import numpy as np import cv2 import os import glob import math import random import torch import torch.nn.functional as F from torch.utils.data import Dataset import degradations class GFPGAN_degradation(object): def __init__(self): self.kernel_list = ['iso', 'aniso'] self.kernel_prob = [0.5, 0.5] self.blur_kernel_size = 41 self.blur_sigma = [0.1, 10] self.downsample_range = [0.8, 8] self.noise_range = [0, 20] self.jpeg_range = [60, 100] self.gray_prob = 0.2 self.color_jitter_prob = 0.0 self.color_jitter_pt_prob = 0.0 self.shift = 20/255. def degrade_process(self, img_gt): if random.random() > 0.5: img_gt = cv2.flip(img_gt, 1) h, w = img_gt.shape[:2] # random color jitter if np.random.uniform() < self.color_jitter_prob: jitter_val = np.random.uniform(-self.shift, self.shift, 3).astype(np.float32) img_gt = img_gt + jitter_val img_gt = np.clip(img_gt, 0, 1) # random grayscale if np.random.uniform() < self.gray_prob: img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2GRAY) img_gt = np.tile(img_gt[:, :, None], [1, 1, 3]) # ------------------------ generate lq image ------------------------ # # blur kernel = degradations.random_mixed_kernels( self.kernel_list, self.kernel_prob, self.blur_kernel_size, self.blur_sigma, self.blur_sigma, [-math.pi, math.pi], noise_range=None) img_lq = cv2.filter2D(img_gt, -1, kernel) # downsample scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1]) img_lq = cv2.resize(img_lq, (int(w // scale), int(h // scale)), interpolation=cv2.INTER_LINEAR) # noise if self.noise_range is not None: img_lq = degradations.random_add_gaussian_noise(img_lq, self.noise_range) # jpeg compression if self.jpeg_range is not None: img_lq = degradations.random_add_jpg_compression(img_lq, self.jpeg_range) # round and clip img_lq = np.clip((img_lq * 255.0).round(), 0, 255) / 255. # resize to original size img_lq = cv2.resize(img_lq, (w, h), interpolation=cv2.INTER_LINEAR) return img_gt, img_lq class FaceDataset(Dataset): def __init__(self, path, resolution=512): self.resolution = resolution self.HQ_imgs = glob.glob(os.path.join(path, '*.*')) self.length = len(self.HQ_imgs) self.degrader = GFPGAN_degradation() def __len__(self): return self.length def __getitem__(self, index): img_gt = cv2.imread(self.HQ_imgs[index], cv2.IMREAD_COLOR) img_gt = cv2.resize(img_gt, (self.resolution, self.resolution), interpolation=cv2.INTER_AREA) # BFR degradation # We adopt the degradation of GFPGAN for simplicity, which however differs from our implementation in the paper. # Data degradation plays a key role in BFR. Please replace it with your own methods. img_gt = img_gt.astype(np.float32)/255. img_gt, img_lq = self.degrader.degrade_process(img_gt) img_gt = (torch.from_numpy(img_gt) - 0.5) / 0.5 img_lq = (torch.from_numpy(img_lq) - 0.5) / 0.5 img_gt = img_gt.permute(2, 0, 1).flip(0) # BGR->RGB img_lq = img_lq.permute(2, 0, 1).flip(0) # BGR->RGB return img_lq, img_gt