""" Standalone deployment utilities for publishing to HuggingFace Spaces. No Gradio dependencies - can be used in backend API. """ import os import re import json import uuid import tempfile import shutil import ast from typing import Dict, List, Optional, Tuple from pathlib import Path from huggingface_hub import HfApi from backend_models import get_inference_client, get_real_model_id def parse_html_code(code: str) -> str: """Extract HTML code from various formats""" code = code.strip() # If already clean HTML, return as-is if code.startswith(' Dict[str, str]: """Parse transformers.js output into separate files (index.html, index.js, style.css) Uses comprehensive parsing patterns to handle various LLM output formats. """ files = { 'index.html': '', 'index.js': '', 'style.css': '' } # Multiple patterns to match the three code blocks with different variations html_patterns = [ r'```html\s*\n([\s\S]*?)(?:```|\Z)', r'```htm\s*\n([\s\S]*?)(?:```|\Z)', r'```\s*(?:index\.html|html)\s*\n([\s\S]*?)(?:```|\Z)' ] js_patterns = [ r'```javascript\s*\n([\s\S]*?)(?:```|\Z)', r'```js\s*\n([\s\S]*?)(?:```|\Z)', r'```\s*(?:index\.js|javascript|js)\s*\n([\s\S]*?)(?:```|\Z)' ] css_patterns = [ r'```css\s*\n([\s\S]*?)(?:```|\Z)', r'```\s*(?:style\.css|css)\s*\n([\s\S]*?)(?:```|\Z)' ] # Extract HTML content for pattern in html_patterns: html_match = re.search(pattern, code, re.IGNORECASE) if html_match: files['index.html'] = html_match.group(1).strip() break # Extract JavaScript content for pattern in js_patterns: js_match = re.search(pattern, code, re.IGNORECASE) if js_match: files['index.js'] = js_match.group(1).strip() break # Extract CSS content for pattern in css_patterns: css_match = re.search(pattern, code, re.IGNORECASE) if css_match: files['style.css'] = css_match.group(1).strip() break # Fallback: support === index.html === format if any file is missing if not (files['index.html'] and files['index.js'] and files['style.css']): # Use regex to extract sections html_fallback = re.search(r'===\s*index\.html\s*===\s*\n([\s\S]+?)(?=\n===|$)', code, re.IGNORECASE) js_fallback = re.search(r'===\s*index\.js\s*===\s*\n([\s\S]+?)(?=\n===|$)', code, re.IGNORECASE) css_fallback = re.search(r'===\s*style\.css\s*===\s*\n([\s\S]+?)(?=\n===|$)', code, re.IGNORECASE) if html_fallback: files['index.html'] = html_fallback.group(1).strip() if js_fallback: files['index.js'] = js_fallback.group(1).strip() if css_fallback: files['style.css'] = css_fallback.group(1).strip() # Additional fallback: extract from numbered sections or file headers if not (files['index.html'] and files['index.js'] and files['style.css']): # Try patterns like "1. index.html:" or "**index.html**" patterns = [ (r'(?:^\d+\.\s*|^##\s*|^\*\*\s*)index\.html(?:\s*:|\*\*:?)\s*\n([\s\S]+?)(?=\n(?:\d+\.|##|\*\*|===)|$)', 'index.html'), (r'(?:^\d+\.\s*|^##\s*|^\*\*\s*)index\.js(?:\s*:|\*\*:?)\s*\n([\s\S]+?)(?=\n(?:\d+\.|##|\*\*|===)|$)', 'index.js'), (r'(?:^\d+\.\s*|^##\s*|^\*\*\s*)style\.css(?:\s*:|\*\*:?)\s*\n([\s\S]+?)(?=\n(?:\d+\.|##|\*\*|===)|$)', 'style.css') ] for pattern, file_key in patterns: if not files[file_key]: match = re.search(pattern, code, re.IGNORECASE | re.MULTILINE) if match: # Clean up the content by removing any code block markers content = match.group(1).strip() content = re.sub(r'^```\w*\s*\n', '', content) content = re.sub(r'\n```\s*$', '', content) files[file_key] = content.strip() return files def parse_python_requirements(code: str) -> Optional[str]: """Extract requirements.txt content from code if present""" # Look for requirements.txt section req_pattern = r'===\s*requirements\.txt\s*===\s*(.*?)(?====|$)' match = re.search(req_pattern, code, re.DOTALL | re.IGNORECASE) if match: requirements = match.group(1).strip() # Clean up code blocks requirements = re.sub(r'^```\w*\s*', '', requirements, flags=re.MULTILINE) requirements = re.sub(r'```\s*$', '', requirements, flags=re.MULTILINE) return requirements return None def strip_tool_call_markers(text): """Remove TOOL_CALL markers and thinking tags that some LLMs add to their output.""" if not text: return text # Remove [TOOL_CALL] and [/TOOL_CALL] markers text = re.sub(r'\[/?TOOL_CALL\]', '', text, flags=re.IGNORECASE) # Remove and tags and their content text = re.sub(r'[\s\S]*?', '', text, flags=re.IGNORECASE) # Remove any remaining unclosed tags at the start text = re.sub(r'^[\s\S]*?(?=\n|$)', '', text, flags=re.IGNORECASE | re.MULTILINE) # Remove any remaining tags text = re.sub(r'', '', text, flags=re.IGNORECASE) # Remove standalone }} that appears with tool calls # Only remove if it's on its own line or at the end text = re.sub(r'^\s*\}\}\s*$', '', text, flags=re.MULTILINE) return text.strip() def remove_code_block(text): """Remove code block markers from text.""" # First strip any tool call markers text = strip_tool_call_markers(text) # Try to match code blocks with language markers patterns = [ r'```(?:html|HTML)\n([\s\S]+?)\n```', # Match ```html or ```HTML r'```\n([\s\S]+?)\n```', # Match code blocks without language markers r'```([\s\S]+?)```' # Match code blocks without line breaks ] for pattern in patterns: match = re.search(pattern, text, re.DOTALL) if match: extracted = match.group(1).strip() # Remove a leading language marker line (e.g., 'python') if present if extracted.split('\n', 1)[0].strip().lower() in ['python', 'html', 'css', 'javascript', 'json', 'c', 'cpp', 'markdown', 'latex', 'jinja2', 'typescript', 'yaml', 'dockerfile', 'shell', 'r', 'sql']: return extracted.split('\n', 1)[1] if '\n' in extracted else '' return extracted # If no code block is found, return as-is return text.strip() def extract_import_statements(code): """Extract import statements from generated code.""" import_statements = [] # Built-in Python modules to exclude builtin_modules = { 'os', 'sys', 'json', 'time', 'datetime', 'random', 'math', 're', 'collections', 'itertools', 'functools', 'pathlib', 'urllib', 'http', 'email', 'html', 'xml', 'csv', 'tempfile', 'shutil', 'subprocess', 'threading', 'multiprocessing', 'asyncio', 'logging', 'typing', 'base64', 'hashlib', 'secrets', 'uuid', 'copy', 'pickle', 'io', 'contextlib', 'warnings', 'sqlite3', 'gzip', 'zipfile', 'tarfile', 'socket', 'ssl', 'platform', 'getpass', 'pwd', 'grp', 'stat', 'glob', 'fnmatch', 'linecache', 'traceback', 'inspect', 'keyword', 'token', 'tokenize', 'ast', 'code', 'codeop', 'dis', 'py_compile', 'compileall', 'importlib', 'pkgutil', 'modulefinder', 'runpy', 'site', 'sysconfig' } try: # Try to parse as Python AST tree = ast.parse(code) for node in ast.walk(tree): if isinstance(node, ast.Import): for alias in node.names: module_name = alias.name.split('.')[0] if module_name not in builtin_modules and not module_name.startswith('_'): import_statements.append(f"import {alias.name}") elif isinstance(node, ast.ImportFrom): if node.module: module_name = node.module.split('.')[0] if module_name not in builtin_modules and not module_name.startswith('_'): names = [alias.name for alias in node.names] import_statements.append(f"from {node.module} import {', '.join(names)}") except SyntaxError: # Fallback: use regex to find import statements for line in code.split('\n'): line = line.strip() if line.startswith('import ') or line.startswith('from '): # Check if it's not a builtin module if line.startswith('import '): module_name = line.split()[1].split('.')[0] elif line.startswith('from '): module_name = line.split()[1].split('.')[0] if module_name not in builtin_modules and not module_name.startswith('_'): import_statements.append(line) return list(set(import_statements)) # Remove duplicates def generate_requirements_txt_with_llm(import_statements): """Generate requirements.txt content using LLM based on import statements.""" if not import_statements: return "# No additional dependencies required\n" # Use a lightweight model for this task try: client = get_inference_client("zai-org/GLM-4.6", "auto") actual_model_id = get_real_model_id("zai-org/GLM-4.6") imports_text = '\n'.join(import_statements) prompt = f"""Based on the following Python import statements, generate a comprehensive requirements.txt file with all necessary and commonly used related packages: {imports_text} Instructions: - Include the direct packages needed for the imports - Include commonly used companion packages and dependencies for better functionality - Use correct PyPI package names (e.g., PIL -> Pillow, sklearn -> scikit-learn) - IMPORTANT: For diffusers, ALWAYS use: git+https://github.com/huggingface/diffusers - IMPORTANT: For transformers, ALWAYS use: git+https://github.com/huggingface/transformers - IMPORTANT: If diffusers is installed, also include transformers and sentencepiece as they usually go together - Examples of comprehensive dependencies: * diffusers often needs: git+https://github.com/huggingface/transformers, sentencepiece, accelerate, torch, tokenizers * transformers often needs: accelerate, torch, tokenizers, datasets * gradio often needs: requests, Pillow for image handling * pandas often needs: numpy, openpyxl for Excel files * matplotlib often needs: numpy, pillow for image saving * sklearn often needs: numpy, scipy, joblib * streamlit often needs: pandas, numpy, requests * opencv-python often needs: numpy, pillow * fastapi often needs: uvicorn, pydantic * torch often needs: torchvision, torchaudio (if doing computer vision/audio) - Include packages for common file formats if relevant (openpyxl, python-docx, PyPDF2) - Do not include Python built-in modules - Do not specify versions unless there are known compatibility issues - One package per line - If no external packages are needed, return "# No additional dependencies required" 🚨 CRITICAL OUTPUT FORMAT: - Output ONLY the package names, one per line (plain text format) - Do NOT use markdown formatting (no ```, no bold, no headings, no lists) - Do NOT add any explanatory text before or after the package list - Do NOT wrap the output in code blocks - Just output raw package names as they would appear in requirements.txt Generate a comprehensive requirements.txt that ensures the application will work smoothly:""" messages = [ {"role": "system", "content": "You are a Python packaging expert specializing in creating comprehensive, production-ready requirements.txt files. Output ONLY plain text package names without any markdown formatting, code blocks, or explanatory text. Your goal is to ensure applications work smoothly by including not just direct dependencies but also commonly needed companion packages, popular extensions, and supporting libraries that developers typically need together."}, {"role": "user", "content": prompt} ] response = client.chat.completions.create( model=actual_model_id, messages=messages, max_tokens=1024, temperature=0.1 ) requirements_content = response.choices[0].message.content.strip() # Clean up the response in case it includes extra formatting if '```' in requirements_content: requirements_content = remove_code_block(requirements_content) # Enhanced cleanup for markdown and formatting lines = requirements_content.split('\n') clean_lines = [] for line in lines: stripped_line = line.strip() # Skip lines that are markdown formatting if (stripped_line == '```' or stripped_line.startswith('```') or stripped_line.startswith('#') and not stripped_line.startswith('# ') or # Skip markdown headers but keep comments stripped_line.startswith('**') or # Skip bold text stripped_line.startswith('*') and not stripped_line[1:2].isalnum() or # Skip markdown lists but keep package names starting with * stripped_line.startswith('-') and not stripped_line[1:2].isalnum() or # Skip markdown lists but keep package names starting with - stripped_line.startswith('===') or # Skip section dividers stripped_line.startswith('---') or # Skip horizontal rules stripped_line.lower().startswith('here') or # Skip explanatory text stripped_line.lower().startswith('this') or # Skip explanatory text stripped_line.lower().startswith('the') or # Skip explanatory text stripped_line.lower().startswith('based on') or # Skip explanatory text stripped_line == ''): # Skip empty lines unless they're at natural boundaries continue # Keep lines that look like valid package specifications # Valid lines: package names, git+https://, comments starting with "# " if (stripped_line.startswith('# ') or # Valid comments stripped_line.startswith('git+') or # Git dependencies stripped_line[0].isalnum() or # Package names start with alphanumeric '==' in stripped_line or # Version specifications '>=' in stripped_line or # Version specifications '<=' in stripped_line): # Version specifications clean_lines.append(line) requirements_content = '\n'.join(clean_lines).strip() # Ensure it ends with a newline if requirements_content and not requirements_content.endswith('\n'): requirements_content += '\n' return requirements_content if requirements_content else "# No additional dependencies required\n" except Exception as e: # Fallback: simple extraction with basic mapping print(f"[Deploy] Warning: LLM requirements generation failed: {e}, using fallback") dependencies = set() special_cases = { 'PIL': 'Pillow', 'sklearn': 'scikit-learn', 'skimage': 'scikit-image', 'bs4': 'beautifulsoup4' } for stmt in import_statements: if stmt.startswith('import '): module_name = stmt.split()[1].split('.')[0] package_name = special_cases.get(module_name, module_name) dependencies.add(package_name) elif stmt.startswith('from '): module_name = stmt.split()[1].split('.')[0] package_name = special_cases.get(module_name, module_name) dependencies.add(package_name) if dependencies: return '\n'.join(sorted(dependencies)) + '\n' else: return "# No additional dependencies required\n" def parse_multi_file_python_output(code: str) -> Dict[str, str]: """Parse multi-file Python output (e.g., Gradio, Streamlit)""" files = {} # Pattern to match file sections pattern = r'===\s*(\S+\.(?:py|txt))\s*===\s*(.*?)(?====|$)' matches = re.finditer(pattern, code, re.DOTALL | re.IGNORECASE) for match in matches: filename = match.group(1).strip() content = match.group(2).strip() # Clean up code blocks if present content = re.sub(r'^```\w*\s*', '', content, flags=re.MULTILINE) content = re.sub(r'```\s*$', '', content, flags=re.MULTILINE) files[filename] = content # If no files were parsed, treat as single app.py if not files: # Clean up code blocks clean_code = re.sub(r'^```\w*\s*', '', code, flags=re.MULTILINE) clean_code = re.sub(r'```\s*$', '', clean_code, flags=re.MULTILINE) files['app.py'] = clean_code.strip() return files def is_streamlit_code(code: str) -> bool: """Check if code is Streamlit""" return 'import streamlit' in code or 'streamlit.run' in code def is_gradio_code(code: str) -> bool: """Check if code is Gradio""" return 'import gradio' in code or 'gr.' in code def detect_sdk_from_code(code: str, language: str) -> str: """Detect the appropriate SDK from code and language""" if language == "html": return "static" elif language == "transformers.js": return "static" elif language == "comfyui": return "static" elif language == "react": return "docker" elif language == "streamlit" or is_streamlit_code(code): return "docker" elif language == "gradio" or is_gradio_code(code): return "gradio" else: return "gradio" # Default def add_anycoder_tag_to_readme(api, repo_id: str, app_port: Optional[int] = None) -> None: """ Download existing README, add anycoder tag and app_port if needed, and upload back. Preserves all existing README content and frontmatter. Args: api: HuggingFace API client repo_id: Repository ID (username/space-name) app_port: Optional port number to set for Docker spaces (e.g., 7860) """ try: import tempfile import re # Download the existing README readme_path = api.hf_hub_download( repo_id=repo_id, filename="README.md", repo_type="space" ) # Read the existing README content with open(readme_path, 'r', encoding='utf-8') as f: content = f.read() # Parse frontmatter and content if content.startswith('---'): # Split frontmatter and body parts = content.split('---', 2) if len(parts) >= 3: frontmatter = parts[1].strip() body = parts[2] if len(parts) > 2 else "" # Check if tags already exist if 'tags:' in frontmatter: # Add anycoder to existing tags if not present if '- anycoder' not in frontmatter: frontmatter = re.sub(r'(tags:\s*\n(?:\s*-\s*[^\n]+\n)*)', r'\1- anycoder\n', frontmatter) else: # Add tags section with anycoder frontmatter += '\ntags:\n- anycoder' # Add app_port if specified and not already present if app_port is not None and 'app_port:' not in frontmatter: frontmatter += f'\napp_port: {app_port}' # Reconstruct the README new_content = f"---\n{frontmatter}\n---{body}" else: # Malformed frontmatter, just add tags at the end of frontmatter new_content = content.replace('---', '---\ntags:\n- anycoder\n---', 1) else: # No frontmatter, add it at the beginning app_port_line = f'\napp_port: {app_port}' if app_port else '' new_content = f"---\ntags:\n- anycoder{app_port_line}\n---\n\n{content}" # Upload the modified README with tempfile.NamedTemporaryFile("w", suffix=".md", delete=False, encoding='utf-8') as f: f.write(new_content) temp_path = f.name api.upload_file( path_or_fileobj=temp_path, path_in_repo="README.md", repo_id=repo_id, repo_type="space" ) os.unlink(temp_path) except Exception as e: print(f"Warning: Could not modify README.md to add anycoder tag: {e}") def create_dockerfile_for_streamlit(space_name: str) -> str: """Create Dockerfile for Streamlit app""" return f"""FROM python:3.11-slim WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY . . EXPOSE 7860 CMD ["streamlit", "run", "app.py", "--server.port=7860", "--server.address=0.0.0.0"] """ def create_dockerfile_for_react(space_name: str) -> str: """Create Dockerfile for React app""" return f"""FROM node:18-slim # Use existing node user USER node ENV HOME=/home/node ENV PATH=/home/node/.local/bin:$PATH WORKDIR /home/node/app COPY --chown=node:node package*.json ./ RUN npm install COPY --chown=node:node . . RUN npm run build EXPOSE 7860 CMD ["npm", "start", "--", "-p", "7860"] """ def deploy_to_huggingface_space( code: str, language: str, space_name: Optional[str] = None, token: Optional[str] = None, username: Optional[str] = None, description: Optional[str] = None, private: bool = False, existing_repo_id: Optional[str] = None, commit_message: Optional[str] = None ) -> Tuple[bool, str, Optional[str]]: """ Deploy code to HuggingFace Spaces (create new or update existing) Args: code: Generated code to deploy language: Target language/framework (html, gradio, streamlit, react, transformers.js, comfyui) space_name: Name for the space (auto-generated if None, ignored if existing_repo_id provided) token: HuggingFace API token username: HuggingFace username description: Space description private: Whether to make the space private (only for new spaces) existing_repo_id: If provided (username/space-name), updates this space instead of creating new one commit_message: Custom commit message (defaults to "Deploy from anycoder" or "Update from anycoder") Returns: Tuple of (success: bool, message: str, space_url: Optional[str]) """ if not token: token = os.getenv("HF_TOKEN") if not token: return False, "No HuggingFace token provided", None try: api = HfApi(token=token) # Determine if this is an update or new deployment is_update = existing_repo_id is not None if is_update: # Use existing repo repo_id = existing_repo_id space_name = existing_repo_id.split('/')[-1] username = existing_repo_id.split('/')[0] if '/' in existing_repo_id else username else: # Get username if not provided if not username: try: user_info = api.whoami() username = user_info.get("name") or user_info.get("preferred_username") or "user" except Exception as e: return False, f"Failed to get user info: {str(e)}", None # Generate space name if not provided or empty if not space_name or space_name.strip() == "": space_name = f"anycoder-{uuid.uuid4().hex[:8]}" print(f"[Deploy] Auto-generated space name: {space_name}") # Clean space name (no spaces, lowercase, alphanumeric + hyphens) space_name = re.sub(r'[^a-z0-9-]', '-', space_name.lower()) space_name = re.sub(r'-+', '-', space_name).strip('-') # Ensure space_name is not empty after cleaning if not space_name: space_name = f"anycoder-{uuid.uuid4().hex[:8]}" print(f"[Deploy] Space name was empty after cleaning, regenerated: {space_name}") repo_id = f"{username}/{space_name}" print(f"[Deploy] Using repo_id: {repo_id}") # Detect SDK sdk = detect_sdk_from_code(code, language) # Create temporary directory for files with tempfile.TemporaryDirectory() as temp_dir: temp_path = Path(temp_dir) # Parse code based on language app_port = None # Track if we need app_port for Docker spaces use_individual_uploads = False # Flag for transformers.js if language == "transformers.js": try: files = parse_transformers_js_output(code) print(f"[Deploy] Parsed transformers.js files: {list(files.keys())}") # Log file sizes for debugging for fname, fcontent in files.items(): if fcontent: print(f"[Deploy] {fname}: {len(fcontent)} characters") else: print(f"[Deploy] {fname}: EMPTY") # Validate all three files are present missing_files = [] if not files.get('index.html'): missing_files.append('index.html') if not files.get('index.js'): missing_files.append('index.js') if not files.get('style.css'): missing_files.append('style.css') if missing_files: error_msg = f"Missing required files: {', '.join(missing_files)}. " error_msg += f"Found only: {', '.join(files.keys()) if files else 'no files'}. " error_msg += "Transformers.js apps require all three files with === filename === markers. Please regenerate the code." print(f"[Deploy] {error_msg}") return False, error_msg, None # Validate files have content empty_files = [name for name, content in files.items() if not content or not content.strip()] if empty_files: error_msg = f"Empty files detected: {', '.join(empty_files)}. Please regenerate the code with actual content." print(f"[Deploy] {error_msg}") return False, error_msg, None # Write transformers.js files to temp directory for filename, content in files.items(): file_path = temp_path / filename print(f"[Deploy] Writing {filename} ({len(content)} chars) to {file_path}") file_path.write_text(content, encoding='utf-8') # Verify the write was successful written_size = file_path.stat().st_size print(f"[Deploy] Verified {filename}: {written_size} bytes on disk") # For transformers.js, we'll upload files individually (not via upload_folder) use_individual_uploads = True except Exception as e: print(f"[Deploy] Error parsing transformers.js: {e}") import traceback traceback.print_exc() return False, f"Error parsing transformers.js output: {str(e)}", None elif language == "html": html_code = parse_html_code(code) (temp_path / "index.html").write_text(html_code, encoding='utf-8') elif language == "comfyui": # ComfyUI is JSON, wrap in HTML viewer (temp_path / "index.html").write_text(code, encoding='utf-8') elif language in ["gradio", "streamlit"]: files = parse_multi_file_python_output(code) # Write Python files (create subdirectories if needed) for filename, content in files.items(): file_path = temp_path / filename file_path.parent.mkdir(parents=True, exist_ok=True) file_path.write_text(content, encoding='utf-8') # Ensure requirements.txt exists - generate from imports if missing if "requirements.txt" not in files: # Get the main app file (app.py for gradio, streamlit_app.py or app.py for streamlit) main_app = files.get('streamlit_app.py') or files.get('app.py', '') if main_app: print(f"[Deploy] Generating requirements.txt from imports in {language} app") import_statements = extract_import_statements(main_app) requirements_content = generate_requirements_txt_with_llm(import_statements) (temp_path / "requirements.txt").write_text(requirements_content, encoding='utf-8') print(f"[Deploy] Generated requirements.txt with {len(requirements_content.splitlines())} lines") else: # Fallback to minimal requirements if no app file found if language == "gradio": (temp_path / "requirements.txt").write_text("gradio>=4.0.0\n", encoding='utf-8') elif language == "streamlit": (temp_path / "requirements.txt").write_text("streamlit>=1.30.0\n", encoding='utf-8') # Create Dockerfile if needed if sdk == "docker": if language == "streamlit": dockerfile = create_dockerfile_for_streamlit(space_name) (temp_path / "Dockerfile").write_text(dockerfile, encoding='utf-8') app_port = 7860 # Set app_port for Docker spaces use_individual_uploads = True # Streamlit uses individual file uploads elif language == "react": # Parse React output to get all files (uses same multi-file format as Python) files = parse_multi_file_python_output(code) if not files: return False, "Error: Could not parse React output", None # If Dockerfile is missing, use template if 'Dockerfile' not in files: dockerfile = create_dockerfile_for_react(space_name) files['Dockerfile'] = dockerfile # Write all React files (create subdirectories if needed) for filename, content in files.items(): file_path = temp_path / filename file_path.parent.mkdir(parents=True, exist_ok=True) file_path.write_text(content, encoding='utf-8') app_port = 7860 # Set app_port for Docker spaces use_individual_uploads = True # React uses individual file uploads else: # Default: treat as Gradio app files = parse_multi_file_python_output(code) # Write files (create subdirectories if needed) for filename, content in files.items(): file_path = temp_path / filename file_path.parent.mkdir(parents=True, exist_ok=True) file_path.write_text(content, encoding='utf-8') # Generate requirements.txt from imports if missing if "requirements.txt" not in files: main_app = files.get('app.py', '') if main_app: print(f"[Deploy] Generating requirements.txt from imports in default app") import_statements = extract_import_statements(main_app) requirements_content = generate_requirements_txt_with_llm(import_statements) (temp_path / "requirements.txt").write_text(requirements_content, encoding='utf-8') print(f"[Deploy] Generated requirements.txt with {len(requirements_content.splitlines())} lines") else: # Fallback to minimal requirements if no app file found (temp_path / "requirements.txt").write_text("gradio>=4.0.0\n", encoding='utf-8') # Don't create README - HuggingFace will auto-generate it # We'll add the anycoder tag after deployment # ONLY create repo for NEW deployments of non-Docker, non-transformers.js spaces # Docker and transformers.js handle repo creation separately below # This matches the Gradio version logic (line 1256 in ui.py) if not is_update and sdk != "docker" and language not in ["transformers.js"]: print(f"[Deploy] Creating NEW {sdk} space: {repo_id}") try: api.create_repo( repo_id=repo_id, repo_type="space", space_sdk=sdk, private=private, exist_ok=True ) except Exception as e: return False, f"Failed to create space: {str(e)}", None elif is_update: print(f"[Deploy] UPDATING existing space: {repo_id} (skipping create_repo)") # Handle transformers.js spaces (create repo via duplicate_space) if language == "transformers.js": if not is_update: print(f"[Deploy] Creating NEW transformers.js space via template duplication") print(f"[Deploy] space_name value: '{space_name}' (type: {type(space_name)})") # Safety check for space_name if not space_name: return False, "Internal error: space_name is None after generation", None try: from huggingface_hub import duplicate_space # duplicate_space expects just the space name (not full repo_id) # Use strip() to clean the space name clean_space_name = space_name.strip() print(f"[Deploy] Attempting to duplicate template space to: {clean_space_name}") duplicated_repo = duplicate_space( from_id="static-templates/transformers.js", to_id=clean_space_name, token=token, exist_ok=True ) print(f"[Deploy] Template duplication result: {duplicated_repo} (type: {type(duplicated_repo)})") except Exception as e: print(f"[Deploy] Exception during duplicate_space: {type(e).__name__}: {str(e)}") # Check if space actually exists (success despite error) space_exists = False try: if api.space_info(repo_id): space_exists = True except: pass # Handle RepoUrl object "errors" error_msg = str(e) if ("'url'" in error_msg or "RepoUrl" in error_msg) and space_exists: print(f"[Deploy] Space exists despite RepoUrl error, continuing with deployment") else: # Fallback to regular create_repo print(f"[Deploy] Template duplication failed, attempting fallback to create_repo: {e}") try: api.create_repo( repo_id=repo_id, repo_type="space", space_sdk="static", private=private, exist_ok=True ) print(f"[Deploy] Fallback create_repo successful") except Exception as e2: return False, f"Failed to create transformers.js space (both duplication and fallback failed): {str(e2)}", None else: # For updates, verify we can access the existing space try: space_info = api.space_info(repo_id) if not space_info: return False, f"Could not access space {repo_id} for update", None except Exception as e: return False, f"Cannot update space {repo_id}: {str(e)}", None # Handle Docker spaces (React/Streamlit) - create repo separately elif sdk == "docker" and language in ["streamlit", "react"]: if not is_update: print(f"[Deploy] Creating NEW Docker space for {language}: {repo_id}") try: from huggingface_hub import create_repo as hf_create_repo hf_create_repo( repo_id=repo_id, repo_type="space", space_sdk="docker", token=token, exist_ok=True ) except Exception as e: return False, f"Failed to create Docker space: {str(e)}", None # Upload files if not commit_message: commit_message = "Update from anycoder" if is_update else "Deploy from anycoder" try: if language == "transformers.js": # Special handling for transformers.js - create NEW temp files for each upload # This matches the working pattern in ui.py import time # Get the parsed files from earlier files_to_upload = [ ("index.html", files.get('index.html')), ("index.js", files.get('index.js')), ("style.css", files.get('style.css')) ] max_attempts = 3 for file_name, file_content in files_to_upload: if not file_content: return False, f"Missing content for {file_name}", None success = False last_error = None for attempt in range(max_attempts): temp_file_path = None try: # Create a NEW temp file for this upload (key difference from old approach) print(f"[Deploy] Creating temp file for {file_name} with {len(file_content)} chars") with tempfile.NamedTemporaryFile("w", suffix=f".{file_name.split('.')[-1]}", delete=False, encoding='utf-8') as f: f.write(file_content) f.flush() # Ensure all content is written to disk before closing temp_file_path = f.name # File is now closed and flushed, safe to upload # Verify temp file size before upload import os as _os temp_size = _os.path.getsize(temp_file_path) print(f"[Deploy] Temp file {file_name} size on disk: {temp_size} bytes (expected ~{len(file_content)} chars)") # Upload the file without commit_message (HF handles this for spaces) api.upload_file( path_or_fileobj=temp_file_path, path_in_repo=file_name, repo_id=repo_id, repo_type="space" ) success = True print(f"[Deploy] Successfully uploaded {file_name}") break except Exception as e: last_error = e error_str = str(e) print(f"[Deploy] Upload error for {file_name}: {error_str}") if "403" in error_str or "Forbidden" in error_str: return False, f"Permission denied uploading {file_name}. Check your token has write access to {repo_id}.", None if attempt < max_attempts - 1: time.sleep(2) # Wait before retry print(f"[Deploy] Retry {attempt + 1}/{max_attempts} for {file_name}") finally: # Clean up temp file if temp_file_path and os.path.exists(temp_file_path): os.unlink(temp_file_path) if not success: return False, f"Failed to upload {file_name} after {max_attempts} attempts: {last_error}", None elif use_individual_uploads: # For React, Streamlit: upload each file individually import time # Get list of files to upload from temp directory files_to_upload = [] for file_path in temp_path.rglob('*'): if file_path.is_file(): # Get relative path from temp directory (use forward slashes for repo paths) rel_path = file_path.relative_to(temp_path) files_to_upload.append(str(rel_path).replace('\\', '/')) if not files_to_upload: return False, "No files to upload", None print(f"[Deploy] Uploading {len(files_to_upload)} files individually: {files_to_upload}") max_attempts = 3 for filename in files_to_upload: # Convert back to Path for filesystem operations file_path = temp_path / filename.replace('/', os.sep) if not file_path.exists(): return False, f"Failed to upload: {filename} not found", None # Upload with retry logic success = False last_error = None for attempt in range(max_attempts): try: # Upload without commit_message - HF API handles this for spaces api.upload_file( path_or_fileobj=str(file_path), path_in_repo=filename, repo_id=repo_id, repo_type="space" ) success = True print(f"[Deploy] Successfully uploaded {filename}") break except Exception as e: last_error = e error_str = str(e) print(f"[Deploy] Upload error for {filename}: {error_str}") if "403" in error_str or "Forbidden" in error_str: return False, f"Permission denied uploading {filename}. Check your token has write access to {repo_id}.", None if attempt < max_attempts - 1: time.sleep(2) # Wait before retry print(f"[Deploy] Retry {attempt + 1}/{max_attempts} for {filename}") if not success: return False, f"Failed to upload {filename} after {max_attempts} attempts: {last_error}", None else: # For other languages, use upload_folder print(f"[Deploy] Uploading folder to {repo_id}") api.upload_folder( folder_path=str(temp_path), repo_id=repo_id, repo_type="space" ) except Exception as e: return False, f"Failed to upload files: {str(e)}", None # After successful upload, modify the auto-generated README to add anycoder tag # For new spaces: HF auto-generates README, wait and modify it # For updates: README should already exist, just add tag if missing try: import time if not is_update: time.sleep(2) # Give HF time to generate README for new spaces add_anycoder_tag_to_readme(api, repo_id, app_port) except Exception as e: # Don't fail deployment if README modification fails print(f"Warning: Could not add anycoder tag to README: {e}") # For transformers.js updates, trigger a space restart to ensure changes take effect if is_update and language == "transformers.js": try: api.restart_space(repo_id=repo_id) print(f"[Deploy] Restarted space after update: {repo_id}") except Exception as restart_error: # Don't fail the deployment if restart fails, just log it print(f"Note: Could not restart space after update: {restart_error}") space_url = f"https://huggingface.co/spaces/{repo_id}" action = "Updated" if is_update else "Deployed" return True, f"✅ {action} successfully to {repo_id}!", space_url except Exception as e: print(f"[Deploy] Top-level exception caught: {type(e).__name__}: {str(e)}") import traceback traceback.print_exc() return False, f"Deployment error: {str(e)}", None def update_space_file( repo_id: str, file_path: str, content: str, token: Optional[str] = None, commit_message: Optional[str] = None ) -> Tuple[bool, str]: """ Update a single file in an existing HuggingFace Space Args: repo_id: Full repo ID (username/space-name) file_path: Path of file to update (e.g., "app.py") content: New file content token: HuggingFace API token commit_message: Commit message (default: "Update {file_path}") Returns: Tuple of (success: bool, message: str) """ if not token: token = os.getenv("HF_TOKEN") if not token: return False, "No HuggingFace token provided" try: api = HfApi(token=token) if not commit_message: commit_message = f"Update {file_path}" # Create temporary file with tempfile.NamedTemporaryFile(mode='w', suffix=f'.{file_path.split(".")[-1]}', delete=False) as f: f.write(content) temp_path = f.name try: api.upload_file( path_or_fileobj=temp_path, path_in_repo=file_path, repo_id=repo_id, repo_type="space", commit_message=commit_message ) return True, f"✅ Successfully updated {file_path}" finally: os.unlink(temp_path) except Exception as e: return False, f"Failed to update file: {str(e)}" def delete_space( repo_id: str, token: Optional[str] = None ) -> Tuple[bool, str]: """ Delete a HuggingFace Space Args: repo_id: Full repo ID (username/space-name) token: HuggingFace API token Returns: Tuple of (success: bool, message: str) """ if not token: token = os.getenv("HF_TOKEN") if not token: return False, "No HuggingFace token provided" try: api = HfApi(token=token) api.delete_repo(repo_id=repo_id, repo_type="space") return True, f"✅ Successfully deleted {repo_id}" except Exception as e: return False, f"Failed to delete space: {str(e)}" def list_user_spaces( username: Optional[str] = None, token: Optional[str] = None ) -> Tuple[bool, str, Optional[List[Dict]]]: """ List all spaces for a user Args: username: HuggingFace username (gets from token if None) token: HuggingFace API token Returns: Tuple of (success: bool, message: str, spaces: Optional[List[Dict]]) """ if not token: token = os.getenv("HF_TOKEN") if not token: return False, "No HuggingFace token provided", None try: api = HfApi(token=token) # Get username if not provided if not username: user_info = api.whoami() username = user_info.get("name") or user_info.get("preferred_username") # List spaces spaces = api.list_spaces(author=username) space_list = [] for space in spaces: space_list.append({ "id": space.id, "author": space.author, "name": getattr(space, 'name', space.id.split('/')[-1]), "sdk": getattr(space, 'sdk', 'unknown'), "private": getattr(space, 'private', False), "url": f"https://huggingface.co/spaces/{space.id}" }) return True, f"Found {len(space_list)} spaces", space_list except Exception as e: return False, f"Failed to list spaces: {str(e)}", None