import os import torch import numpy as np from rrdbnet_arch import RRDBNet from torch.nn import functional as F class RealESRNet(object): def __init__(self, base_dir='./', model=None, scale=2, device='cuda'): self.base_dir = base_dir self.scale = scale self.device = device self.load_srmodel(base_dir, model) def load_srmodel(self, base_dir, model): self.srmodel = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=32, num_block=23, num_grow_ch=32, scale=self.scale) if model is None: loadnet = torch.load(os.path.join(self.base_dir, 'weights', 'rrdb_realesrnet_psnr.pth')) else: loadnet = torch.load(os.path.join(self.base_dir, 'weights', model+'.pth')) #print(loadnet['params_ema'].keys) self.srmodel.load_state_dict(loadnet['params_ema'], strict=True) self.srmodel.eval() self.srmodel = self.srmodel.to(self.device) def process(self, img): img = img.astype(np.float32) / 255. img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() img = img.unsqueeze(0).to(self.device) if self.scale == 2: mod_scale = 2 elif self.scale == 1: mod_scale = 4 else: mod_scale = None if mod_scale is not None: h_pad, w_pad = 0, 0 _, _, h, w = img.size() if (h % mod_scale != 0): h_pad = (mod_scale - h % mod_scale) if (w % mod_scale != 0): w_pad = (mod_scale - w % mod_scale) img = F.pad(img, (0, w_pad, 0, h_pad), 'reflect') try: with torch.no_grad(): output = self.srmodel(img) # remove extra pad if mod_scale is not None: _, _, h, w = output.size() output = output[:, :, 0:h - h_pad, 0:w - w_pad] output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) output = (output * 255.0).round().astype(np.uint8) return output except: return None