from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import soundfile as sf import torch import gradio as gr # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-robust-ft-libri-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-robust-ft-libri-960h") # define function to read in sound file def map_to_array(file): speech, _ = sf.read(file) return speech # tokenize def inference(audio): input_values = processor(map_to_array(audio.name), return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) return transcription[0] inputs = gr.inputs.Audio(label="Input Audio", type="file") outputs = gr.outputs.Textbox(label="Output Text") title = "Robust wav2vec 2.0" description = "Gradio demo for Robust wav2vec 2.0. To use it, simply upload your audio, or click one of the examples to load them. Read more at the links below. Currently supports .wav and .flac files" article = "
Robust wav2vec 2.0: Analyzing Domain Shift in Self-Supervised Pre-Training | Github Repo
" examples=[['poem.wav']] gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()