('results*.txt'))
+ assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
+ for fi, f in enumerate(files):
+ try:
+ results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
+ n = results.shape[1] # number of rows
+ x = range(start, min(stop, n) if stop else n)
+ for i in range(10):
+ y = results[i, x]
+ if i in [0, 1, 2, 5, 6, 7]:
+ y[y == 0] = np.nan # don't show zero loss values
+ # y /= y[0] # normalize
+ label = labels[fi] if len(labels) else f.stem
+ ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
+ ax[i].set_title(s[i])
+ # if i in [5, 6, 7]: # share train and val loss y axes
+ # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
+ except Exception as e:
+ print('Warning: Plotting error for %s; %s' % (f, e))
+
+ ax[1].legend()
+ fig.savefig(Path(save_dir) / 'results.png', dpi=200)
diff --git a/utils/torch_utils.py b/utils/torch_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..1e631b555508457a4944c11a479176463719c0e8
--- /dev/null
+++ b/utils/torch_utils.py
@@ -0,0 +1,374 @@
+# YOLOR PyTorch utils
+
+import datetime
+import logging
+import math
+import os
+import platform
+import subprocess
+import time
+from contextlib import contextmanager
+from copy import deepcopy
+from pathlib import Path
+
+import torch
+import torch.backends.cudnn as cudnn
+import torch.nn as nn
+import torch.nn.functional as F
+import torchvision
+
+try:
+ import thop # for FLOPS computation
+except ImportError:
+ thop = None
+logger = logging.getLogger(__name__)
+
+
+@contextmanager
+def torch_distributed_zero_first(local_rank: int):
+ """
+ Decorator to make all processes in distributed training wait for each local_master to do something.
+ """
+ if local_rank not in [-1, 0]:
+ torch.distributed.barrier()
+ yield
+ if local_rank == 0:
+ torch.distributed.barrier()
+
+
+def init_torch_seeds(seed=0):
+ # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
+ torch.manual_seed(seed)
+ if seed == 0: # slower, more reproducible
+ cudnn.benchmark, cudnn.deterministic = False, True
+ else: # faster, less reproducible
+ cudnn.benchmark, cudnn.deterministic = True, False
+
+
+def date_modified(path=__file__):
+ # return human-readable file modification date, i.e. '2021-3-26'
+ t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
+ return f'{t.year}-{t.month}-{t.day}'
+
+
+def git_describe(path=Path(__file__).parent): # path must be a directory
+ # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
+ s = f'git -C {path} describe --tags --long --always'
+ try:
+ return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
+ except subprocess.CalledProcessError as e:
+ return '' # not a git repository
+
+
+def select_device(device='', batch_size=None):
+ # device = 'cpu' or '0' or '0,1,2,3'
+ s = f'YOLOR 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
+ cpu = device.lower() == 'cpu'
+ if cpu:
+ os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
+ elif device: # non-cpu device requested
+ os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
+ assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
+
+ cuda = not cpu and torch.cuda.is_available()
+ if cuda:
+ n = torch.cuda.device_count()
+ if n > 1 and batch_size: # check that batch_size is compatible with device_count
+ assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
+ space = ' ' * len(s)
+ for i, d in enumerate(device.split(',') if device else range(n)):
+ p = torch.cuda.get_device_properties(i)
+ s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
+ else:
+ s += 'CPU\n'
+
+ logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
+ return torch.device('cuda:0' if cuda else 'cpu')
+
+
+def time_synchronized():
+ # pytorch-accurate time
+ if torch.cuda.is_available():
+ torch.cuda.synchronize()
+ return time.time()
+
+
+def profile(x, ops, n=100, device=None):
+ # profile a pytorch module or list of modules. Example usage:
+ # x = torch.randn(16, 3, 640, 640) # input
+ # m1 = lambda x: x * torch.sigmoid(x)
+ # m2 = nn.SiLU()
+ # profile(x, [m1, m2], n=100) # profile speed over 100 iterations
+
+ device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
+ x = x.to(device)
+ x.requires_grad = True
+ print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
+ print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
+ for m in ops if isinstance(ops, list) else [ops]:
+ m = m.to(device) if hasattr(m, 'to') else m # device
+ m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
+ dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
+ try:
+ flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
+ except:
+ flops = 0
+
+ for _ in range(n):
+ t[0] = time_synchronized()
+ y = m(x)
+ t[1] = time_synchronized()
+ try:
+ _ = y.sum().backward()
+ t[2] = time_synchronized()
+ except: # no backward method
+ t[2] = float('nan')
+ dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
+ dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
+
+ s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
+ s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
+ p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
+ print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
+
+
+def is_parallel(model):
+ return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
+
+
+def intersect_dicts(da, db, exclude=()):
+ # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
+ return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
+
+
+def initialize_weights(model):
+ for m in model.modules():
+ t = type(m)
+ if t is nn.Conv2d:
+ pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
+ elif t is nn.BatchNorm2d:
+ m.eps = 1e-3
+ m.momentum = 0.03
+ elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
+ m.inplace = True
+
+
+def find_modules(model, mclass=nn.Conv2d):
+ # Finds layer indices matching module class 'mclass'
+ return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
+
+
+def sparsity(model):
+ # Return global model sparsity
+ a, b = 0., 0.
+ for p in model.parameters():
+ a += p.numel()
+ b += (p == 0).sum()
+ return b / a
+
+
+def prune(model, amount=0.3):
+ # Prune model to requested global sparsity
+ import torch.nn.utils.prune as prune
+ print('Pruning model... ', end='')
+ for name, m in model.named_modules():
+ if isinstance(m, nn.Conv2d):
+ prune.l1_unstructured(m, name='weight', amount=amount) # prune
+ prune.remove(m, 'weight') # make permanent
+ print(' %.3g global sparsity' % sparsity(model))
+
+
+def fuse_conv_and_bn(conv, bn):
+ # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
+ fusedconv = nn.Conv2d(conv.in_channels,
+ conv.out_channels,
+ kernel_size=conv.kernel_size,
+ stride=conv.stride,
+ padding=conv.padding,
+ groups=conv.groups,
+ bias=True).requires_grad_(False).to(conv.weight.device)
+
+ # prepare filters
+ w_conv = conv.weight.clone().view(conv.out_channels, -1)
+ w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
+ fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
+
+ # prepare spatial bias
+ b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
+ b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
+ fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
+
+ return fusedconv
+
+
+def model_info(model, verbose=False, img_size=640):
+ # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
+ n_p = sum(x.numel() for x in model.parameters()) # number parameters
+ n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
+ if verbose:
+ print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
+ for i, (name, p) in enumerate(model.named_parameters()):
+ name = name.replace('module_list.', '')
+ print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
+ (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
+
+ try: # FLOPS
+ from thop import profile
+ stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
+ img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
+ flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
+ img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
+ fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
+ except (ImportError, Exception):
+ fs = ''
+
+ logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
+
+
+def load_classifier(name='resnet101', n=2):
+ # Loads a pretrained model reshaped to n-class output
+ model = torchvision.models.__dict__[name](pretrained=True)
+
+ # ResNet model properties
+ # input_size = [3, 224, 224]
+ # input_space = 'RGB'
+ # input_range = [0, 1]
+ # mean = [0.485, 0.456, 0.406]
+ # std = [0.229, 0.224, 0.225]
+
+ # Reshape output to n classes
+ filters = model.fc.weight.shape[1]
+ model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
+ model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
+ model.fc.out_features = n
+ return model
+
+
+def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
+ # scales img(bs,3,y,x) by ratio constrained to gs-multiple
+ if ratio == 1.0:
+ return img
+ else:
+ h, w = img.shape[2:]
+ s = (int(h * ratio), int(w * ratio)) # new size
+ img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
+ if not same_shape: # pad/crop img
+ h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
+ return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
+
+
+def copy_attr(a, b, include=(), exclude=()):
+ # Copy attributes from b to a, options to only include [...] and to exclude [...]
+ for k, v in b.__dict__.items():
+ if (len(include) and k not in include) or k.startswith('_') or k in exclude:
+ continue
+ else:
+ setattr(a, k, v)
+
+
+class ModelEMA:
+ """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
+ Keep a moving average of everything in the model state_dict (parameters and buffers).
+ This is intended to allow functionality like
+ https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
+ A smoothed version of the weights is necessary for some training schemes to perform well.
+ This class is sensitive where it is initialized in the sequence of model init,
+ GPU assignment and distributed training wrappers.
+ """
+
+ def __init__(self, model, decay=0.9999, updates=0):
+ # Create EMA
+ self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
+ # if next(model.parameters()).device.type != 'cpu':
+ # self.ema.half() # FP16 EMA
+ self.updates = updates # number of EMA updates
+ self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
+ for p in self.ema.parameters():
+ p.requires_grad_(False)
+
+ def update(self, model):
+ # Update EMA parameters
+ with torch.no_grad():
+ self.updates += 1
+ d = self.decay(self.updates)
+
+ msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
+ for k, v in self.ema.state_dict().items():
+ if v.dtype.is_floating_point:
+ v *= d
+ v += (1. - d) * msd[k].detach()
+
+ def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
+ # Update EMA attributes
+ copy_attr(self.ema, model, include, exclude)
+
+
+class BatchNormXd(torch.nn.modules.batchnorm._BatchNorm):
+ def _check_input_dim(self, input):
+ # The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
+ # is this method that is overwritten by the sub-class
+ # This original goal of this method was for tensor sanity checks
+ # If you're ok bypassing those sanity checks (eg. if you trust your inference
+ # to provide the right dimensional inputs), then you can just use this method
+ # for easy conversion from SyncBatchNorm
+ # (unfortunately, SyncBatchNorm does not store the original class - if it did
+ # we could return the one that was originally created)
+ return
+
+def revert_sync_batchnorm(module):
+ # this is very similar to the function that it is trying to revert:
+ # https://github.com/pytorch/pytorch/blob/c8b3686a3e4ba63dc59e5dcfe5db3430df256833/torch/nn/modules/batchnorm.py#L679
+ module_output = module
+ if isinstance(module, torch.nn.modules.batchnorm.SyncBatchNorm):
+ new_cls = BatchNormXd
+ module_output = BatchNormXd(module.num_features,
+ module.eps, module.momentum,
+ module.affine,
+ module.track_running_stats)
+ if module.affine:
+ with torch.no_grad():
+ module_output.weight = module.weight
+ module_output.bias = module.bias
+ module_output.running_mean = module.running_mean
+ module_output.running_var = module.running_var
+ module_output.num_batches_tracked = module.num_batches_tracked
+ if hasattr(module, "qconfig"):
+ module_output.qconfig = module.qconfig
+ for name, child in module.named_children():
+ module_output.add_module(name, revert_sync_batchnorm(child))
+ del module
+ return module_output
+
+
+class TracedModel(nn.Module):
+
+ def __init__(self, model=None, device=None, img_size=(640,640)):
+ super(TracedModel, self).__init__()
+
+ print(" Convert model to Traced-model... ")
+ self.stride = model.stride
+ self.names = model.names
+ self.model = model
+
+ self.model = revert_sync_batchnorm(self.model)
+ self.model.to('cpu')
+ self.model.eval()
+
+ self.detect_layer = self.model.model[-1]
+ self.model.traced = True
+
+ rand_example = torch.rand(1, 3, img_size, img_size)
+
+ traced_script_module = torch.jit.trace(self.model, rand_example, strict=False)
+ #traced_script_module = torch.jit.script(self.model)
+ traced_script_module.save("traced_model.pt")
+ print(" traced_script_module saved! ")
+ self.model = traced_script_module
+ self.model.to(device)
+ self.detect_layer.to(device)
+ print(" model is traced! \n")
+
+ def forward(self, x, augment=False, profile=False):
+ out = self.model(x)
+ out = self.detect_layer(out)
+ return out
\ No newline at end of file
diff --git a/utils/wandb_logging/__init__.py b/utils/wandb_logging/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..84952a8167bc2975913a6def6b4f027d566552a9
--- /dev/null
+++ b/utils/wandb_logging/__init__.py
@@ -0,0 +1 @@
+# init
\ No newline at end of file
diff --git a/utils/wandb_logging/log_dataset.py b/utils/wandb_logging/log_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..74cd6c6cd3b182572a6e5bec68de02a9bd0d552d
--- /dev/null
+++ b/utils/wandb_logging/log_dataset.py
@@ -0,0 +1,24 @@
+import argparse
+
+import yaml
+
+from wandb_utils import WandbLogger
+
+WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
+
+
+def create_dataset_artifact(opt):
+ with open(opt.data) as f:
+ data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
+ logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation')
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
+ parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
+ parser.add_argument('--project', type=str, default='YOLOR', help='name of W&B Project')
+ opt = parser.parse_args()
+ opt.resume = False # Explicitly disallow resume check for dataset upload job
+
+ create_dataset_artifact(opt)
diff --git a/utils/wandb_logging/wandb_utils.py b/utils/wandb_logging/wandb_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..aec7c5f486f962b7b59198f40a1edb5a79824afe
--- /dev/null
+++ b/utils/wandb_logging/wandb_utils.py
@@ -0,0 +1,306 @@
+import json
+import sys
+from pathlib import Path
+
+import torch
+import yaml
+from tqdm import tqdm
+
+sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path
+from utils.datasets import LoadImagesAndLabels
+from utils.datasets import img2label_paths
+from utils.general import colorstr, xywh2xyxy, check_dataset
+
+try:
+ import wandb
+ from wandb import init, finish
+except ImportError:
+ wandb = None
+
+WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
+
+
+def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
+ return from_string[len(prefix):]
+
+
+def check_wandb_config_file(data_config_file):
+ wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
+ if Path(wandb_config).is_file():
+ return wandb_config
+ return data_config_file
+
+
+def get_run_info(run_path):
+ run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
+ run_id = run_path.stem
+ project = run_path.parent.stem
+ model_artifact_name = 'run_' + run_id + '_model'
+ return run_id, project, model_artifact_name
+
+
+def check_wandb_resume(opt):
+ process_wandb_config_ddp_mode(opt) if opt.global_rank not in [-1, 0] else None
+ if isinstance(opt.resume, str):
+ if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
+ if opt.global_rank not in [-1, 0]: # For resuming DDP runs
+ run_id, project, model_artifact_name = get_run_info(opt.resume)
+ api = wandb.Api()
+ artifact = api.artifact(project + '/' + model_artifact_name + ':latest')
+ modeldir = artifact.download()
+ opt.weights = str(Path(modeldir) / "last.pt")
+ return True
+ return None
+
+
+def process_wandb_config_ddp_mode(opt):
+ with open(opt.data) as f:
+ data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
+ train_dir, val_dir = None, None
+ if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
+ api = wandb.Api()
+ train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
+ train_dir = train_artifact.download()
+ train_path = Path(train_dir) / 'data/images/'
+ data_dict['train'] = str(train_path)
+
+ if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
+ api = wandb.Api()
+ val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
+ val_dir = val_artifact.download()
+ val_path = Path(val_dir) / 'data/images/'
+ data_dict['val'] = str(val_path)
+ if train_dir or val_dir:
+ ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
+ with open(ddp_data_path, 'w') as f:
+ yaml.dump(data_dict, f)
+ opt.data = ddp_data_path
+
+
+class WandbLogger():
+ def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
+ # Pre-training routine --
+ self.job_type = job_type
+ self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict
+ # It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call
+ if isinstance(opt.resume, str): # checks resume from artifact
+ if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
+ run_id, project, model_artifact_name = get_run_info(opt.resume)
+ model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
+ assert wandb, 'install wandb to resume wandb runs'
+ # Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
+ self.wandb_run = wandb.init(id=run_id, project=project, resume='allow')
+ opt.resume = model_artifact_name
+ elif self.wandb:
+ self.wandb_run = wandb.init(config=opt,
+ resume="allow",
+ project='YOLOR' if opt.project == 'runs/train' else Path(opt.project).stem,
+ name=name,
+ job_type=job_type,
+ id=run_id) if not wandb.run else wandb.run
+ if self.wandb_run:
+ if self.job_type == 'Training':
+ if not opt.resume:
+ wandb_data_dict = self.check_and_upload_dataset(opt) if opt.upload_dataset else data_dict
+ # Info useful for resuming from artifacts
+ self.wandb_run.config.opt = vars(opt)
+ self.wandb_run.config.data_dict = wandb_data_dict
+ self.data_dict = self.setup_training(opt, data_dict)
+ if self.job_type == 'Dataset Creation':
+ self.data_dict = self.check_and_upload_dataset(opt)
+ else:
+ prefix = colorstr('wandb: ')
+ print(f"{prefix}Install Weights & Biases for YOLOR logging with 'pip install wandb' (recommended)")
+
+ def check_and_upload_dataset(self, opt):
+ assert wandb, 'Install wandb to upload dataset'
+ check_dataset(self.data_dict)
+ config_path = self.log_dataset_artifact(opt.data,
+ opt.single_cls,
+ 'YOLOR' if opt.project == 'runs/train' else Path(opt.project).stem)
+ print("Created dataset config file ", config_path)
+ with open(config_path) as f:
+ wandb_data_dict = yaml.load(f, Loader=yaml.SafeLoader)
+ return wandb_data_dict
+
+ def setup_training(self, opt, data_dict):
+ self.log_dict, self.current_epoch, self.log_imgs = {}, 0, 16 # Logging Constants
+ self.bbox_interval = opt.bbox_interval
+ if isinstance(opt.resume, str):
+ modeldir, _ = self.download_model_artifact(opt)
+ if modeldir:
+ self.weights = Path(modeldir) / "last.pt"
+ config = self.wandb_run.config
+ opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
+ self.weights), config.save_period, config.total_batch_size, config.bbox_interval, config.epochs, \
+ config.opt['hyp']
+ data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume
+ if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download
+ self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
+ opt.artifact_alias)
+ self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'),
+ opt.artifact_alias)
+ self.result_artifact, self.result_table, self.val_table, self.weights = None, None, None, None
+ if self.train_artifact_path is not None:
+ train_path = Path(self.train_artifact_path) / 'data/images/'
+ data_dict['train'] = str(train_path)
+ if self.val_artifact_path is not None:
+ val_path = Path(self.val_artifact_path) / 'data/images/'
+ data_dict['val'] = str(val_path)
+ self.val_table = self.val_artifact.get("val")
+ self.map_val_table_path()
+ if self.val_artifact is not None:
+ self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
+ self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
+ if opt.bbox_interval == -1:
+ self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
+ return data_dict
+
+ def download_dataset_artifact(self, path, alias):
+ if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
+ dataset_artifact = wandb.use_artifact(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
+ assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
+ datadir = dataset_artifact.download()
+ return datadir, dataset_artifact
+ return None, None
+
+ def download_model_artifact(self, opt):
+ if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
+ model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
+ assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
+ modeldir = model_artifact.download()
+ epochs_trained = model_artifact.metadata.get('epochs_trained')
+ total_epochs = model_artifact.metadata.get('total_epochs')
+ assert epochs_trained < total_epochs, 'training to %g epochs is finished, nothing to resume.' % (
+ total_epochs)
+ return modeldir, model_artifact
+ return None, None
+
+ def log_model(self, path, opt, epoch, fitness_score, best_model=False):
+ model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
+ 'original_url': str(path),
+ 'epochs_trained': epoch + 1,
+ 'save period': opt.save_period,
+ 'project': opt.project,
+ 'total_epochs': opt.epochs,
+ 'fitness_score': fitness_score
+ })
+ model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
+ wandb.log_artifact(model_artifact,
+ aliases=['latest', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
+ print("Saving model artifact on epoch ", epoch + 1)
+
+ def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
+ with open(data_file) as f:
+ data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
+ nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
+ names = {k: v for k, v in enumerate(names)} # to index dictionary
+ self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
+ data['train']), names, name='train') if data.get('train') else None
+ self.val_artifact = self.create_dataset_table(LoadImagesAndLabels(
+ data['val']), names, name='val') if data.get('val') else None
+ if data.get('train'):
+ data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
+ if data.get('val'):
+ data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
+ path = data_file if overwrite_config else '_wandb.'.join(data_file.rsplit('.', 1)) # updated data.yaml path
+ data.pop('download', None)
+ with open(path, 'w') as f:
+ yaml.dump(data, f)
+
+ if self.job_type == 'Training': # builds correct artifact pipeline graph
+ self.wandb_run.use_artifact(self.val_artifact)
+ self.wandb_run.use_artifact(self.train_artifact)
+ self.val_artifact.wait()
+ self.val_table = self.val_artifact.get('val')
+ self.map_val_table_path()
+ else:
+ self.wandb_run.log_artifact(self.train_artifact)
+ self.wandb_run.log_artifact(self.val_artifact)
+ return path
+
+ def map_val_table_path(self):
+ self.val_table_map = {}
+ print("Mapping dataset")
+ for i, data in enumerate(tqdm(self.val_table.data)):
+ self.val_table_map[data[3]] = data[0]
+
+ def create_dataset_table(self, dataset, class_to_id, name='dataset'):
+ # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
+ artifact = wandb.Artifact(name=name, type="dataset")
+ img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
+ img_files = tqdm(dataset.img_files) if not img_files else img_files
+ for img_file in img_files:
+ if Path(img_file).is_dir():
+ artifact.add_dir(img_file, name='data/images')
+ labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
+ artifact.add_dir(labels_path, name='data/labels')
+ else:
+ artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
+ label_file = Path(img2label_paths([img_file])[0])
+ artifact.add_file(str(label_file),
+ name='data/labels/' + label_file.name) if label_file.exists() else None
+ table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
+ class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
+ for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
+ height, width = shapes[0]
+ labels[:, 2:] = (xywh2xyxy(labels[:, 2:].view(-1, 4))) * torch.Tensor([width, height, width, height])
+ box_data, img_classes = [], {}
+ for cls, *xyxy in labels[:, 1:].tolist():
+ cls = int(cls)
+ box_data.append({"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
+ "class_id": cls,
+ "box_caption": "%s" % (class_to_id[cls]),
+ "scores": {"acc": 1},
+ "domain": "pixel"})
+ img_classes[cls] = class_to_id[cls]
+ boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
+ table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes),
+ Path(paths).name)
+ artifact.add(table, name)
+ return artifact
+
+ def log_training_progress(self, predn, path, names):
+ if self.val_table and self.result_table:
+ class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
+ box_data = []
+ total_conf = 0
+ for *xyxy, conf, cls in predn.tolist():
+ if conf >= 0.25:
+ box_data.append(
+ {"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
+ "class_id": int(cls),
+ "box_caption": "%s %.3f" % (names[cls], conf),
+ "scores": {"class_score": conf},
+ "domain": "pixel"})
+ total_conf = total_conf + conf
+ boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
+ id = self.val_table_map[Path(path).name]
+ self.result_table.add_data(self.current_epoch,
+ id,
+ wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
+ total_conf / max(1, len(box_data))
+ )
+
+ def log(self, log_dict):
+ if self.wandb_run:
+ for key, value in log_dict.items():
+ self.log_dict[key] = value
+
+ def end_epoch(self, best_result=False):
+ if self.wandb_run:
+ wandb.log(self.log_dict)
+ self.log_dict = {}
+ if self.result_artifact:
+ train_results = wandb.JoinedTable(self.val_table, self.result_table, "id")
+ self.result_artifact.add(train_results, 'result')
+ wandb.log_artifact(self.result_artifact, aliases=['latest', 'epoch ' + str(self.current_epoch),
+ ('best' if best_result else '')])
+ self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
+ self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
+
+ def finish_run(self):
+ if self.wandb_run:
+ if self.log_dict:
+ wandb.log(self.log_dict)
+ wandb.run.finish()