import collections import os import tempfile from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np from PIL import Image import urllib import tensorflow as tf import gradio as gr from subprocess import call import sys import requests url1 = 'https://cdn.pixabay.com/photo/2014/09/07/21/52/city-438393_1280.jpg' r = requests.get(url1, allow_redirects=True) open("city1.jpg", 'wb').write(r.content) url2 = 'https://cdn.pixabay.com/photo/2016/02/19/11/36/canal-1209808_1280.jpg' r = requests.get(url2, allow_redirects=True) open("city2.jpg", 'wb').write(r.content) DatasetInfo = collections.namedtuple( 'DatasetInfo', 'num_classes, label_divisor, thing_list, colormap, class_names') def _cityscapes_label_colormap(): """Creates a label colormap used in CITYSCAPES segmentation benchmark. See more about CITYSCAPES dataset at https://www.cityscapes-dataset.com/ M. Cordts, et al. "The Cityscapes Dataset for Semantic Urban Scene Understanding." CVPR. 2016. Returns: A 2-D numpy array with each row being mapped RGB color (in uint8 range). """ colormap = np.zeros((256, 3), dtype=np.uint8) colormap[0] = [128, 64, 128] colormap[1] = [244, 35, 232] colormap[2] = [70, 70, 70] colormap[3] = [102, 102, 156] colormap[4] = [190, 153, 153] colormap[5] = [153, 153, 153] colormap[6] = [250, 170, 30] colormap[7] = [220, 220, 0] colormap[8] = [107, 142, 35] colormap[9] = [152, 251, 152] colormap[10] = [70, 130, 180] colormap[11] = [220, 20, 60] colormap[12] = [255, 0, 0] colormap[13] = [0, 0, 142] colormap[14] = [0, 0, 70] colormap[15] = [0, 60, 100] colormap[16] = [0, 80, 100] colormap[17] = [0, 0, 230] colormap[18] = [119, 11, 32] return colormap def _cityscapes_class_names(): return ('road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle') def cityscapes_dataset_information(): return DatasetInfo( num_classes=19, label_divisor=1000, thing_list=tuple(range(11, 19)), colormap=_cityscapes_label_colormap(), class_names=_cityscapes_class_names()) def perturb_color(color, noise, used_colors, max_trials=50, random_state=None): """Pertrubs the color with some noise. If `used_colors` is not None, we will return the color that has not appeared before in it. Args: color: A numpy array with three elements [R, G, B]. noise: Integer, specifying the amount of perturbing noise (in uint8 range). used_colors: A set, used to keep track of used colors. max_trials: An integer, maximum trials to generate random color. random_state: An optional np.random.RandomState. If passed, will be used to generate random numbers. Returns: A perturbed color that has not appeared in used_colors. """ if random_state is None: random_state = np.random for _ in range(max_trials): random_color = color + random_state.randint( low=-noise, high=noise + 1, size=3) random_color = np.clip(random_color, 0, 255) if tuple(random_color) not in used_colors: used_colors.add(tuple(random_color)) return random_color print('Max trial reached and duplicate color will be used. Please consider ' 'increase noise in `perturb_color()`.') return random_color def color_panoptic_map(panoptic_prediction, dataset_info, perturb_noise): """Helper method to colorize output panoptic map. Args: panoptic_prediction: A 2D numpy array, panoptic prediction from deeplab model. dataset_info: A DatasetInfo object, dataset associated to the model. perturb_noise: Integer, the amount of noise (in uint8 range) added to each instance of the same semantic class. Returns: colored_panoptic_map: A 3D numpy array with last dimension of 3, colored panoptic prediction map. used_colors: A dictionary mapping semantic_ids to a set of colors used in `colored_panoptic_map`. """ if panoptic_prediction.ndim != 2: raise ValueError('Expect 2-D panoptic prediction. Got {}'.format( panoptic_prediction.shape)) semantic_map = panoptic_prediction // dataset_info.label_divisor instance_map = panoptic_prediction % dataset_info.label_divisor height, width = panoptic_prediction.shape colored_panoptic_map = np.zeros((height, width, 3), dtype=np.uint8) used_colors = collections.defaultdict(set) # Use a fixed seed to reproduce the same visualization. random_state = np.random.RandomState(0) unique_semantic_ids = np.unique(semantic_map) for semantic_id in unique_semantic_ids: semantic_mask = semantic_map == semantic_id if semantic_id in dataset_info.thing_list: # For `thing` class, we will add a small amount of random noise to its # correspondingly predefined semantic segmentation colormap. unique_instance_ids = np.unique(instance_map[semantic_mask]) for instance_id in unique_instance_ids: instance_mask = np.logical_and(semantic_mask, instance_map == instance_id) random_color = perturb_color( dataset_info.colormap[semantic_id], perturb_noise, used_colors[semantic_id], random_state=random_state) colored_panoptic_map[instance_mask] = random_color else: # For `stuff` class, we use the defined semantic color. colored_panoptic_map[semantic_mask] = dataset_info.colormap[semantic_id] used_colors[semantic_id].add(tuple(dataset_info.colormap[semantic_id])) return colored_panoptic_map, used_colors def vis_segmentation(image, panoptic_prediction, dataset_info, perturb_noise=60): """Visualizes input image, segmentation map and overlay view.""" plt.figure(figsize=(30, 20)) grid_spec = gridspec.GridSpec(2, 2) ax = plt.subplot(grid_spec[0]) plt.imshow(image) plt.axis('off') ax.set_title('input image', fontsize=20) ax = plt.subplot(grid_spec[1]) panoptic_map, used_colors = color_panoptic_map(panoptic_prediction, dataset_info, perturb_noise) plt.imshow(panoptic_map) plt.axis('off') ax.set_title('panoptic map', fontsize=20) ax = plt.subplot(grid_spec[2]) plt.imshow(image) plt.imshow(panoptic_map, alpha=0.7) plt.axis('off') ax.set_title('panoptic overlay', fontsize=20) ax = plt.subplot(grid_spec[3]) max_num_instances = max(len(color) for color in used_colors.values()) # RGBA image as legend. legend = np.zeros((len(used_colors), max_num_instances, 4), dtype=np.uint8) class_names = [] for i, semantic_id in enumerate(sorted(used_colors)): legend[i, :len(used_colors[semantic_id]), :3] = np.array( list(used_colors[semantic_id])) legend[i, :len(used_colors[semantic_id]), 3] = 255 if semantic_id < dataset_info.num_classes: class_names.append(dataset_info.class_names[semantic_id]) else: class_names.append('ignore') plt.imshow(legend, interpolation='nearest') ax.yaxis.tick_left() plt.yticks(range(len(legend)), class_names, fontsize=15) plt.xticks([], []) ax.tick_params(width=0.0, grid_linewidth=0.0) plt.grid('off') return plt def run_cmd(command): try: print(command) call(command, shell=True) except KeyboardInterrupt: print("Process interrupted") sys.exit(1) MODEL_NAME = 'resnet50_os32_panoptic_deeplab_cityscapes_crowd_trainfine_saved_model' _MODELS = ('resnet50_os32_panoptic_deeplab_cityscapes_crowd_trainfine_saved_model', 'resnet50_beta_os32_panoptic_deeplab_cityscapes_trainfine_saved_model', 'wide_resnet41_os16_panoptic_deeplab_cityscapes_trainfine_saved_model', 'swidernet_sac_1_1_1_os16_panoptic_deeplab_cityscapes_trainfine_saved_model', 'swidernet_sac_1_1_3_os16_panoptic_deeplab_cityscapes_trainfine_saved_model', 'swidernet_sac_1_1_4.5_os16_panoptic_deeplab_cityscapes_trainfine_saved_model', 'axial_swidernet_1_1_1_os16_axial_deeplab_cityscapes_trainfine_saved_model', 'axial_swidernet_1_1_3_os16_axial_deeplab_cityscapes_trainfine_saved_model', 'axial_swidernet_1_1_4.5_os16_axial_deeplab_cityscapes_trainfine_saved_model', 'max_deeplab_s_backbone_os16_axial_deeplab_cityscapes_trainfine_saved_model', 'max_deeplab_l_backbone_os16_axial_deeplab_cityscapes_trainfine_saved_model') _DOWNLOAD_URL_PATTERN = 'https://storage.googleapis.com/gresearch/tf-deeplab/saved_model/%s.tar.gz' _MODEL_NAME_TO_URL_AND_DATASET = { model: (_DOWNLOAD_URL_PATTERN % model, cityscapes_dataset_information()) for model in _MODELS } MODEL_URL, DATASET_INFO = _MODEL_NAME_TO_URL_AND_DATASET[MODEL_NAME] model_dir = tempfile.mkdtemp() download_path = os.path.join(model_dir, MODEL_NAME + '.gz') urllib.request.urlretrieve(MODEL_URL, download_path) run_cmd("tar -xzvf " + download_path + " -C " + model_dir) LOADED_MODEL = tf.saved_model.load(os.path.join(model_dir, MODEL_NAME)) def inference(image): image = image.resize(size=(512, 512)) im = np.array(image) output = LOADED_MODEL(tf.cast(im, tf.uint8)) return vis_segmentation(im, output['panoptic_pred'][0], DATASET_INFO) title = "Deeplab2" description = "demo for Deeplab2. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "

DeepLab2: A TensorFlow Library for Deep Labeling | Github Repo

" gr.Interface( inference, [gr.inputs.Image(type="pil", label="Input")], gr.outputs.Image(type="plot", label="Output"), title=title, description=description, article=article, examples=[ ["city1.jpg"], ["city2.jpg"] ]).launch()