import gradio as gr from groq import Groq def chatbot(message, history, api_key): # Initialize Groq client with the provided API key client = Groq(api_key=api_key) # Prepare the messages including the conversation history messages = [ {"role": "system", "content": "You are a helpful assistant."} ] for human, assistant in history: messages.append({"role": "user", "content": human}) messages.append({"role": "assistant", "content": assistant}) messages.append({"role": "user", "content": message}) try: # Create the chat completion completion = client.chat.completions.create( model="llama-3.2-90b-text-preview", messages=messages, temperature=1, max_tokens=1024, top_p=1, stream=True, stop=None, ) # Stream the response partial_message = "" for chunk in completion: if chunk.choices[0].delta.content is not None: partial_message += chunk.choices[0].delta.content yield partial_message except Exception as e: yield f"Error: {str(e)}" # Create the Gradio interface with gr.Blocks(theme="soft") as iface: gr.Markdown("# Groq LLaMA 3.2 90B Chatbot") gr.Markdown("Chat with the LLaMA 3.2 90B model using Groq API") with gr.Row(): api_key_input = gr.Textbox( label="Enter your Groq API Key", placeholder="sk-...", type="password" ) chatbot = gr.ChatInterface( fn=chatbot, additional_inputs=[api_key_input], examples=[ ["Tell me a short story about a robot learning to paint."], ["Explain quantum computing in simple terms."], ["What are some creative ways to reduce plastic waste?"], ], retry_btn=None, undo_btn="Delete Last", clear_btn="Clear", ) # Launch the interface iface.launch()