from model import PopMusicTransformer import os os.environ['CUDA_VISIBLE_DEVICES'] = '-1' import tensorflow as tf tf.compat.v1.disable_eager_execution() import gradio as gr import requests import torchtext import zipfile torchtext.utils.download_from_url("https://drive.google.com/uc?id=1gxuTSkF51NP04JZgTE46Pg4KQsbHQKGo", root=".") torchtext.utils.download_from_url("https://drive.google.com/uc?id=1nAKjaeahlzpVAX0F9wjQEG_hL4UosSbo", root=".") with zipfile.ZipFile("REMI-tempo-checkpoint.zip","r") as zip_ref: zip_ref.extractall(".") with zipfile.ZipFile("REMI-tempo-chord-checkpoint.zip","r") as zip_ref: zip_ref.extractall(".") url = 'https://github.com/AK391/remi/blob/master/input.midi?raw=true' r = requests.get(url, allow_redirects=True) open("input.midi", 'wb').write(r.content) # declare model model = PopMusicTransformer( checkpoint='REMI-tempo-checkpoint', is_training=False) def inference(midi): # generate continuation model.generate( n_target_bar=4, temperature=1.2, topk=5, output_path='./result/continuation.midi', prompt=midi.name) return './result/continuation.midi' title = "Pop Music Transformer" description = "demo for Pop Music Transformer. To use it, simply upload your midi file, or click one of the examples to load them. Read more at the links below." article = "
Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions | Github Repo
" examples = [ ['input.midi'] ] gr.Interface( inference, gr.inputs.File(label="Input Midi"), gr.outputs.File(label="Output Midi"), title=title, description=description, article=article, examples=examples ).launch()