from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import soundfile as sf import torch import gradio as gr # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-robust-ft-libri-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-robust-ft-libri-960h") # define function to read in sound file def map_to_array(file): speech, _ = sf.read(file) return speech # tokenize def inference(audio): input_values = processor(map_to_array(audio.name), return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) return transcription[0] inputs = gr.inputs.Audio(label="Input Audio", type="file") outputs = gr.outputs.Textbox(label="Output Text") title = "Robust wav2vec 2.0" description = "Gradio demo for Robust wav2vec 2.0. To use it, simply upload your audio, or click one of the examples to load them. Read more at the links below." article = "

Robust wav2vec 2.0: Analyzing Domain Shift in Self-Supervised Pre-Training | Github Repo

" gr.Interface(inference, inputs, outputs, title=title, description=description, article=article).launch()