import gradio as gr import numpy as np import io from pydub import AudioSegment import tempfile import os import base64 import openai import time from dataclasses import dataclass, field from threading import Lock @dataclass class AppState: stream: np.ndarray | None = None sampling_rate: int = 0 pause_detected: bool = False started_talking: bool = False stopped: bool = False conversation: list = field(default_factory=list) client: openai.OpenAI = None # Global lock for thread safety state_lock = Lock() def create_client(api_key): return openai.OpenAI( base_url="https://llama3-1-8b.lepton.run/api/v1/", api_key=api_key ) def process_audio(audio: tuple, state: AppState): if state.stream is None: state.stream = audio[1] state.sampling_rate = audio[0] else: state.stream = np.concatenate((state.stream, audio[1])) # Simple pause detection (you might want to implement a more sophisticated method) if len(state.stream) > state.sampling_rate * 0.5: # 0.5 second of silence state.pause_detected = True return gr.Audio(recording=False), state return None, state def generate_response_and_audio(audio_bytes: bytes, state: AppState): if state.client is None: raise gr.Error("Please enter a valid API key first.") format_ = "opus" bitrate = 16 audio_data = base64.b64encode(audio_bytes).decode() try: stream = state.client.chat.completions.create( extra_body={ "require_audio": True, "tts_preset_id": "jessica", "tts_audio_format": format_, "tts_audio_bitrate": bitrate }, model="llama3.1-8b", messages=[{"role": "user", "content": [{"type": "audio", "data": audio_data}]}], temperature=0.5, max_tokens=128, stream=True, ) full_response = "" audios = [] for chunk in stream: if not chunk.choices: continue content = chunk.choices[0].delta.content audio = getattr(chunk.choices[0], 'audio', []) if content: full_response += content yield full_response, None, state if audio: audios.extend(audio) audio_data = b''.join([base64.b64decode(a) for a in audios]) yield full_response, audio_data, state state.conversation.append({"role": "user", "content": "Audio input"}) state.conversation.append({"role": "assistant", "content": full_response}) except Exception as e: raise gr.Error(f"Error during audio streaming: {e}") def response(state: AppState): if not state.pause_detected: return None, None, AppState() audio_buffer = io.BytesIO() segment = AudioSegment( state.stream.tobytes(), frame_rate=state.sampling_rate, sample_width=state.stream.dtype.itemsize, channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]), ) segment.export(audio_buffer, format="wav") generator = generate_response_and_audio(audio_buffer.getvalue(), state) # Process the generator to get the final results final_text = "" final_audio = None for text, audio, updated_state in generator: final_text = text if text else final_text final_audio = audio if audio else final_audio state = updated_state # Update the chatbot with the final conversation chatbot_output = state.conversation[-2:] # Get the last two messages (user input and AI response) return chatbot_output, final_audio, state def set_api_key(api_key, state): if not api_key: raise gr.Error("Please enter a valid API key.") state.client = create_client(api_key) return "API key set successfully!", state def start_recording_user(state: AppState): if not state.stopped: return gr.Audio(recording=True) with gr.Blocks() as demo: with gr.Row(): api_key_input = gr.Textbox(type="password", label="Enter your Lepton API Key") set_key_button = gr.Button("Set API Key") api_key_status = gr.Textbox(label="API Key Status", interactive=False) with gr.Row(): with gr.Column(): input_audio = gr.Audio(label="Input Audio", sources="microphone", type="numpy") with gr.Column(): chatbot = gr.Chatbot(label="Conversation", type="messages") output_audio = gr.Audio(label="Output Audio", streaming=True, autoplay=True) state = gr.State(AppState()) set_key_button.click(set_api_key, inputs=[api_key_input, state], outputs=[api_key_status, state]) stream = input_audio.stream( process_audio, [input_audio, state], [input_audio, state], stream_every=0.50, time_limit=30, ) respond = input_audio.stop_recording( response, [state], [chatbot, output_audio, state] ) restart = output_audio.stop( start_recording_user, [state], [input_audio] ) cancel = gr.Button("Stop Conversation", variant="stop") cancel.click( lambda: (AppState(stopped=True), gr.Audio(recording=False)), None, [state, input_audio], cancels=[respond, restart] ) demo.launch()