# Prepare Datasets for Mask2Former A dataset can be used by accessing [DatasetCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.DatasetCatalog) for its data, or [MetadataCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.MetadataCatalog) for its metadata (class names, etc). This document explains how to setup the builtin datasets so they can be used by the above APIs. [Use Custom Datasets](https://detectron2.readthedocs.io/tutorials/datasets.html) gives a deeper dive on how to use `DatasetCatalog` and `MetadataCatalog`, and how to add new datasets to them. MaskFormer has builtin support for a few datasets. The datasets are assumed to exist in a directory specified by the environment variable `DETECTRON2_DATASETS`. Under this directory, detectron2 will look for datasets in the structure described below, if needed. ``` $DETECTRON2_DATASETS/ ADEChallengeData2016/ coco/ cityscapes/ mapillary_vistas/ ``` You can set the location for builtin datasets by `export DETECTRON2_DATASETS=/path/to/datasets`. If left unset, the default is `./datasets` relative to your current working directory. The [model zoo](https://github.com/facebookresearch/MaskFormer/blob/master/MODEL_ZOO.md) contains configs and models that use these builtin datasets. ## Expected dataset structure for [COCO](https://cocodataset.org/#download): ``` coco/ annotations/ instances_{train,val}2017.json panoptic_{train,val}2017.json {train,val}2017/ # image files that are mentioned in the corresponding json panoptic_{train,val}2017/ # png annotations panoptic_semseg_{train,val}2017/ # generated by the script mentioned below ``` Install panopticapi by: ``` pip install git+https://github.com/cocodataset/panopticapi.git ``` Then, run `python datasets/prepare_coco_semantic_annos_from_panoptic_annos.py`, to extract semantic annotations from panoptic annotations (only used for evaluation). ## Expected dataset structure for [cityscapes](https://www.cityscapes-dataset.com/downloads/): ``` cityscapes/ gtFine/ train/ aachen/ color.png, instanceIds.png, labelIds.png, polygons.json, labelTrainIds.png ... val/ test/ # below are generated Cityscapes panoptic annotation cityscapes_panoptic_train.json cityscapes_panoptic_train/ cityscapes_panoptic_val.json cityscapes_panoptic_val/ cityscapes_panoptic_test.json cityscapes_panoptic_test/ leftImg8bit/ train/ val/ test/ ``` Install cityscapes scripts by: ``` pip install git+https://github.com/mcordts/cityscapesScripts.git ``` Note: to create labelTrainIds.png, first prepare the above structure, then run cityscapesescript with: ``` CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesscripts/preparation/createTrainIdLabelImgs.py ``` These files are not needed for instance segmentation. Note: to generate Cityscapes panoptic dataset, run cityscapesescript with: ``` CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesscripts/preparation/createPanopticImgs.py ``` These files are not needed for semantic and instance segmentation. ## Expected dataset structure for [ADE20k](http://sceneparsing.csail.mit.edu/): ``` ADEChallengeData2016/ images/ annotations/ objectInfo150.txt # download instance annotation annotations_instance/ # generated by prepare_ade20k_sem_seg.py annotations_detectron2/ # below are generated by prepare_ade20k_pan_seg.py ade20k_panoptic_{train,val}.json ade20k_panoptic_{train,val}/ # below are generated by prepare_ade20k_ins_seg.py ade20k_instance_{train,val}.json ``` The directory `annotations_detectron2` is generated by running `python datasets/prepare_ade20k_sem_seg.py`. Install panopticapi by: ```bash pip install git+https://github.com/cocodataset/panopticapi.git ``` Download the instance annotation from http://sceneparsing.csail.mit.edu/: ```bash wget http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar ``` Then, run `python datasets/prepare_ade20k_pan_seg.py`, to combine semantic and instance annotations for panoptic annotations. And run `python datasets/prepare_ade20k_ins_seg.py`, to extract instance annotations in COCO format. ## Expected dataset structure for [Mapillary Vistas](https://www.mapillary.com/dataset/vistas): ``` mapillary_vistas/ training/ images/ instances/ labels/ panoptic/ validation/ images/ instances/ labels/ panoptic/ mapillary_vistas_instance_{train,val}.json # generated by the script mentioned below ``` No preprocessing is needed for Mapillary Vistas on semantic and panoptic segmentation. If you want to evaluate instance segmentation on Mapillary Vistas, run `python datasets/prepare_mapillary_vistas_ins_seg.py` to generate COCO-style instance annotations. ## Expected dataset structure for [YouTubeVIS 2019](https://competitions.codalab.org/competitions/20128): ``` ytvis_2019/ {train,valid,test}.json {train,valid,test}/ Annotations/ JPEGImages/ ``` ## Expected dataset structure for [YouTubeVIS 2021](https://competitions.codalab.org/competitions/28988): ``` ytvis_2021/ {train,valid,test}.json {train,valid,test}/ Annotations/ JPEGImages/ ```