import gradio as gr from gradio_client import Client, handle_file MODELS = {"Paligemma-10B": "akhaliq/paligemma2-10b-ft-docci-448"} def create_chat_fn(client, system_prompt, temperature, max_tokens, top_k, rep_penalty, top_p): def chat(message, history): text = message.get("text", "") files = message.get("files", []) processed_files = [handle_file(f) for f in files] response = client.predict( message={"text": text, "files": processed_files}, system_prompt=system_prompt, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, repetition_penalty=rep_penalty, top_p=top_p, api_name="/chat", ) return response return chat def set_client_for_session(model_name, request: gr.Request): headers = {} if request and hasattr(request, "headers"): x_ip_token = request.headers.get("x-ip-token") if x_ip_token: headers["X-IP-Token"] = x_ip_token return Client(MODELS[model_name], headers=headers) def safe_chat_fn(message, history, client, system_prompt, temperature, max_tokens, top_k, rep_penalty, top_p): if client is None: return "Error: Client not initialized. Please refresh the page." try: return create_chat_fn(client, system_prompt, temperature, max_tokens, top_k, rep_penalty, top_p)( message, history ) except Exception as e: print(f"Error during chat: {str(e)}") return f"Error during chat: {str(e)}" with gr.Blocks() as demo: client = gr.State() with gr.Accordion("Advanced Settings", open=False): system_prompt = gr.Textbox(value="You are a helpful AI assistant.", label="System Prompt") with gr.Row(): temperature = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, label="Temperature") top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, label="Top P") with gr.Row(): top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top K") rep_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, label="Repetition Penalty") max_tokens = gr.Slider(minimum=64, maximum=4096, value=1024, step=64, label="Max Tokens") chat_interface = gr.ChatInterface( fn=safe_chat_fn, additional_inputs=[client, system_prompt, temperature, max_tokens, top_k, rep_penalty, top_p], multimodal=True, ) # Initialize client on page load with default model demo.load(fn=set_client_for_session, inputs=[gr.State("Paligemma-10B")], outputs=[client]) # Using default model # Move the API access check here, after demo is defined if hasattr(demo, "fns"): for fn in demo.fns.values(): fn.api_name = False if __name__ == "__main__": demo.launch()