############################################################ # The contents below have been combined using files in the # # following repository: # # https://github.com/richzhang/PerceptualSimilarity # ############################################################ ############################################################ # __init__.py # ############################################################ import numpy as np from skimage.metrics import structural_similarity import torch from saicinpainting.utils import get_shape class PerceptualLoss(torch.nn.Module): def __init__(self, model='net-lin', net='alex', colorspace='rgb', model_path=None, spatial=False, use_gpu=True): # VGG using our perceptually-learned weights (LPIPS metric) # def __init__(self, model='net', net='vgg', use_gpu=True): # "default" way of using VGG as a perceptual loss super(PerceptualLoss, self).__init__() self.use_gpu = use_gpu self.spatial = spatial self.model = DistModel() self.model.initialize(model=model, net=net, use_gpu=use_gpu, colorspace=colorspace, model_path=model_path, spatial=self.spatial) def forward(self, pred, target, normalize=True): """ Pred and target are Variables. If normalize is True, assumes the images are between [0,1] and then scales them between [-1,+1] If normalize is False, assumes the images are already between [-1,+1] Inputs pred and target are Nx3xHxW Output pytorch Variable N long """ if normalize: target = 2 * target - 1 pred = 2 * pred - 1 return self.model(target, pred) def normalize_tensor(in_feat, eps=1e-10): norm_factor = torch.sqrt(torch.sum(in_feat ** 2, dim=1, keepdim=True)) return in_feat / (norm_factor + eps) def l2(p0, p1, range=255.): return .5 * np.mean((p0 / range - p1 / range) ** 2) def psnr(p0, p1, peak=255.): return 10 * np.log10(peak ** 2 / np.mean((1. * p0 - 1. * p1) ** 2)) def dssim(p0, p1, range=255.): return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2. def rgb2lab(in_img, mean_cent=False): from skimage import color img_lab = color.rgb2lab(in_img) if (mean_cent): img_lab[:, :, 0] = img_lab[:, :, 0] - 50 return img_lab def tensor2np(tensor_obj): # change dimension of a tensor object into a numpy array return tensor_obj[0].cpu().float().numpy().transpose((1, 2, 0)) def np2tensor(np_obj): # change dimenion of np array into tensor array return torch.Tensor(np_obj[:, :, :, np.newaxis].transpose((3, 2, 0, 1))) def tensor2tensorlab(image_tensor, to_norm=True, mc_only=False): # image tensor to lab tensor from skimage import color img = tensor2im(image_tensor) img_lab = color.rgb2lab(img) if (mc_only): img_lab[:, :, 0] = img_lab[:, :, 0] - 50 if (to_norm and not mc_only): img_lab[:, :, 0] = img_lab[:, :, 0] - 50 img_lab = img_lab / 100. return np2tensor(img_lab) def tensorlab2tensor(lab_tensor, return_inbnd=False): from skimage import color import warnings warnings.filterwarnings("ignore") lab = tensor2np(lab_tensor) * 100. lab[:, :, 0] = lab[:, :, 0] + 50 rgb_back = 255. * np.clip(color.lab2rgb(lab.astype('float')), 0, 1) if (return_inbnd): # convert back to lab, see if we match lab_back = color.rgb2lab(rgb_back.astype('uint8')) mask = 1. * np.isclose(lab_back, lab, atol=2.) mask = np2tensor(np.prod(mask, axis=2)[:, :, np.newaxis]) return (im2tensor(rgb_back), mask) else: return im2tensor(rgb_back) def rgb2lab(input): from skimage import color return color.rgb2lab(input / 255.) def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255. / 2.): image_numpy = image_tensor[0].cpu().float().numpy() image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor return image_numpy.astype(imtype) def im2tensor(image, imtype=np.uint8, cent=1., factor=255. / 2.): return torch.Tensor((image / factor - cent) [:, :, :, np.newaxis].transpose((3, 2, 0, 1))) def tensor2vec(vector_tensor): return vector_tensor.data.cpu().numpy()[:, :, 0, 0] def voc_ap(rec, prec, use_07_metric=False): """ ap = voc_ap(rec, prec, [use_07_metric]) Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11 point method (default:False). """ if use_07_metric: # 11 point metric ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11. else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255. / 2.): # def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=1.): image_numpy = image_tensor[0].cpu().float().numpy() image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor return image_numpy.astype(imtype) def im2tensor(image, imtype=np.uint8, cent=1., factor=255. / 2.): # def im2tensor(image, imtype=np.uint8, cent=1., factor=1.): return torch.Tensor((image / factor - cent) [:, :, :, np.newaxis].transpose((3, 2, 0, 1))) ############################################################ # base_model.py # ############################################################ class BaseModel(torch.nn.Module): def __init__(self): super().__init__() def name(self): return 'BaseModel' def initialize(self, use_gpu=True): self.use_gpu = use_gpu def forward(self): pass def get_image_paths(self): pass def optimize_parameters(self): pass def get_current_visuals(self): return self.input def get_current_errors(self): return {} def save(self, label): pass # helper saving function that can be used by subclasses def save_network(self, network, path, network_label, epoch_label): save_filename = '%s_net_%s.pth' % (epoch_label, network_label) save_path = os.path.join(path, save_filename) torch.save(network.state_dict(), save_path) # helper loading function that can be used by subclasses def load_network(self, network, network_label, epoch_label): save_filename = '%s_net_%s.pth' % (epoch_label, network_label) save_path = os.path.join(self.save_dir, save_filename) print('Loading network from %s' % save_path) network.load_state_dict(torch.load(save_path, map_location='cpu')) def update_learning_rate(): pass def get_image_paths(self): return self.image_paths def save_done(self, flag=False): np.save(os.path.join(self.save_dir, 'done_flag'), flag) np.savetxt(os.path.join(self.save_dir, 'done_flag'), [flag, ], fmt='%i') ############################################################ # dist_model.py # ############################################################ import os from collections import OrderedDict from scipy.ndimage import zoom from tqdm import tqdm class DistModel(BaseModel): def name(self): return self.model_name def initialize(self, model='net-lin', net='alex', colorspace='Lab', pnet_rand=False, pnet_tune=False, model_path=None, use_gpu=True, printNet=False, spatial=False, is_train=False, lr=.0001, beta1=0.5, version='0.1'): ''' INPUTS model - ['net-lin'] for linearly calibrated network ['net'] for off-the-shelf network ['L2'] for L2 distance in Lab colorspace ['SSIM'] for ssim in RGB colorspace net - ['squeeze','alex','vgg'] model_path - if None, will look in weights/[NET_NAME].pth colorspace - ['Lab','RGB'] colorspace to use for L2 and SSIM use_gpu - bool - whether or not to use a GPU printNet - bool - whether or not to print network architecture out spatial - bool - whether to output an array containing varying distances across spatial dimensions spatial_shape - if given, output spatial shape. if None then spatial shape is determined automatically via spatial_factor (see below). spatial_factor - if given, specifies upsampling factor relative to the largest spatial extent of a convolutional layer. if None then resized to size of input images. spatial_order - spline order of filter for upsampling in spatial mode, by default 1 (bilinear). is_train - bool - [True] for training mode lr - float - initial learning rate beta1 - float - initial momentum term for adam version - 0.1 for latest, 0.0 was original (with a bug) ''' BaseModel.initialize(self, use_gpu=use_gpu) self.model = model self.net = net self.is_train = is_train self.spatial = spatial self.model_name = '%s [%s]' % (model, net) if (self.model == 'net-lin'): # pretrained net + linear layer self.net = PNetLin(pnet_rand=pnet_rand, pnet_tune=pnet_tune, pnet_type=net, use_dropout=True, spatial=spatial, version=version, lpips=True) kw = dict(map_location='cpu') if (model_path is None): import inspect model_path = os.path.abspath( os.path.join(os.path.dirname(__file__), '..', '..', '..', 'models', 'lpips_models', f'{net}.pth')) if (not is_train): self.net.load_state_dict(torch.load(model_path, **kw), strict=False) elif (self.model == 'net'): # pretrained network self.net = PNetLin(pnet_rand=pnet_rand, pnet_type=net, lpips=False) elif (self.model in ['L2', 'l2']): self.net = L2(use_gpu=use_gpu, colorspace=colorspace) # not really a network, only for testing self.model_name = 'L2' elif (self.model in ['DSSIM', 'dssim', 'SSIM', 'ssim']): self.net = DSSIM(use_gpu=use_gpu, colorspace=colorspace) self.model_name = 'SSIM' else: raise ValueError("Model [%s] not recognized." % self.model) self.trainable_parameters = list(self.net.parameters()) if self.is_train: # training mode # extra network on top to go from distances (d0,d1) => predicted human judgment (h*) self.rankLoss = BCERankingLoss() self.trainable_parameters += list(self.rankLoss.net.parameters()) self.lr = lr self.old_lr = lr self.optimizer_net = torch.optim.Adam(self.trainable_parameters, lr=lr, betas=(beta1, 0.999)) else: # test mode self.net.eval() # if (use_gpu): # self.net.to(gpu_ids[0]) # self.net = torch.nn.DataParallel(self.net, device_ids=gpu_ids) # if (self.is_train): # self.rankLoss = self.rankLoss.to(device=gpu_ids[0]) # just put this on GPU0 if (printNet): print('---------- Networks initialized -------------') print_network(self.net) print('-----------------------------------------------') def forward(self, in0, in1, retPerLayer=False): ''' Function computes the distance between image patches in0 and in1 INPUTS in0, in1 - torch.Tensor object of shape Nx3xXxY - image patch scaled to [-1,1] OUTPUT computed distances between in0 and in1 ''' return self.net(in0, in1, retPerLayer=retPerLayer) # ***** TRAINING FUNCTIONS ***** def optimize_parameters(self): self.forward_train() self.optimizer_net.zero_grad() self.backward_train() self.optimizer_net.step() self.clamp_weights() def clamp_weights(self): for module in self.net.modules(): if (hasattr(module, 'weight') and module.kernel_size == (1, 1)): module.weight.data = torch.clamp(module.weight.data, min=0) def set_input(self, data): self.input_ref = data['ref'] self.input_p0 = data['p0'] self.input_p1 = data['p1'] self.input_judge = data['judge'] # if (self.use_gpu): # self.input_ref = self.input_ref.to(device=self.gpu_ids[0]) # self.input_p0 = self.input_p0.to(device=self.gpu_ids[0]) # self.input_p1 = self.input_p1.to(device=self.gpu_ids[0]) # self.input_judge = self.input_judge.to(device=self.gpu_ids[0]) # self.var_ref = Variable(self.input_ref, requires_grad=True) # self.var_p0 = Variable(self.input_p0, requires_grad=True) # self.var_p1 = Variable(self.input_p1, requires_grad=True) def forward_train(self): # run forward pass # print(self.net.module.scaling_layer.shift) # print(torch.norm(self.net.module.net.slice1[0].weight).item(), torch.norm(self.net.module.lin0.model[1].weight).item()) assert False, "We shoud've not get here when using LPIPS as a metric" self.d0 = self(self.var_ref, self.var_p0) self.d1 = self(self.var_ref, self.var_p1) self.acc_r = self.compute_accuracy(self.d0, self.d1, self.input_judge) self.var_judge = Variable(1. * self.input_judge).view(self.d0.size()) self.loss_total = self.rankLoss(self.d0, self.d1, self.var_judge * 2. - 1.) return self.loss_total def backward_train(self): torch.mean(self.loss_total).backward() def compute_accuracy(self, d0, d1, judge): ''' d0, d1 are Variables, judge is a Tensor ''' d1_lt_d0 = (d1 < d0).cpu().data.numpy().flatten() judge_per = judge.cpu().numpy().flatten() return d1_lt_d0 * judge_per + (1 - d1_lt_d0) * (1 - judge_per) def get_current_errors(self): retDict = OrderedDict([('loss_total', self.loss_total.data.cpu().numpy()), ('acc_r', self.acc_r)]) for key in retDict.keys(): retDict[key] = np.mean(retDict[key]) return retDict def get_current_visuals(self): zoom_factor = 256 / self.var_ref.data.size()[2] ref_img = tensor2im(self.var_ref.data) p0_img = tensor2im(self.var_p0.data) p1_img = tensor2im(self.var_p1.data) ref_img_vis = zoom(ref_img, [zoom_factor, zoom_factor, 1], order=0) p0_img_vis = zoom(p0_img, [zoom_factor, zoom_factor, 1], order=0) p1_img_vis = zoom(p1_img, [zoom_factor, zoom_factor, 1], order=0) return OrderedDict([('ref', ref_img_vis), ('p0', p0_img_vis), ('p1', p1_img_vis)]) def save(self, path, label): if (self.use_gpu): self.save_network(self.net.module, path, '', label) else: self.save_network(self.net, path, '', label) self.save_network(self.rankLoss.net, path, 'rank', label) def update_learning_rate(self, nepoch_decay): lrd = self.lr / nepoch_decay lr = self.old_lr - lrd for param_group in self.optimizer_net.param_groups: param_group['lr'] = lr print('update lr [%s] decay: %f -> %f' % (type, self.old_lr, lr)) self.old_lr = lr def score_2afc_dataset(data_loader, func, name=''): ''' Function computes Two Alternative Forced Choice (2AFC) score using distance function 'func' in dataset 'data_loader' INPUTS data_loader - CustomDatasetDataLoader object - contains a TwoAFCDataset inside func - callable distance function - calling d=func(in0,in1) should take 2 pytorch tensors with shape Nx3xXxY, and return numpy array of length N OUTPUTS [0] - 2AFC score in [0,1], fraction of time func agrees with human evaluators [1] - dictionary with following elements d0s,d1s - N arrays containing distances between reference patch to perturbed patches gts - N array in [0,1], preferred patch selected by human evaluators (closer to "0" for left patch p0, "1" for right patch p1, "0.6" means 60pct people preferred right patch, 40pct preferred left) scores - N array in [0,1], corresponding to what percentage function agreed with humans CONSTS N - number of test triplets in data_loader ''' d0s = [] d1s = [] gts = [] for data in tqdm(data_loader.load_data(), desc=name): d0s += func(data['ref'], data['p0']).data.cpu().numpy().flatten().tolist() d1s += func(data['ref'], data['p1']).data.cpu().numpy().flatten().tolist() gts += data['judge'].cpu().numpy().flatten().tolist() d0s = np.array(d0s) d1s = np.array(d1s) gts = np.array(gts) scores = (d0s < d1s) * (1. - gts) + (d1s < d0s) * gts + (d1s == d0s) * .5 return (np.mean(scores), dict(d0s=d0s, d1s=d1s, gts=gts, scores=scores)) def score_jnd_dataset(data_loader, func, name=''): ''' Function computes JND score using distance function 'func' in dataset 'data_loader' INPUTS data_loader - CustomDatasetDataLoader object - contains a JNDDataset inside func - callable distance function - calling d=func(in0,in1) should take 2 pytorch tensors with shape Nx3xXxY, and return pytorch array of length N OUTPUTS [0] - JND score in [0,1], mAP score (area under precision-recall curve) [1] - dictionary with following elements ds - N array containing distances between two patches shown to human evaluator sames - N array containing fraction of people who thought the two patches were identical CONSTS N - number of test triplets in data_loader ''' ds = [] gts = [] for data in tqdm(data_loader.load_data(), desc=name): ds += func(data['p0'], data['p1']).data.cpu().numpy().tolist() gts += data['same'].cpu().numpy().flatten().tolist() sames = np.array(gts) ds = np.array(ds) sorted_inds = np.argsort(ds) ds_sorted = ds[sorted_inds] sames_sorted = sames[sorted_inds] TPs = np.cumsum(sames_sorted) FPs = np.cumsum(1 - sames_sorted) FNs = np.sum(sames_sorted) - TPs precs = TPs / (TPs + FPs) recs = TPs / (TPs + FNs) score = voc_ap(recs, precs) return (score, dict(ds=ds, sames=sames)) ############################################################ # networks_basic.py # ############################################################ import torch.nn as nn from torch.autograd import Variable import numpy as np def spatial_average(in_tens, keepdim=True): return in_tens.mean([2, 3], keepdim=keepdim) def upsample(in_tens, out_H=64): # assumes scale factor is same for H and W in_H = in_tens.shape[2] scale_factor = 1. * out_H / in_H return nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=False)(in_tens) # Learned perceptual metric class PNetLin(nn.Module): def __init__(self, pnet_type='vgg', pnet_rand=False, pnet_tune=False, use_dropout=True, spatial=False, version='0.1', lpips=True): super(PNetLin, self).__init__() self.pnet_type = pnet_type self.pnet_tune = pnet_tune self.pnet_rand = pnet_rand self.spatial = spatial self.lpips = lpips self.version = version self.scaling_layer = ScalingLayer() if (self.pnet_type in ['vgg', 'vgg16']): net_type = vgg16 self.chns = [64, 128, 256, 512, 512] elif (self.pnet_type == 'alex'): net_type = alexnet self.chns = [64, 192, 384, 256, 256] elif (self.pnet_type == 'squeeze'): net_type = squeezenet self.chns = [64, 128, 256, 384, 384, 512, 512] self.L = len(self.chns) self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune) if (lpips): self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) self.lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4] if (self.pnet_type == 'squeeze'): # 7 layers for squeezenet self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout) self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout) self.lins += [self.lin5, self.lin6] def forward(self, in0, in1, retPerLayer=False): # v0.0 - original release had a bug, where input was not scaled in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) if self.version == '0.1' else ( in0, in1) outs0, outs1 = self.net(in0_input), self.net(in1_input) feats0, feats1, diffs = {}, {}, {} for kk in range(self.L): feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk]) diffs[kk] = (feats0[kk] - feats1[kk]) ** 2 if (self.lpips): if (self.spatial): res = [upsample(self.lins[kk].model(diffs[kk]), out_H=in0.shape[2]) for kk in range(self.L)] else: res = [spatial_average(self.lins[kk].model(diffs[kk]), keepdim=True) for kk in range(self.L)] else: if (self.spatial): res = [upsample(diffs[kk].sum(dim=1, keepdim=True), out_H=in0.shape[2]) for kk in range(self.L)] else: res = [spatial_average(diffs[kk].sum(dim=1, keepdim=True), keepdim=True) for kk in range(self.L)] val = res[0] for l in range(1, self.L): val += res[l] if (retPerLayer): return (val, res) else: return val class ScalingLayer(nn.Module): def __init__(self): super(ScalingLayer, self).__init__() self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None]) self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None]) def forward(self, inp): return (inp - self.shift) / self.scale class NetLinLayer(nn.Module): ''' A single linear layer which does a 1x1 conv ''' def __init__(self, chn_in, chn_out=1, use_dropout=False): super(NetLinLayer, self).__init__() layers = [nn.Dropout(), ] if (use_dropout) else [] layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ] self.model = nn.Sequential(*layers) class Dist2LogitLayer(nn.Module): ''' takes 2 distances, puts through fc layers, spits out value between [0,1] (if use_sigmoid is True) ''' def __init__(self, chn_mid=32, use_sigmoid=True): super(Dist2LogitLayer, self).__init__() layers = [nn.Conv2d(5, chn_mid, 1, stride=1, padding=0, bias=True), ] layers += [nn.LeakyReLU(0.2, True), ] layers += [nn.Conv2d(chn_mid, chn_mid, 1, stride=1, padding=0, bias=True), ] layers += [nn.LeakyReLU(0.2, True), ] layers += [nn.Conv2d(chn_mid, 1, 1, stride=1, padding=0, bias=True), ] if (use_sigmoid): layers += [nn.Sigmoid(), ] self.model = nn.Sequential(*layers) def forward(self, d0, d1, eps=0.1): return self.model(torch.cat((d0, d1, d0 - d1, d0 / (d1 + eps), d1 / (d0 + eps)), dim=1)) class BCERankingLoss(nn.Module): def __init__(self, chn_mid=32): super(BCERankingLoss, self).__init__() self.net = Dist2LogitLayer(chn_mid=chn_mid) # self.parameters = list(self.net.parameters()) self.loss = torch.nn.BCELoss() def forward(self, d0, d1, judge): per = (judge + 1.) / 2. self.logit = self.net(d0, d1) return self.loss(self.logit, per) # L2, DSSIM metrics class FakeNet(nn.Module): def __init__(self, use_gpu=True, colorspace='Lab'): super(FakeNet, self).__init__() self.use_gpu = use_gpu self.colorspace = colorspace class L2(FakeNet): def forward(self, in0, in1, retPerLayer=None): assert (in0.size()[0] == 1) # currently only supports batchSize 1 if (self.colorspace == 'RGB'): (N, C, X, Y) = in0.size() value = torch.mean(torch.mean(torch.mean((in0 - in1) ** 2, dim=1).view(N, 1, X, Y), dim=2).view(N, 1, 1, Y), dim=3).view(N) return value elif (self.colorspace == 'Lab'): value = l2(tensor2np(tensor2tensorlab(in0.data, to_norm=False)), tensor2np(tensor2tensorlab(in1.data, to_norm=False)), range=100.).astype('float') ret_var = Variable(torch.Tensor((value,))) # if (self.use_gpu): # ret_var = ret_var.cuda() return ret_var class DSSIM(FakeNet): def forward(self, in0, in1, retPerLayer=None): assert (in0.size()[0] == 1) # currently only supports batchSize 1 if (self.colorspace == 'RGB'): value = dssim(1. * tensor2im(in0.data), 1. * tensor2im(in1.data), range=255.).astype('float') elif (self.colorspace == 'Lab'): value = dssim(tensor2np(tensor2tensorlab(in0.data, to_norm=False)), tensor2np(tensor2tensorlab(in1.data, to_norm=False)), range=100.).astype('float') ret_var = Variable(torch.Tensor((value,))) # if (self.use_gpu): # ret_var = ret_var.cuda() return ret_var def print_network(net): num_params = 0 for param in net.parameters(): num_params += param.numel() print('Network', net) print('Total number of parameters: %d' % num_params) ############################################################ # pretrained_networks.py # ############################################################ from collections import namedtuple import torch from torchvision import models as tv class squeezenet(torch.nn.Module): def __init__(self, requires_grad=False, pretrained=True): super(squeezenet, self).__init__() pretrained_features = tv.squeezenet1_1(pretrained=pretrained).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() self.slice6 = torch.nn.Sequential() self.slice7 = torch.nn.Sequential() self.N_slices = 7 for x in range(2): self.slice1.add_module(str(x), pretrained_features[x]) for x in range(2, 5): self.slice2.add_module(str(x), pretrained_features[x]) for x in range(5, 8): self.slice3.add_module(str(x), pretrained_features[x]) for x in range(8, 10): self.slice4.add_module(str(x), pretrained_features[x]) for x in range(10, 11): self.slice5.add_module(str(x), pretrained_features[x]) for x in range(11, 12): self.slice6.add_module(str(x), pretrained_features[x]) for x in range(12, 13): self.slice7.add_module(str(x), pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, X): h = self.slice1(X) h_relu1 = h h = self.slice2(h) h_relu2 = h h = self.slice3(h) h_relu3 = h h = self.slice4(h) h_relu4 = h h = self.slice5(h) h_relu5 = h h = self.slice6(h) h_relu6 = h h = self.slice7(h) h_relu7 = h vgg_outputs = namedtuple("SqueezeOutputs", ['relu1', 'relu2', 'relu3', 'relu4', 'relu5', 'relu6', 'relu7']) out = vgg_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5, h_relu6, h_relu7) return out class alexnet(torch.nn.Module): def __init__(self, requires_grad=False, pretrained=True): super(alexnet, self).__init__() alexnet_pretrained_features = tv.alexnet(pretrained=pretrained).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() self.N_slices = 5 for x in range(2): self.slice1.add_module(str(x), alexnet_pretrained_features[x]) for x in range(2, 5): self.slice2.add_module(str(x), alexnet_pretrained_features[x]) for x in range(5, 8): self.slice3.add_module(str(x), alexnet_pretrained_features[x]) for x in range(8, 10): self.slice4.add_module(str(x), alexnet_pretrained_features[x]) for x in range(10, 12): self.slice5.add_module(str(x), alexnet_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, X): h = self.slice1(X) h_relu1 = h h = self.slice2(h) h_relu2 = h h = self.slice3(h) h_relu3 = h h = self.slice4(h) h_relu4 = h h = self.slice5(h) h_relu5 = h alexnet_outputs = namedtuple("AlexnetOutputs", ['relu1', 'relu2', 'relu3', 'relu4', 'relu5']) out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5) return out class vgg16(torch.nn.Module): def __init__(self, requires_grad=False, pretrained=True): super(vgg16, self).__init__() vgg_pretrained_features = tv.vgg16(pretrained=pretrained).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() self.N_slices = 5 for x in range(4): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(4, 9): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(9, 16): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(16, 23): self.slice4.add_module(str(x), vgg_pretrained_features[x]) for x in range(23, 30): self.slice5.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, X): h = self.slice1(X) h_relu1_2 = h h = self.slice2(h) h_relu2_2 = h h = self.slice3(h) h_relu3_3 = h h = self.slice4(h) h_relu4_3 = h h = self.slice5(h) h_relu5_3 = h vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3']) out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3) return out class resnet(torch.nn.Module): def __init__(self, requires_grad=False, pretrained=True, num=18): super(resnet, self).__init__() if (num == 18): self.net = tv.resnet18(pretrained=pretrained) elif (num == 34): self.net = tv.resnet34(pretrained=pretrained) elif (num == 50): self.net = tv.resnet50(pretrained=pretrained) elif (num == 101): self.net = tv.resnet101(pretrained=pretrained) elif (num == 152): self.net = tv.resnet152(pretrained=pretrained) self.N_slices = 5 self.conv1 = self.net.conv1 self.bn1 = self.net.bn1 self.relu = self.net.relu self.maxpool = self.net.maxpool self.layer1 = self.net.layer1 self.layer2 = self.net.layer2 self.layer3 = self.net.layer3 self.layer4 = self.net.layer4 def forward(self, X): h = self.conv1(X) h = self.bn1(h) h = self.relu(h) h_relu1 = h h = self.maxpool(h) h = self.layer1(h) h_conv2 = h h = self.layer2(h) h_conv3 = h h = self.layer3(h) h_conv4 = h h = self.layer4(h) h_conv5 = h outputs = namedtuple("Outputs", ['relu1', 'conv2', 'conv3', 'conv4', 'conv5']) out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5) return out