Ahsen Khaliq
Update app.py
dfa4a23
raw
history blame
30.9 kB
import torch
import torch.nn.functional as F
import numpy as np
from PIL import Image
import os
os.system('pip freeze')
import network
import morphology
import math
import gradio as gr
from torchvision import transforms
import torchtext
from stat import ST_CTIME
from datetime import datetime, timedelta
import shutil
print(torch.cuda.is_available())
# Images
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2021/08/04/14/16/tower-6521842_1280.jpg', 'tower.jpg')
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2017/08/31/05/36/buildings-2699520_1280.jpg', 'city.jpg')
idx = 0
os.system("gdown https://drive.google.com/uc?id=1NDD54BLligyr8tzo8QGI5eihZisXK1nq")
def to_PIL_img(img):
result = Image.fromarray((img.data.cpu().numpy().transpose((1, 2, 0)) * 255).astype(np.uint8))
return result
def save_img(img, output_path):
to_PIL_img(img).save(output_path)
def param2stroke(param, H, W, meta_brushes):
"""
Input a set of stroke parameters and output its corresponding foregrounds and alpha maps.
Args:
param: a tensor with shape n_strokes x n_param_per_stroke. Here, param_per_stroke is 8:
x_center, y_center, width, height, theta, R, G, and B.
H: output height.
W: output width.
meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
Returns:
foregrounds: a tensor with shape n_strokes x 3 x H x W, containing color information.
alphas: a tensor with shape n_strokes x 3 x H x W,
containing binary information of whether a pixel is belonging to the stroke (alpha mat), for painting process.
"""
# Firstly, resize the meta brushes to the required shape,
# in order to decrease GPU memory especially when the required shape is small.
meta_brushes_resize = F.interpolate(meta_brushes, (H, W))
b = param.shape[0]
# Extract shape parameters and color parameters.
param_list = torch.split(param, 1, dim=1)
x0, y0, w, h, theta = [item.squeeze(-1) for item in param_list[:5]]
R, G, B = param_list[5:]
# Pre-compute sin theta and cos theta
sin_theta = torch.sin(torch.acos(torch.tensor(-1., device=param.device)) * theta)
cos_theta = torch.cos(torch.acos(torch.tensor(-1., device=param.device)) * theta)
# index means each stroke should use which meta stroke? Vertical meta stroke or horizontal meta stroke.
# When h > w, vertical stroke should be used. When h <= w, horizontal stroke should be used.
index = torch.full((b,), -1, device=param.device, dtype=torch.long)
index[h > w] = 0
index[h <= w] = 1
brush = meta_brushes_resize[index.long()]
# Calculate warp matrix according to the rules defined by pytorch, in order for warping.
warp_00 = cos_theta / w
warp_01 = sin_theta * H / (W * w)
warp_02 = (1 - 2 * x0) * cos_theta / w + (1 - 2 * y0) * sin_theta * H / (W * w)
warp_10 = -sin_theta * W / (H * h)
warp_11 = cos_theta / h
warp_12 = (1 - 2 * y0) * cos_theta / h - (1 - 2 * x0) * sin_theta * W / (H * h)
warp_0 = torch.stack([warp_00, warp_01, warp_02], dim=1)
warp_1 = torch.stack([warp_10, warp_11, warp_12], dim=1)
warp = torch.stack([warp_0, warp_1], dim=1)
# Conduct warping.
grid = F.affine_grid(warp, [b, 3, H, W], align_corners=False)
brush = F.grid_sample(brush, grid, align_corners=False)
# alphas is the binary information suggesting whether a pixel is belonging to the stroke.
alphas = (brush > 0).float()
brush = brush.repeat(1, 3, 1, 1)
alphas = alphas.repeat(1, 3, 1, 1)
# Give color to foreground strokes.
color_map = torch.cat([R, G, B], dim=1)
color_map = color_map.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, H, W)
foreground = brush * color_map
# Dilation and erosion are used for foregrounds and alphas respectively to prevent artifacts on stroke borders.
foreground = morphology.dilation(foreground)
alphas = morphology.erosion(alphas)
return foreground, alphas
def param2img_serial(
param, decision, meta_brushes, cur_canvas, frame_dir, has_border=False, original_h=None, original_w=None, *, all_frames):
"""
Input stroke parameters and decisions for each patch, meta brushes, current canvas, frame directory,
and whether there is a border (if intermediate painting results are required).
Output the painting results of adding the corresponding strokes on the current canvas.
Args:
param: a tensor with shape batch size x patch along height dimension x patch along width dimension
x n_stroke_per_patch x n_param_per_stroke
decision: a 01 tensor with shape batch size x patch along height dimension x patch along width dimension
x n_stroke_per_patch
meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
cur_canvas: a tensor with shape batch size x 3 x H x W,
where H and W denote height and width of padded results of original images.
frame_dir: directory to save intermediate painting results. None means intermediate results are not required.
has_border: on the last painting layer, in order to make sure that the painting results do not miss
any important detail, we choose to paint again on this layer but shift patch_size // 2 pixels when
cutting patches. In this case, if intermediate results are required, we need to cut the shifted length
on the border before saving, or there would be a black border.
original_h: to indicate the original height for cropping when saving intermediate results.
original_w: to indicate the original width for cropping when saving intermediate results.
Returns:
cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results.
"""
# param: b, h, w, stroke_per_patch, param_per_stroke
# decision: b, h, w, stroke_per_patch
b, h, w, s, p = param.shape
H, W = cur_canvas.shape[-2:]
is_odd_y = h % 2 == 1
is_odd_x = w % 2 == 1
patch_size_y = 2 * H // h
patch_size_x = 2 * W // w
even_idx_y = torch.arange(0, h, 2, device=cur_canvas.device)
even_idx_x = torch.arange(0, w, 2, device=cur_canvas.device)
odd_idx_y = torch.arange(1, h, 2, device=cur_canvas.device)
odd_idx_x = torch.arange(1, w, 2, device=cur_canvas.device)
even_y_even_x_coord_y, even_y_even_x_coord_x = torch.meshgrid([even_idx_y, even_idx_x])
odd_y_odd_x_coord_y, odd_y_odd_x_coord_x = torch.meshgrid([odd_idx_y, odd_idx_x])
even_y_odd_x_coord_y, even_y_odd_x_coord_x = torch.meshgrid([even_idx_y, odd_idx_x])
odd_y_even_x_coord_y, odd_y_even_x_coord_x = torch.meshgrid([odd_idx_y, even_idx_x])
cur_canvas = F.pad(cur_canvas, [patch_size_x // 4, patch_size_x // 4,
patch_size_y // 4, patch_size_y // 4, 0, 0, 0, 0])
def partial_render(this_canvas, patch_coord_y, patch_coord_x, stroke_id):
canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x),
stride=(patch_size_y // 2, patch_size_x // 2))
# canvas_patch: b, 3 * py * px, h * w
canvas_patch = canvas_patch.view(b, 3, patch_size_y, patch_size_x, h, w).contiguous()
canvas_patch = canvas_patch.permute(0, 4, 5, 1, 2, 3).contiguous()
# canvas_patch: b, h, w, 3, py, px
selected_canvas_patch = canvas_patch[:, patch_coord_y, patch_coord_x, :, :, :]
selected_h, selected_w = selected_canvas_patch.shape[1:3]
selected_param = param[:, patch_coord_y, patch_coord_x, stroke_id, :].view(-1, p).contiguous()
selected_decision = decision[:, patch_coord_y, patch_coord_x, stroke_id].view(-1).contiguous()
selected_foregrounds = torch.zeros(selected_param.shape[0], 3, patch_size_y, patch_size_x,
device=this_canvas.device)
selected_alphas = torch.zeros(selected_param.shape[0], 3, patch_size_y, patch_size_x, device=this_canvas.device)
if selected_param[selected_decision, :].shape[0] > 0:
selected_foregrounds[selected_decision, :, :, :], selected_alphas[selected_decision, :, :, :] = param2stroke(selected_param[selected_decision, :], patch_size_y, patch_size_x, meta_brushes)
selected_foregrounds = selected_foregrounds.view(
b, selected_h, selected_w, 3, patch_size_y, patch_size_x).contiguous()
selected_alphas = selected_alphas.view(b, selected_h, selected_w, 3, patch_size_y, patch_size_x).contiguous()
selected_decision = selected_decision.view(b, selected_h, selected_w, 1, 1, 1).contiguous()
selected_canvas_patch = selected_foregrounds * selected_alphas * selected_decision + selected_canvas_patch * (
1 - selected_alphas * selected_decision)
this_canvas = selected_canvas_patch.permute(0, 3, 1, 4, 2, 5).contiguous()
# this_canvas: b, 3, selected_h, py, selected_w, px
this_canvas = this_canvas.view(b, 3, selected_h * patch_size_y, selected_w * patch_size_x).contiguous()
# this_canvas: b, 3, selected_h * py, selected_w * px
return this_canvas
global idx
if has_border:
factor = 2
else:
factor = 4
def store_frame(img):
all_frames.append(to_PIL_img(img))
if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
for i in range(s):
canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x, i)
if not is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if not is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
idx += 1
if frame_dir is not None:
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
store_frame(frame[0])
if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
for i in range(s):
canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x, i)
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, -canvas.shape[3]:], canvas], dim=2)
canvas = torch.cat([cur_canvas[:, :, -canvas.shape[2]:, :patch_size_x // 2], canvas], dim=3)
if is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
idx += 1
if frame_dir is not None:
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
store_frame(frame[0])
if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
for i in range(s):
canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x, i)
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, :canvas.shape[3]], canvas], dim=2)
if is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if not is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
idx += 1
if frame_dir is not None:
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
store_frame(frame[0])
if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
for i in range(s):
canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x, i)
canvas = torch.cat([cur_canvas[:, :, :canvas.shape[2], :patch_size_x // 2], canvas], dim=3)
if not is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, -canvas.shape[3]:]], dim=2)
if is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
idx += 1
if frame_dir is not None:
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
store_frame(frame[0])
cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4]
return cur_canvas
def param2img_parallel(param, decision, meta_brushes, cur_canvas):
"""
Input stroke parameters and decisions for each patch, meta brushes, current canvas, frame directory,
and whether there is a border (if intermediate painting results are required).
Output the painting results of adding the corresponding strokes on the current canvas.
Args:
param: a tensor with shape batch size x patch along height dimension x patch along width dimension
x n_stroke_per_patch x n_param_per_stroke
decision: a 01 tensor with shape batch size x patch along height dimension x patch along width dimension
x n_stroke_per_patch
meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
cur_canvas: a tensor with shape batch size x 3 x H x W,
where H and W denote height and width of padded results of original images.
Returns:
cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results.
"""
# param: b, h, w, stroke_per_patch, param_per_stroke
# decision: b, h, w, stroke_per_patch
b, h, w, s, p = param.shape
param = param.view(-1, 8).contiguous()
decision = decision.view(-1).contiguous().bool()
H, W = cur_canvas.shape[-2:]
is_odd_y = h % 2 == 1
is_odd_x = w % 2 == 1
patch_size_y = 2 * H // h
patch_size_x = 2 * W // w
even_idx_y = torch.arange(0, h, 2, device=cur_canvas.device)
even_idx_x = torch.arange(0, w, 2, device=cur_canvas.device)
odd_idx_y = torch.arange(1, h, 2, device=cur_canvas.device)
odd_idx_x = torch.arange(1, w, 2, device=cur_canvas.device)
even_y_even_x_coord_y, even_y_even_x_coord_x = torch.meshgrid([even_idx_y, even_idx_x])
odd_y_odd_x_coord_y, odd_y_odd_x_coord_x = torch.meshgrid([odd_idx_y, odd_idx_x])
even_y_odd_x_coord_y, even_y_odd_x_coord_x = torch.meshgrid([even_idx_y, odd_idx_x])
odd_y_even_x_coord_y, odd_y_even_x_coord_x = torch.meshgrid([odd_idx_y, even_idx_x])
cur_canvas = F.pad(cur_canvas, [patch_size_x // 4, patch_size_x // 4,
patch_size_y // 4, patch_size_y // 4, 0, 0, 0, 0])
foregrounds = torch.zeros(param.shape[0], 3, patch_size_y, patch_size_x, device=cur_canvas.device)
alphas = torch.zeros(param.shape[0], 3, patch_size_y, patch_size_x, device=cur_canvas.device)
valid_foregrounds, valid_alphas = param2stroke(param[decision, :], patch_size_y, patch_size_x, meta_brushes)
foregrounds[decision, :, :, :] = valid_foregrounds
alphas[decision, :, :, :] = valid_alphas
# foreground, alpha: b * h * w * stroke_per_patch, 3, patch_size_y, patch_size_x
foregrounds = foregrounds.view(-1, h, w, s, 3, patch_size_y, patch_size_x).contiguous()
alphas = alphas.view(-1, h, w, s, 3, patch_size_y, patch_size_x).contiguous()
# foreground, alpha: b, h, w, stroke_per_patch, 3, render_size_y, render_size_x
decision = decision.view(-1, h, w, s, 1, 1, 1).contiguous()
# decision: b, h, w, stroke_per_patch, 1, 1, 1
def partial_render(this_canvas, patch_coord_y, patch_coord_x):
canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x),
stride=(patch_size_y // 2, patch_size_x // 2))
# canvas_patch: b, 3 * py * px, h * w
canvas_patch = canvas_patch.view(b, 3, patch_size_y, patch_size_x, h, w).contiguous()
canvas_patch = canvas_patch.permute(0, 4, 5, 1, 2, 3).contiguous()
# canvas_patch: b, h, w, 3, py, px
selected_canvas_patch = canvas_patch[:, patch_coord_y, patch_coord_x, :, :, :]
selected_foregrounds = foregrounds[:, patch_coord_y, patch_coord_x, :, :, :, :]
selected_alphas = alphas[:, patch_coord_y, patch_coord_x, :, :, :, :]
selected_decisions = decision[:, patch_coord_y, patch_coord_x, :, :, :, :]
for i in range(s):
cur_foreground = selected_foregrounds[:, :, :, i, :, :, :]
cur_alpha = selected_alphas[:, :, :, i, :, :, :]
cur_decision = selected_decisions[:, :, :, i, :, :, :]
selected_canvas_patch = cur_foreground * cur_alpha * cur_decision + selected_canvas_patch * (
1 - cur_alpha * cur_decision)
this_canvas = selected_canvas_patch.permute(0, 3, 1, 4, 2, 5).contiguous()
# this_canvas: b, 3, h_half, py, w_half, px
h_half = this_canvas.shape[2]
w_half = this_canvas.shape[4]
this_canvas = this_canvas.view(b, 3, h_half * patch_size_y, w_half * patch_size_x).contiguous()
# this_canvas: b, 3, h_half * py, w_half * px
return this_canvas
if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x)
if not is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if not is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x)
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, -canvas.shape[3]:], canvas], dim=2)
canvas = torch.cat([cur_canvas[:, :, -canvas.shape[2]:, :patch_size_x // 2], canvas], dim=3)
if is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x)
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, :canvas.shape[3]], canvas], dim=2)
if is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if not is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x)
canvas = torch.cat([cur_canvas[:, :, :canvas.shape[2], :patch_size_x // 2], canvas], dim=3)
if not is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, -canvas.shape[3]:]], dim=2)
if is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4]
return cur_canvas
def read_img(img_path, img_type='RGB', h=None, w=None):
img = Image.open(img_path).convert(img_type)
if h is not None and w is not None:
img = img.resize((w, h), resample=Image.NEAREST)
img = np.array(img)
if img.ndim == 2:
img = np.expand_dims(img, axis=-1)
img = img.transpose((2, 0, 1))
img = torch.from_numpy(img).unsqueeze(0).float() / 255.
return img
def pad(img, H, W):
b, c, h, w = img.shape
pad_h = (H - h) // 2
pad_w = (W - w) // 2
remainder_h = (H - h) % 2
remainder_w = (W - w) % 2
img = torch.cat([torch.zeros((b, c, pad_h, w), device=img.device), img,
torch.zeros((b, c, pad_h + remainder_h, w), device=img.device)], dim=-2)
img = torch.cat([torch.zeros((b, c, H, pad_w), device=img.device), img,
torch.zeros((b, c, H, pad_w + remainder_w), device=img.device)], dim=-1)
return img
def crop(img, h, w):
H, W = img.shape[-2:]
pad_h = (H - h) // 2
pad_w = (W - w) // 2
remainder_h = (H - h) % 2
remainder_w = (W - w) % 2
img = img[:, :, pad_h:H - pad_h - remainder_h, pad_w:W - pad_w - remainder_w]
return img
def main(input_path, model_path, output_dir, need_animation=False, resize_h=None, resize_w=None, serial=False):
if not os.path.exists(output_dir):
os.mkdir(output_dir)
for entry in os.listdir(output_dir):
path = os.path.join(output_dir, entry)
stats = os.stat(path)
created_time = datetime.fromtimestamp(stats[ST_CTIME])
if created_time < datetime.now() - timedelta(minutes = 10):
if os.path.isdir(path):
shutil.rmtree(path)
else:
os.remove(path)
input_name = os.path.basename(input_path)
output_path = os.path.join(output_dir, input_name)
frame_dir = None
if need_animation:
if not serial:
print('It must be under serial mode if animation results are required, so serial flag is set to True!')
serial = True
frame_dir = os.path.join(output_dir, input_name[:input_name.find('.')])
if not os.path.exists(frame_dir):
os.mkdir(frame_dir)
patch_size = 32
stroke_num = 8
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net_g = network.Painter(5, stroke_num, 256, 8, 3, 3).to(device)
net_g.load_state_dict(torch.load(model_path))
net_g.eval()
for param in net_g.parameters():
param.requires_grad = False
brush_large_vertical = read_img('brush/brush_large_vertical.png', 'L').to(device)
brush_large_horizontal = read_img('brush/brush_large_horizontal.png', 'L').to(device)
meta_brushes = torch.cat(
[brush_large_vertical, brush_large_horizontal], dim=0)
with torch.no_grad():
original_img = read_img(input_path, 'RGB', resize_h, resize_w).to(device)
original_h, original_w = original_img.shape[-2:]
K = max(math.ceil(math.log2(max(original_h, original_w) / patch_size)), 0)
original_img_pad_size = patch_size * (2 ** K)
original_img_pad = pad(original_img, original_img_pad_size, original_img_pad_size)
final_result = torch.zeros_like(original_img_pad).to(device)
all_frames = []
for layer in range(0, K + 1):
layer_size = patch_size * (2 ** layer)
img = F.interpolate(original_img_pad, (layer_size, layer_size))
result = F.interpolate(final_result, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
img_patch = F.unfold(img, (patch_size, patch_size), stride=(patch_size, patch_size))
result_patch = F.unfold(result, (patch_size, patch_size),
stride=(patch_size, patch_size))
# There are patch_num * patch_num patches in total
patch_num = (layer_size - patch_size) // patch_size + 1
# img_patch, result_patch: b, 3 * output_size * output_size, h * w
img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
result_patch = result_patch.permute(0, 2, 1).contiguous().view(
-1, 3, patch_size, patch_size).contiguous()
shape_param, stroke_decision = net_g(img_patch, result_patch)
stroke_decision = network.SignWithSigmoidGrad.apply(stroke_decision)
grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous()
img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view(
img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous()
color = F.grid_sample(img_temp, 2 * grid - 1, align_corners=False).view(
img_patch.shape[0], stroke_num, 3).contiguous()
stroke_param = torch.cat([shape_param, color], dim=-1)
# stroke_param: b * h * w, stroke_per_patch, param_per_stroke
# stroke_decision: b * h * w, stroke_per_patch, 1
param = stroke_param.view(1, patch_num, patch_num, stroke_num, 8).contiguous()
decision = stroke_decision.view(1, patch_num, patch_num, stroke_num).contiguous().bool()
# param: b, h, w, stroke_per_patch, 8
# decision: b, h, w, stroke_per_patch
param[..., :2] = param[..., :2] / 2 + 0.25
param[..., 2:4] = param[..., 2:4] / 2
if serial:
final_result = param2img_serial(param, decision, meta_brushes, final_result,
frame_dir, False, original_h, original_w, all_frames = all_frames)
else:
final_result = param2img_parallel(param, decision, meta_brushes, final_result)
border_size = original_img_pad_size // (2 * patch_num)
img = F.interpolate(original_img_pad, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
result = F.interpolate(final_result, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
img = F.pad(img, [patch_size // 2, patch_size // 2, patch_size // 2, patch_size // 2,
0, 0, 0, 0])
result = F.pad(result, [patch_size // 2, patch_size // 2, patch_size // 2, patch_size // 2,
0, 0, 0, 0])
img_patch = F.unfold(img, (patch_size, patch_size), stride=(patch_size, patch_size))
result_patch = F.unfold(result, (patch_size, patch_size), stride=(patch_size, patch_size))
final_result = F.pad(final_result, [border_size, border_size, border_size, border_size, 0, 0, 0, 0])
h = (img.shape[2] - patch_size) // patch_size + 1
w = (img.shape[3] - patch_size) // patch_size + 1
# img_patch, result_patch: b, 3 * output_size * output_size, h * w
img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
result_patch = result_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
shape_param, stroke_decision = net_g(img_patch, result_patch)
grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous()
img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view(
img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous()
color = F.grid_sample(img_temp, 2 * grid - 1, align_corners=False).view(
img_patch.shape[0], stroke_num, 3).contiguous()
stroke_param = torch.cat([shape_param, color], dim=-1)
# stroke_param: b * h * w, stroke_per_patch, param_per_stroke
# stroke_decision: b * h * w, stroke_per_patch, 1
param = stroke_param.view(1, h, w, stroke_num, 8).contiguous()
decision = stroke_decision.view(1, h, w, stroke_num).contiguous().bool()
# param: b, h, w, stroke_per_patch, 8
# decision: b, h, w, stroke_per_patch
param[..., :2] = param[..., :2] / 2 + 0.25
param[..., 2:4] = param[..., 2:4] / 2
if serial:
final_result = param2img_serial(param, decision, meta_brushes, final_result,
frame_dir, True, original_h, original_w, all_frames = all_frames)
else:
final_result = param2img_parallel(param, decision, meta_brushes, final_result)
final_result = final_result[:, :, border_size:-border_size, border_size:-border_size]
final_result = crop(final_result, original_h, original_w)
save_img(final_result[0], output_path)
tensor_to_pil = transforms.ToPILImage()(final_result[0].squeeze_(0))
#return tensor_to_pil
all_frames[0].save(os.path.join(frame_dir, 'animation.gif'),
save_all=True, append_images=all_frames[1:], optimize=False, duration=40, loop=0)
return os.path.join(frame_dir, "animation.gif"), tensor_to_pil
def gradio_inference(image):
return main(input_path=image.name,
model_path='model.pth',
output_dir='output/',
need_animation=True, # whether need intermediate results for animation.
resize_h=400, # resize original input to this size. None means do not resize.
resize_w=400, # resize original input to this size. None means do not resize.
serial=True) # if need animation, serial must be True.
title = "Paint Transformer"
description = "Gradio demo for Paint Transformer: Feed Forward Neural Painting with Stroke Prediction. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.03798'>Paint Transformer: Feed Forward Neural Painting with Stroke Prediction</a> | <a href='https://github.com/Huage001/PaintTransformer'>Github Repo</a></p>"
gr.Interface(
gradio_inference,
gr.inputs.Image(type="file", label="Input"),
[gr.outputs.Image(type="file", label="Output GIF"),
gr.outputs.Image(type="pil", label="Output Image")],
title=title,
description=description,
article=article,
examples=[
['city.jpg'],
['tower.jpg'],
]
).launch(enable_queue=True,cache_examples=True)