from synthesizer.preprocess import create_embeddings from utils.argutils import print_args from pathlib import Path import argparse if __name__ == "__main__": parser = argparse.ArgumentParser( description="Creates embeddings for the synthesizer from the LibriSpeech utterances.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("synthesizer_root", type=Path, help=\ "Path to the synthesizer training data that contains the audios and the train.txt file. " "If you let everything as default, it should be /SV2TTS/synthesizer/.") parser.add_argument("-e", "--encoder_model_fpath", type=Path, default="encoder/saved_models/pretrained.pt", help=\ "Path your trained encoder model.") parser.add_argument("-n", "--n_processes", type=int, default=4, help= \ "Number of parallel processes. An encoder is created for each, so you may need to lower " "this value on GPUs with low memory. Set it to 1 if CUDA is unhappy.") args = parser.parse_args() # Preprocess the dataset print_args(args, parser) create_embeddings(**vars(args))