"""
Standalone deployment utilities for publishing to HuggingFace Spaces.
No Gradio dependencies - can be used in backend API.
"""
import os
import re
import json
import uuid
import tempfile
import shutil
import ast
from typing import Dict, List, Optional, Tuple
from pathlib import Path
from huggingface_hub import HfApi
from backend_models import get_inference_client, get_real_model_id
def parse_html_code(code: str) -> str:
"""Extract HTML code from various formats"""
code = code.strip()
# If already clean HTML, return as-is
if code.startswith(' Dict[str, str]:
"""Parse transformers.js output into separate files (index.html, index.js, style.css)
Uses comprehensive parsing patterns to handle various LLM output formats.
"""
files = {
'index.html': '',
'index.js': '',
'style.css': ''
}
# Multiple patterns to match the three code blocks with different variations
html_patterns = [
r'```html\s*\n([\s\S]*?)(?:```|\Z)',
r'```htm\s*\n([\s\S]*?)(?:```|\Z)',
r'```\s*(?:index\.html|html)\s*\n([\s\S]*?)(?:```|\Z)'
]
js_patterns = [
r'```javascript\s*\n([\s\S]*?)(?:```|\Z)',
r'```js\s*\n([\s\S]*?)(?:```|\Z)',
r'```\s*(?:index\.js|javascript|js)\s*\n([\s\S]*?)(?:```|\Z)'
]
css_patterns = [
r'```css\s*\n([\s\S]*?)(?:```|\Z)',
r'```\s*(?:style\.css|css)\s*\n([\s\S]*?)(?:```|\Z)'
]
# Extract HTML content
for pattern in html_patterns:
html_match = re.search(pattern, code, re.IGNORECASE)
if html_match:
files['index.html'] = html_match.group(1).strip()
break
# Extract JavaScript content
for pattern in js_patterns:
js_match = re.search(pattern, code, re.IGNORECASE)
if js_match:
files['index.js'] = js_match.group(1).strip()
break
# Extract CSS content
for pattern in css_patterns:
css_match = re.search(pattern, code, re.IGNORECASE)
if css_match:
files['style.css'] = css_match.group(1).strip()
break
# Fallback: support === index.html === format if any file is missing
if not (files['index.html'] and files['index.js'] and files['style.css']):
# Use regex to extract sections
html_fallback = re.search(r'===\s*index\.html\s*===\s*\n([\s\S]+?)(?=\n===|$)', code, re.IGNORECASE)
js_fallback = re.search(r'===\s*index\.js\s*===\s*\n([\s\S]+?)(?=\n===|$)', code, re.IGNORECASE)
css_fallback = re.search(r'===\s*style\.css\s*===\s*\n([\s\S]+?)(?=\n===|$)', code, re.IGNORECASE)
if html_fallback:
files['index.html'] = html_fallback.group(1).strip()
if js_fallback:
files['index.js'] = js_fallback.group(1).strip()
if css_fallback:
files['style.css'] = css_fallback.group(1).strip()
# Additional fallback: extract from numbered sections or file headers
if not (files['index.html'] and files['index.js'] and files['style.css']):
# Try patterns like "1. index.html:" or "**index.html**"
patterns = [
(r'(?:^\d+\.\s*|^##\s*|^\*\*\s*)index\.html(?:\s*:|\*\*:?)\s*\n([\s\S]+?)(?=\n(?:\d+\.|##|\*\*|===)|$)', 'index.html'),
(r'(?:^\d+\.\s*|^##\s*|^\*\*\s*)index\.js(?:\s*:|\*\*:?)\s*\n([\s\S]+?)(?=\n(?:\d+\.|##|\*\*|===)|$)', 'index.js'),
(r'(?:^\d+\.\s*|^##\s*|^\*\*\s*)style\.css(?:\s*:|\*\*:?)\s*\n([\s\S]+?)(?=\n(?:\d+\.|##|\*\*|===)|$)', 'style.css')
]
for pattern, file_key in patterns:
if not files[file_key]:
match = re.search(pattern, code, re.IGNORECASE | re.MULTILINE)
if match:
# Clean up the content by removing any code block markers
content = match.group(1).strip()
content = re.sub(r'^```\w*\s*\n', '', content)
content = re.sub(r'\n```\s*$', '', content)
files[file_key] = content.strip()
return files
def parse_python_requirements(code: str) -> Optional[str]:
"""Extract requirements.txt content from code if present"""
# Look for requirements.txt section
req_pattern = r'===\s*requirements\.txt\s*===\s*(.*?)(?====|$)'
match = re.search(req_pattern, code, re.DOTALL | re.IGNORECASE)
if match:
requirements = match.group(1).strip()
# Clean up code blocks
requirements = re.sub(r'^```\w*\s*', '', requirements, flags=re.MULTILINE)
requirements = re.sub(r'```\s*$', '', requirements, flags=re.MULTILINE)
return requirements
return None
def strip_tool_call_markers(text):
"""Remove TOOL_CALL markers and thinking tags that some LLMs add to their output."""
if not text:
return text
# Remove [TOOL_CALL] and [/TOOL_CALL] markers
text = re.sub(r'\[/?TOOL_CALL\]', '', text, flags=re.IGNORECASE)
# Remove and tags and their content
text = re.sub(r'[\s\S]*?', '', text, flags=re.IGNORECASE)
# Remove any remaining unclosed tags at the start
text = re.sub(r'^[\s\S]*?(?=\n|$)', '', text, flags=re.IGNORECASE | re.MULTILINE)
# Remove any remaining tags
text = re.sub(r'', '', text, flags=re.IGNORECASE)
# Remove standalone }} that appears with tool calls
# Only remove if it's on its own line or at the end
text = re.sub(r'^\s*\}\}\s*$', '', text, flags=re.MULTILINE)
return text.strip()
def remove_code_block(text):
"""Remove code block markers from text."""
# First strip any tool call markers
text = strip_tool_call_markers(text)
# Try to match code blocks with language markers
patterns = [
r'```(?:html|HTML)\n([\s\S]+?)\n```', # Match ```html or ```HTML
r'```\n([\s\S]+?)\n```', # Match code blocks without language markers
r'```([\s\S]+?)```' # Match code blocks without line breaks
]
for pattern in patterns:
match = re.search(pattern, text, re.DOTALL)
if match:
extracted = match.group(1).strip()
# Remove a leading language marker line (e.g., 'python') if present
if extracted.split('\n', 1)[0].strip().lower() in ['python', 'html', 'css', 'javascript', 'json', 'c', 'cpp', 'markdown', 'latex', 'jinja2', 'typescript', 'yaml', 'dockerfile', 'shell', 'r', 'sql']:
return extracted.split('\n', 1)[1] if '\n' in extracted else ''
return extracted
# If no code block is found, return as-is
return text.strip()
def extract_import_statements(code):
"""Extract import statements from generated code."""
import_statements = []
# Built-in Python modules to exclude
builtin_modules = {
'os', 'sys', 'json', 'time', 'datetime', 'random', 'math', 're', 'collections',
'itertools', 'functools', 'pathlib', 'urllib', 'http', 'email', 'html', 'xml',
'csv', 'tempfile', 'shutil', 'subprocess', 'threading', 'multiprocessing',
'asyncio', 'logging', 'typing', 'base64', 'hashlib', 'secrets', 'uuid',
'copy', 'pickle', 'io', 'contextlib', 'warnings', 'sqlite3', 'gzip', 'zipfile',
'tarfile', 'socket', 'ssl', 'platform', 'getpass', 'pwd', 'grp', 'stat',
'glob', 'fnmatch', 'linecache', 'traceback', 'inspect', 'keyword', 'token',
'tokenize', 'ast', 'code', 'codeop', 'dis', 'py_compile', 'compileall',
'importlib', 'pkgutil', 'modulefinder', 'runpy', 'site', 'sysconfig'
}
try:
# Try to parse as Python AST
tree = ast.parse(code)
for node in ast.walk(tree):
if isinstance(node, ast.Import):
for alias in node.names:
module_name = alias.name.split('.')[0]
if module_name not in builtin_modules and not module_name.startswith('_'):
import_statements.append(f"import {alias.name}")
elif isinstance(node, ast.ImportFrom):
if node.module:
module_name = node.module.split('.')[0]
if module_name not in builtin_modules and not module_name.startswith('_'):
names = [alias.name for alias in node.names]
import_statements.append(f"from {node.module} import {', '.join(names)}")
except SyntaxError:
# Fallback: use regex to find import statements
for line in code.split('\n'):
line = line.strip()
if line.startswith('import ') or line.startswith('from '):
# Check if it's not a builtin module
if line.startswith('import '):
module_name = line.split()[1].split('.')[0]
elif line.startswith('from '):
module_name = line.split()[1].split('.')[0]
if module_name not in builtin_modules and not module_name.startswith('_'):
import_statements.append(line)
return list(set(import_statements)) # Remove duplicates
def generate_requirements_txt_with_llm(import_statements):
"""Generate requirements.txt content using LLM based on import statements."""
if not import_statements:
return "# No additional dependencies required\n"
# Use a lightweight model for this task
try:
client = get_inference_client("zai-org/GLM-4.6", "auto")
actual_model_id = get_real_model_id("zai-org/GLM-4.6")
imports_text = '\n'.join(import_statements)
prompt = f"""Based on the following Python import statements, generate a comprehensive requirements.txt file with all necessary and commonly used related packages:
{imports_text}
Instructions:
- Include the direct packages needed for the imports
- Include commonly used companion packages and dependencies for better functionality
- Use correct PyPI package names (e.g., PIL -> Pillow, sklearn -> scikit-learn)
- IMPORTANT: For diffusers, ALWAYS use: git+https://github.com/huggingface/diffusers
- IMPORTANT: For transformers, ALWAYS use: git+https://github.com/huggingface/transformers
- IMPORTANT: If diffusers is installed, also include transformers and sentencepiece as they usually go together
- Examples of comprehensive dependencies:
* diffusers often needs: git+https://github.com/huggingface/transformers, sentencepiece, accelerate, torch, tokenizers
* transformers often needs: accelerate, torch, tokenizers, datasets
* gradio often needs: requests, Pillow for image handling
* pandas often needs: numpy, openpyxl for Excel files
* matplotlib often needs: numpy, pillow for image saving
* sklearn often needs: numpy, scipy, joblib
* streamlit often needs: pandas, numpy, requests
* opencv-python often needs: numpy, pillow
* fastapi often needs: uvicorn, pydantic
* torch often needs: torchvision, torchaudio (if doing computer vision/audio)
- Include packages for common file formats if relevant (openpyxl, python-docx, PyPDF2)
- Do not include Python built-in modules
- Do not specify versions unless there are known compatibility issues
- One package per line
- If no external packages are needed, return "# No additional dependencies required"
🚨 CRITICAL OUTPUT FORMAT:
- Output ONLY the package names, one per line (plain text format)
- Do NOT use markdown formatting (no ```, no bold, no headings, no lists)
- Do NOT add any explanatory text before or after the package list
- Do NOT wrap the output in code blocks
- Just output raw package names as they would appear in requirements.txt
Generate a comprehensive requirements.txt that ensures the application will work smoothly:"""
messages = [
{"role": "system", "content": "You are a Python packaging expert specializing in creating comprehensive, production-ready requirements.txt files. Output ONLY plain text package names without any markdown formatting, code blocks, or explanatory text. Your goal is to ensure applications work smoothly by including not just direct dependencies but also commonly needed companion packages, popular extensions, and supporting libraries that developers typically need together."},
{"role": "user", "content": prompt}
]
response = client.chat.completions.create(
model=actual_model_id,
messages=messages,
max_tokens=1024,
temperature=0.1
)
requirements_content = response.choices[0].message.content.strip()
# Clean up the response in case it includes extra formatting
if '```' in requirements_content:
requirements_content = remove_code_block(requirements_content)
# Enhanced cleanup for markdown and formatting
lines = requirements_content.split('\n')
clean_lines = []
for line in lines:
stripped_line = line.strip()
# Skip lines that are markdown formatting
if (stripped_line == '```' or
stripped_line.startswith('```') or
stripped_line.startswith('#') and not stripped_line.startswith('# ') or # Skip markdown headers but keep comments
stripped_line.startswith('**') or # Skip bold text
stripped_line.startswith('*') and not stripped_line[1:2].isalnum() or # Skip markdown lists but keep package names starting with *
stripped_line.startswith('-') and not stripped_line[1:2].isalnum() or # Skip markdown lists but keep package names starting with -
stripped_line.startswith('===') or # Skip section dividers
stripped_line.startswith('---') or # Skip horizontal rules
stripped_line.lower().startswith('here') or # Skip explanatory text
stripped_line.lower().startswith('this') or # Skip explanatory text
stripped_line.lower().startswith('the') or # Skip explanatory text
stripped_line.lower().startswith('based on') or # Skip explanatory text
stripped_line == ''): # Skip empty lines unless they're at natural boundaries
continue
# Keep lines that look like valid package specifications
# Valid lines: package names, git+https://, comments starting with "# "
if (stripped_line.startswith('# ') or # Valid comments
stripped_line.startswith('git+') or # Git dependencies
stripped_line[0].isalnum() or # Package names start with alphanumeric
'==' in stripped_line or # Version specifications
'>=' in stripped_line or # Version specifications
'<=' in stripped_line): # Version specifications
clean_lines.append(line)
requirements_content = '\n'.join(clean_lines).strip()
# Ensure it ends with a newline
if requirements_content and not requirements_content.endswith('\n'):
requirements_content += '\n'
return requirements_content if requirements_content else "# No additional dependencies required\n"
except Exception as e:
# Fallback: simple extraction with basic mapping
print(f"[Deploy] Warning: LLM requirements generation failed: {e}, using fallback")
dependencies = set()
special_cases = {
'PIL': 'Pillow',
'sklearn': 'scikit-learn',
'skimage': 'scikit-image',
'bs4': 'beautifulsoup4'
}
for stmt in import_statements:
if stmt.startswith('import '):
module_name = stmt.split()[1].split('.')[0]
package_name = special_cases.get(module_name, module_name)
dependencies.add(package_name)
elif stmt.startswith('from '):
module_name = stmt.split()[1].split('.')[0]
package_name = special_cases.get(module_name, module_name)
dependencies.add(package_name)
if dependencies:
return '\n'.join(sorted(dependencies)) + '\n'
else:
return "# No additional dependencies required\n"
def parse_multi_file_python_output(code: str) -> Dict[str, str]:
"""Parse multi-file Python output (e.g., Gradio, Streamlit)"""
files = {}
# Pattern to match file sections
pattern = r'===\s*(\S+\.(?:py|txt))\s*===\s*(.*?)(?====|$)'
matches = re.finditer(pattern, code, re.DOTALL | re.IGNORECASE)
for match in matches:
filename = match.group(1).strip()
content = match.group(2).strip()
# Clean up code blocks if present
content = re.sub(r'^```\w*\s*', '', content, flags=re.MULTILINE)
content = re.sub(r'```\s*$', '', content, flags=re.MULTILINE)
files[filename] = content
# If no files were parsed, treat as single app.py
if not files:
# Clean up code blocks
clean_code = re.sub(r'^```\w*\s*', '', code, flags=re.MULTILINE)
clean_code = re.sub(r'```\s*$', '', clean_code, flags=re.MULTILINE)
files['app.py'] = clean_code.strip()
return files
def is_streamlit_code(code: str) -> bool:
"""Check if code is Streamlit"""
return 'import streamlit' in code or 'streamlit.run' in code
def is_gradio_code(code: str) -> bool:
"""Check if code is Gradio"""
return 'import gradio' in code or 'gr.' in code
def detect_sdk_from_code(code: str, language: str) -> str:
"""Detect the appropriate SDK from code and language"""
if language == "html":
return "static"
elif language == "transformers.js":
return "static"
elif language == "comfyui":
return "static"
elif language == "react":
return "docker"
elif language == "streamlit" or is_streamlit_code(code):
return "docker"
elif language == "gradio" or is_gradio_code(code):
return "gradio"
else:
return "gradio" # Default
def add_anycoder_tag_to_readme(api, repo_id: str, app_port: Optional[int] = None) -> None:
"""
Download existing README, add anycoder tag and app_port if needed, and upload back.
Preserves all existing README content and frontmatter.
Args:
api: HuggingFace API client
repo_id: Repository ID (username/space-name)
app_port: Optional port number to set for Docker spaces (e.g., 7860)
"""
try:
import tempfile
import re
# Download the existing README
readme_path = api.hf_hub_download(
repo_id=repo_id,
filename="README.md",
repo_type="space"
)
# Read the existing README content
with open(readme_path, 'r', encoding='utf-8') as f:
content = f.read()
# Parse frontmatter and content
if content.startswith('---'):
# Split frontmatter and body
parts = content.split('---', 2)
if len(parts) >= 3:
frontmatter = parts[1].strip()
body = parts[2] if len(parts) > 2 else ""
# Check if tags already exist
if 'tags:' in frontmatter:
# Add anycoder to existing tags if not present
if '- anycoder' not in frontmatter:
frontmatter = re.sub(r'(tags:\s*\n(?:\s*-\s*[^\n]+\n)*)', r'\1- anycoder\n', frontmatter)
else:
# Add tags section with anycoder
frontmatter += '\ntags:\n- anycoder'
# Add app_port if specified and not already present
if app_port is not None and 'app_port:' not in frontmatter:
frontmatter += f'\napp_port: {app_port}'
# Reconstruct the README
new_content = f"---\n{frontmatter}\n---{body}"
else:
# Malformed frontmatter, just add tags at the end of frontmatter
new_content = content.replace('---', '---\ntags:\n- anycoder\n---', 1)
else:
# No frontmatter, add it at the beginning
app_port_line = f'\napp_port: {app_port}' if app_port else ''
new_content = f"---\ntags:\n- anycoder{app_port_line}\n---\n\n{content}"
# Upload the modified README
with tempfile.NamedTemporaryFile("w", suffix=".md", delete=False, encoding='utf-8') as f:
f.write(new_content)
temp_path = f.name
api.upload_file(
path_or_fileobj=temp_path,
path_in_repo="README.md",
repo_id=repo_id,
repo_type="space"
)
os.unlink(temp_path)
except Exception as e:
print(f"Warning: Could not modify README.md to add anycoder tag: {e}")
def create_dockerfile_for_streamlit(space_name: str) -> str:
"""Create Dockerfile for Streamlit app"""
return f"""FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
EXPOSE 7860
CMD ["streamlit", "run", "app.py", "--server.port=7860", "--server.address=0.0.0.0"]
"""
def create_dockerfile_for_react(space_name: str) -> str:
"""Create Dockerfile for React app"""
return f"""FROM node:18-slim
# Use existing node user
USER node
ENV HOME=/home/node
ENV PATH=/home/node/.local/bin:$PATH
WORKDIR /home/node/app
COPY --chown=node:node package*.json ./
RUN npm install
COPY --chown=node:node . .
RUN npm run build
EXPOSE 7860
CMD ["npm", "start", "--", "-p", "7860"]
"""
def deploy_to_huggingface_space(
code: str,
language: str,
space_name: Optional[str] = None,
token: Optional[str] = None,
username: Optional[str] = None,
description: Optional[str] = None,
private: bool = False,
existing_repo_id: Optional[str] = None,
commit_message: Optional[str] = None
) -> Tuple[bool, str, Optional[str]]:
"""
Deploy code to HuggingFace Spaces (create new or update existing)
Args:
code: Generated code to deploy
language: Target language/framework (html, gradio, streamlit, react, transformers.js, comfyui)
space_name: Name for the space (auto-generated if None, ignored if existing_repo_id provided)
token: HuggingFace API token
username: HuggingFace username
description: Space description
private: Whether to make the space private (only for new spaces)
existing_repo_id: If provided (username/space-name), updates this space instead of creating new one
commit_message: Custom commit message (defaults to "Deploy from anycoder" or "Update from anycoder")
Returns:
Tuple of (success: bool, message: str, space_url: Optional[str])
"""
if not token:
token = os.getenv("HF_TOKEN")
if not token:
return False, "No HuggingFace token provided", None
try:
api = HfApi(token=token)
# Determine if this is an update or new deployment
is_update = existing_repo_id is not None
if is_update:
# Use existing repo
repo_id = existing_repo_id
space_name = existing_repo_id.split('/')[-1]
username = existing_repo_id.split('/')[0] if '/' in existing_repo_id else username
else:
# Get username if not provided
if not username:
try:
user_info = api.whoami()
username = user_info.get("name") or user_info.get("preferred_username") or "user"
except Exception as e:
return False, f"Failed to get user info: {str(e)}", None
# Generate space name if not provided or empty
if not space_name or space_name.strip() == "":
space_name = f"anycoder-{uuid.uuid4().hex[:8]}"
print(f"[Deploy] Auto-generated space name: {space_name}")
# Clean space name (no spaces, lowercase, alphanumeric + hyphens)
space_name = re.sub(r'[^a-z0-9-]', '-', space_name.lower())
space_name = re.sub(r'-+', '-', space_name).strip('-')
# Ensure space_name is not empty after cleaning
if not space_name:
space_name = f"anycoder-{uuid.uuid4().hex[:8]}"
print(f"[Deploy] Space name was empty after cleaning, regenerated: {space_name}")
repo_id = f"{username}/{space_name}"
print(f"[Deploy] Using repo_id: {repo_id}")
# Detect SDK
sdk = detect_sdk_from_code(code, language)
# Create temporary directory for files
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = Path(temp_dir)
# Parse code based on language
app_port = None # Track if we need app_port for Docker spaces
use_individual_uploads = False # Flag for transformers.js
if language == "transformers.js":
try:
files = parse_transformers_js_output(code)
print(f"[Deploy] Parsed transformers.js files: {list(files.keys())}")
# Log file sizes for debugging
for fname, fcontent in files.items():
if fcontent:
print(f"[Deploy] {fname}: {len(fcontent)} characters")
else:
print(f"[Deploy] {fname}: EMPTY")
# Validate all three files are present
missing_files = []
if not files.get('index.html'):
missing_files.append('index.html')
if not files.get('index.js'):
missing_files.append('index.js')
if not files.get('style.css'):
missing_files.append('style.css')
if missing_files:
error_msg = f"Missing required files: {', '.join(missing_files)}. "
error_msg += f"Found only: {', '.join(files.keys()) if files else 'no files'}. "
error_msg += "Transformers.js apps require all three files with === filename === markers. Please regenerate the code."
print(f"[Deploy] {error_msg}")
return False, error_msg, None
# Validate files have content
empty_files = [name for name, content in files.items() if not content or not content.strip()]
if empty_files:
error_msg = f"Empty files detected: {', '.join(empty_files)}. Please regenerate the code with actual content."
print(f"[Deploy] {error_msg}")
return False, error_msg, None
# Write transformers.js files to temp directory
for filename, content in files.items():
file_path = temp_path / filename
print(f"[Deploy] Writing {filename} ({len(content)} chars) to {file_path}")
file_path.write_text(content, encoding='utf-8')
# Verify the write was successful
written_size = file_path.stat().st_size
print(f"[Deploy] Verified {filename}: {written_size} bytes on disk")
# For transformers.js, we'll upload files individually (not via upload_folder)
use_individual_uploads = True
except Exception as e:
print(f"[Deploy] Error parsing transformers.js: {e}")
import traceback
traceback.print_exc()
return False, f"Error parsing transformers.js output: {str(e)}", None
elif language == "html":
html_code = parse_html_code(code)
(temp_path / "index.html").write_text(html_code, encoding='utf-8')
elif language == "comfyui":
# ComfyUI is JSON, wrap in HTML viewer
(temp_path / "index.html").write_text(code, encoding='utf-8')
elif language in ["gradio", "streamlit"]:
files = parse_multi_file_python_output(code)
# Write Python files (create subdirectories if needed)
for filename, content in files.items():
file_path = temp_path / filename
file_path.parent.mkdir(parents=True, exist_ok=True)
file_path.write_text(content, encoding='utf-8')
# Ensure requirements.txt exists - generate from imports if missing
if "requirements.txt" not in files:
# Get the main app file (app.py for gradio, streamlit_app.py or app.py for streamlit)
main_app = files.get('streamlit_app.py') or files.get('app.py', '')
if main_app:
print(f"[Deploy] Generating requirements.txt from imports in {language} app")
import_statements = extract_import_statements(main_app)
requirements_content = generate_requirements_txt_with_llm(import_statements)
(temp_path / "requirements.txt").write_text(requirements_content, encoding='utf-8')
print(f"[Deploy] Generated requirements.txt with {len(requirements_content.splitlines())} lines")
else:
# Fallback to minimal requirements if no app file found
if language == "gradio":
(temp_path / "requirements.txt").write_text("gradio>=4.0.0\n", encoding='utf-8')
elif language == "streamlit":
(temp_path / "requirements.txt").write_text("streamlit>=1.30.0\n", encoding='utf-8')
# Create Dockerfile if needed
if sdk == "docker":
if language == "streamlit":
dockerfile = create_dockerfile_for_streamlit(space_name)
(temp_path / "Dockerfile").write_text(dockerfile, encoding='utf-8')
app_port = 7860 # Set app_port for Docker spaces
use_individual_uploads = True # Streamlit uses individual file uploads
elif language == "react":
# Parse React output to get all files (uses same multi-file format as Python)
files = parse_multi_file_python_output(code)
if not files:
return False, "Error: Could not parse React output", None
# If Dockerfile is missing, use template
if 'Dockerfile' not in files:
dockerfile = create_dockerfile_for_react(space_name)
files['Dockerfile'] = dockerfile
# Write all React files (create subdirectories if needed)
for filename, content in files.items():
file_path = temp_path / filename
file_path.parent.mkdir(parents=True, exist_ok=True)
file_path.write_text(content, encoding='utf-8')
app_port = 7860 # Set app_port for Docker spaces
use_individual_uploads = True # React uses individual file uploads
else:
# Default: treat as Gradio app
files = parse_multi_file_python_output(code)
# Write files (create subdirectories if needed)
for filename, content in files.items():
file_path = temp_path / filename
file_path.parent.mkdir(parents=True, exist_ok=True)
file_path.write_text(content, encoding='utf-8')
# Generate requirements.txt from imports if missing
if "requirements.txt" not in files:
main_app = files.get('app.py', '')
if main_app:
print(f"[Deploy] Generating requirements.txt from imports in default app")
import_statements = extract_import_statements(main_app)
requirements_content = generate_requirements_txt_with_llm(import_statements)
(temp_path / "requirements.txt").write_text(requirements_content, encoding='utf-8')
print(f"[Deploy] Generated requirements.txt with {len(requirements_content.splitlines())} lines")
else:
# Fallback to minimal requirements if no app file found
(temp_path / "requirements.txt").write_text("gradio>=4.0.0\n", encoding='utf-8')
# Don't create README - HuggingFace will auto-generate it
# We'll add the anycoder tag after deployment
# ONLY create repo for NEW deployments of non-Docker, non-transformers.js spaces
# Docker and transformers.js handle repo creation separately below
# This matches the Gradio version logic (line 1256 in ui.py)
if not is_update and sdk != "docker" and language not in ["transformers.js"]:
print(f"[Deploy] Creating NEW {sdk} space: {repo_id}")
try:
api.create_repo(
repo_id=repo_id,
repo_type="space",
space_sdk=sdk,
private=private,
exist_ok=True
)
except Exception as e:
return False, f"Failed to create space: {str(e)}", None
elif is_update:
print(f"[Deploy] UPDATING existing space: {repo_id} (skipping create_repo)")
# Handle transformers.js spaces (create repo via duplicate_space)
if language == "transformers.js":
if not is_update:
print(f"[Deploy] Creating NEW transformers.js space via template duplication")
print(f"[Deploy] space_name value: '{space_name}' (type: {type(space_name)})")
# Safety check for space_name
if not space_name:
return False, "Internal error: space_name is None after generation", None
try:
from huggingface_hub import duplicate_space
# duplicate_space expects just the space name (not full repo_id)
# Use strip() to clean the space name
clean_space_name = space_name.strip()
print(f"[Deploy] Attempting to duplicate template space to: {clean_space_name}")
duplicated_repo = duplicate_space(
from_id="static-templates/transformers.js",
to_id=clean_space_name,
token=token,
exist_ok=True
)
print(f"[Deploy] Template duplication result: {duplicated_repo} (type: {type(duplicated_repo)})")
except Exception as e:
print(f"[Deploy] Exception during duplicate_space: {type(e).__name__}: {str(e)}")
# Check if space actually exists (success despite error)
space_exists = False
try:
if api.space_info(repo_id):
space_exists = True
except:
pass
# Handle RepoUrl object "errors"
error_msg = str(e)
if ("'url'" in error_msg or "RepoUrl" in error_msg) and space_exists:
print(f"[Deploy] Space exists despite RepoUrl error, continuing with deployment")
else:
# Fallback to regular create_repo
print(f"[Deploy] Template duplication failed, attempting fallback to create_repo: {e}")
try:
api.create_repo(
repo_id=repo_id,
repo_type="space",
space_sdk="static",
private=private,
exist_ok=True
)
print(f"[Deploy] Fallback create_repo successful")
except Exception as e2:
return False, f"Failed to create transformers.js space (both duplication and fallback failed): {str(e2)}", None
else:
# For updates, verify we can access the existing space
try:
space_info = api.space_info(repo_id)
if not space_info:
return False, f"Could not access space {repo_id} for update", None
except Exception as e:
return False, f"Cannot update space {repo_id}: {str(e)}", None
# Handle Docker spaces (React/Streamlit) - create repo separately
elif sdk == "docker" and language in ["streamlit", "react"]:
if not is_update:
print(f"[Deploy] Creating NEW Docker space for {language}: {repo_id}")
try:
from huggingface_hub import create_repo as hf_create_repo
hf_create_repo(
repo_id=repo_id,
repo_type="space",
space_sdk="docker",
token=token,
exist_ok=True
)
except Exception as e:
return False, f"Failed to create Docker space: {str(e)}", None
# Upload files
if not commit_message:
commit_message = "Update from anycoder" if is_update else "Deploy from anycoder"
try:
if language == "transformers.js":
# Special handling for transformers.js - create NEW temp files for each upload
# This matches the working pattern in ui.py
import time
# Get the parsed files from earlier
files_to_upload = [
("index.html", files.get('index.html')),
("index.js", files.get('index.js')),
("style.css", files.get('style.css'))
]
max_attempts = 3
for file_name, file_content in files_to_upload:
if not file_content:
return False, f"Missing content for {file_name}", None
success = False
last_error = None
for attempt in range(max_attempts):
temp_file_path = None
try:
# Create a NEW temp file for this upload (key difference from old approach)
print(f"[Deploy] Creating temp file for {file_name} with {len(file_content)} chars")
with tempfile.NamedTemporaryFile("w", suffix=f".{file_name.split('.')[-1]}", delete=False, encoding='utf-8') as f:
f.write(file_content)
f.flush() # Ensure all content is written to disk before closing
temp_file_path = f.name
# File is now closed and flushed, safe to upload
# Verify temp file size before upload
import os as _os
temp_size = _os.path.getsize(temp_file_path)
print(f"[Deploy] Temp file {file_name} size on disk: {temp_size} bytes (expected ~{len(file_content)} chars)")
# Upload the file without commit_message (HF handles this for spaces)
api.upload_file(
path_or_fileobj=temp_file_path,
path_in_repo=file_name,
repo_id=repo_id,
repo_type="space"
)
success = True
print(f"[Deploy] Successfully uploaded {file_name}")
break
except Exception as e:
last_error = e
error_str = str(e)
print(f"[Deploy] Upload error for {file_name}: {error_str}")
if "403" in error_str or "Forbidden" in error_str:
return False, f"Permission denied uploading {file_name}. Check your token has write access to {repo_id}.", None
if attempt < max_attempts - 1:
time.sleep(2) # Wait before retry
print(f"[Deploy] Retry {attempt + 1}/{max_attempts} for {file_name}")
finally:
# Clean up temp file
if temp_file_path and os.path.exists(temp_file_path):
os.unlink(temp_file_path)
if not success:
return False, f"Failed to upload {file_name} after {max_attempts} attempts: {last_error}", None
elif use_individual_uploads:
# For React, Streamlit: upload each file individually
import time
# Get list of files to upload from temp directory
files_to_upload = []
for file_path in temp_path.rglob('*'):
if file_path.is_file():
# Get relative path from temp directory (use forward slashes for repo paths)
rel_path = file_path.relative_to(temp_path)
files_to_upload.append(str(rel_path).replace('\\', '/'))
if not files_to_upload:
return False, "No files to upload", None
print(f"[Deploy] Uploading {len(files_to_upload)} files individually: {files_to_upload}")
max_attempts = 3
for filename in files_to_upload:
# Convert back to Path for filesystem operations
file_path = temp_path / filename.replace('/', os.sep)
if not file_path.exists():
return False, f"Failed to upload: {filename} not found", None
# Upload with retry logic
success = False
last_error = None
for attempt in range(max_attempts):
try:
# Upload without commit_message - HF API handles this for spaces
api.upload_file(
path_or_fileobj=str(file_path),
path_in_repo=filename,
repo_id=repo_id,
repo_type="space"
)
success = True
print(f"[Deploy] Successfully uploaded {filename}")
break
except Exception as e:
last_error = e
error_str = str(e)
print(f"[Deploy] Upload error for {filename}: {error_str}")
if "403" in error_str or "Forbidden" in error_str:
return False, f"Permission denied uploading {filename}. Check your token has write access to {repo_id}.", None
if attempt < max_attempts - 1:
time.sleep(2) # Wait before retry
print(f"[Deploy] Retry {attempt + 1}/{max_attempts} for {filename}")
if not success:
return False, f"Failed to upload {filename} after {max_attempts} attempts: {last_error}", None
else:
# For other languages, use upload_folder
print(f"[Deploy] Uploading folder to {repo_id}")
api.upload_folder(
folder_path=str(temp_path),
repo_id=repo_id,
repo_type="space"
)
except Exception as e:
return False, f"Failed to upload files: {str(e)}", None
# After successful upload, modify the auto-generated README to add anycoder tag
# For new spaces: HF auto-generates README, wait and modify it
# For updates: README should already exist, just add tag if missing
try:
import time
if not is_update:
time.sleep(2) # Give HF time to generate README for new spaces
add_anycoder_tag_to_readme(api, repo_id, app_port)
except Exception as e:
# Don't fail deployment if README modification fails
print(f"Warning: Could not add anycoder tag to README: {e}")
# For transformers.js updates, trigger a space restart to ensure changes take effect
if is_update and language == "transformers.js":
try:
api.restart_space(repo_id=repo_id)
print(f"[Deploy] Restarted space after update: {repo_id}")
except Exception as restart_error:
# Don't fail the deployment if restart fails, just log it
print(f"Note: Could not restart space after update: {restart_error}")
space_url = f"https://huggingface.co/spaces/{repo_id}"
action = "Updated" if is_update else "Deployed"
return True, f"✅ {action} successfully to {repo_id}!", space_url
except Exception as e:
print(f"[Deploy] Top-level exception caught: {type(e).__name__}: {str(e)}")
import traceback
traceback.print_exc()
return False, f"Deployment error: {str(e)}", None
def update_space_file(
repo_id: str,
file_path: str,
content: str,
token: Optional[str] = None,
commit_message: Optional[str] = None
) -> Tuple[bool, str]:
"""
Update a single file in an existing HuggingFace Space
Args:
repo_id: Full repo ID (username/space-name)
file_path: Path of file to update (e.g., "app.py")
content: New file content
token: HuggingFace API token
commit_message: Commit message (default: "Update {file_path}")
Returns:
Tuple of (success: bool, message: str)
"""
if not token:
token = os.getenv("HF_TOKEN")
if not token:
return False, "No HuggingFace token provided"
try:
api = HfApi(token=token)
if not commit_message:
commit_message = f"Update {file_path}"
# Create temporary file
with tempfile.NamedTemporaryFile(mode='w', suffix=f'.{file_path.split(".")[-1]}', delete=False) as f:
f.write(content)
temp_path = f.name
try:
api.upload_file(
path_or_fileobj=temp_path,
path_in_repo=file_path,
repo_id=repo_id,
repo_type="space",
commit_message=commit_message
)
return True, f"✅ Successfully updated {file_path}"
finally:
os.unlink(temp_path)
except Exception as e:
return False, f"Failed to update file: {str(e)}"
def delete_space(
repo_id: str,
token: Optional[str] = None
) -> Tuple[bool, str]:
"""
Delete a HuggingFace Space
Args:
repo_id: Full repo ID (username/space-name)
token: HuggingFace API token
Returns:
Tuple of (success: bool, message: str)
"""
if not token:
token = os.getenv("HF_TOKEN")
if not token:
return False, "No HuggingFace token provided"
try:
api = HfApi(token=token)
api.delete_repo(repo_id=repo_id, repo_type="space")
return True, f"✅ Successfully deleted {repo_id}"
except Exception as e:
return False, f"Failed to delete space: {str(e)}"
def list_user_spaces(
username: Optional[str] = None,
token: Optional[str] = None
) -> Tuple[bool, str, Optional[List[Dict]]]:
"""
List all spaces for a user
Args:
username: HuggingFace username (gets from token if None)
token: HuggingFace API token
Returns:
Tuple of (success: bool, message: str, spaces: Optional[List[Dict]])
"""
if not token:
token = os.getenv("HF_TOKEN")
if not token:
return False, "No HuggingFace token provided", None
try:
api = HfApi(token=token)
# Get username if not provided
if not username:
user_info = api.whoami()
username = user_info.get("name") or user_info.get("preferred_username")
# List spaces
spaces = api.list_spaces(author=username)
space_list = []
for space in spaces:
space_list.append({
"id": space.id,
"author": space.author,
"name": getattr(space, 'name', space.id.split('/')[-1]),
"sdk": getattr(space, 'sdk', 'unknown'),
"private": getattr(space, 'private', False),
"url": f"https://huggingface.co/spaces/{space.id}"
})
return True, f"Found {len(space_list)} spaces", space_list
except Exception as e:
return False, f"Failed to list spaces: {str(e)}", None