// Copyright (c) 2019, NVIDIA Corporation. All rights reserved. // // This work is made available under the Nvidia Source Code License-NC. // To view a copy of this license, visit // https://nvlabs.github.io/stylegan2/license.html #include <torch/types.h> #include <ATen/ATen.h> #include <ATen/AccumulateType.h> #include <ATen/cuda/CUDAContext.h> #include <ATen/cuda/CUDAApplyUtils.cuh> #include <cuda.h> #include <cuda_runtime.h> static __host__ __device__ __forceinline__ int floor_div(int a, int b) { int c = a / b; if (c * b > a) { c--; } return c; } struct UpFirDn2DKernelParams { int up_x; int up_y; int down_x; int down_y; int pad_x0; int pad_x1; int pad_y0; int pad_y1; int major_dim; int in_h; int in_w; int minor_dim; int kernel_h; int kernel_w; int out_h; int out_w; int loop_major; int loop_x; }; template <typename scalar_t, int up_x, int up_y, int down_x, int down_y, int kernel_h, int kernel_w, int tile_out_h, int tile_out_w> __global__ void upfirdn2d_kernel(scalar_t* out, const scalar_t* input, const scalar_t* kernel, const UpFirDn2DKernelParams p) { const int tile_in_h = ((tile_out_h - 1) * down_y + kernel_h - 1) / up_y + 1; const int tile_in_w = ((tile_out_w - 1) * down_x + kernel_w - 1) / up_x + 1; __shared__ volatile float sk[kernel_h][kernel_w]; __shared__ volatile float sx[tile_in_h][tile_in_w]; int minor_idx = blockIdx.x; int tile_out_y = minor_idx / p.minor_dim; minor_idx -= tile_out_y * p.minor_dim; tile_out_y *= tile_out_h; int tile_out_x_base = blockIdx.y * p.loop_x * tile_out_w; int major_idx_base = blockIdx.z * p.loop_major; if (tile_out_x_base >= p.out_w | tile_out_y >= p.out_h | major_idx_base >= p.major_dim) { return; } for (int tap_idx = threadIdx.x; tap_idx < kernel_h * kernel_w; tap_idx += blockDim.x) { int ky = tap_idx / kernel_w; int kx = tap_idx - ky * kernel_w; scalar_t v = 0.0; if (kx < p.kernel_w & ky < p.kernel_h) { v = kernel[(p.kernel_h - 1 - ky) * p.kernel_w + (p.kernel_w - 1 - kx)]; } sk[ky][kx] = v; } for (int loop_major = 0, major_idx = major_idx_base; loop_major < p.loop_major & major_idx < p.major_dim; loop_major++, major_idx++) { for (int loop_x = 0, tile_out_x = tile_out_x_base; loop_x < p.loop_x & tile_out_x < p.out_w; loop_x++, tile_out_x += tile_out_w) { int tile_mid_x = tile_out_x * down_x + up_x - 1 - p.pad_x0; int tile_mid_y = tile_out_y * down_y + up_y - 1 - p.pad_y0; int tile_in_x = floor_div(tile_mid_x, up_x); int tile_in_y = floor_div(tile_mid_y, up_y); __syncthreads(); for (int in_idx = threadIdx.x; in_idx < tile_in_h * tile_in_w; in_idx += blockDim.x) { int rel_in_y = in_idx / tile_in_w; int rel_in_x = in_idx - rel_in_y * tile_in_w; int in_x = rel_in_x + tile_in_x; int in_y = rel_in_y + tile_in_y; scalar_t v = 0.0; if (in_x >= 0 & in_y >= 0 & in_x < p.in_w & in_y < p.in_h) { v = input[((major_idx * p.in_h + in_y) * p.in_w + in_x) * p.minor_dim + minor_idx]; } sx[rel_in_y][rel_in_x] = v; } __syncthreads(); for (int out_idx = threadIdx.x; out_idx < tile_out_h * tile_out_w; out_idx += blockDim.x) { int rel_out_y = out_idx / tile_out_w; int rel_out_x = out_idx - rel_out_y * tile_out_w; int out_x = rel_out_x + tile_out_x; int out_y = rel_out_y + tile_out_y; int mid_x = tile_mid_x + rel_out_x * down_x; int mid_y = tile_mid_y + rel_out_y * down_y; int in_x = floor_div(mid_x, up_x); int in_y = floor_div(mid_y, up_y); int rel_in_x = in_x - tile_in_x; int rel_in_y = in_y - tile_in_y; int kernel_x = (in_x + 1) * up_x - mid_x - 1; int kernel_y = (in_y + 1) * up_y - mid_y - 1; scalar_t v = 0.0; #pragma unroll for (int y = 0; y < kernel_h / up_y; y++) #pragma unroll for (int x = 0; x < kernel_w / up_x; x++) v += sx[rel_in_y + y][rel_in_x + x] * sk[kernel_y + y * up_y][kernel_x + x * up_x]; if (out_x < p.out_w & out_y < p.out_h) { out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim + minor_idx] = v; } } } } } torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel, int up_x, int up_y, int down_x, int down_y, int pad_x0, int pad_x1, int pad_y0, int pad_y1) { int curDevice = -1; cudaGetDevice(&curDevice); cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice); UpFirDn2DKernelParams p; auto x = input.contiguous(); auto k = kernel.contiguous(); p.major_dim = x.size(0); p.in_h = x.size(1); p.in_w = x.size(2); p.minor_dim = x.size(3); p.kernel_h = k.size(0); p.kernel_w = k.size(1); p.up_x = up_x; p.up_y = up_y; p.down_x = down_x; p.down_y = down_y; p.pad_x0 = pad_x0; p.pad_x1 = pad_x1; p.pad_y0 = pad_y0; p.pad_y1 = pad_y1; p.out_h = (p.in_h * p.up_y + p.pad_y0 + p.pad_y1 - p.kernel_h + p.down_y) / p.down_y; p.out_w = (p.in_w * p.up_x + p.pad_x0 + p.pad_x1 - p.kernel_w + p.down_x) / p.down_x; auto out = at::empty({p.major_dim, p.out_h, p.out_w, p.minor_dim}, x.options()); int mode = -1; int tile_out_h; int tile_out_w; if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 4 && p.kernel_w <= 4) { mode = 1; tile_out_h = 16; tile_out_w = 64; } if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 3 && p.kernel_w <= 3) { mode = 2; tile_out_h = 16; tile_out_w = 64; } if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 4 && p.kernel_w <= 4) { mode = 3; tile_out_h = 16; tile_out_w = 64; } if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 2 && p.kernel_w <= 2) { mode = 4; tile_out_h = 16; tile_out_w = 64; } if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && p.kernel_h <= 4 && p.kernel_w <= 4) { mode = 5; tile_out_h = 8; tile_out_w = 32; } if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && p.kernel_h <= 2 && p.kernel_w <= 2) { mode = 6; tile_out_h = 8; tile_out_w = 32; } dim3 block_size; dim3 grid_size; if (tile_out_h > 0 && tile_out_w) { p.loop_major = (p.major_dim - 1) / 16384 + 1; p.loop_x = 1; block_size = dim3(32 * 8, 1, 1); grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim, (p.out_w - 1) / (p.loop_x * tile_out_w) + 1, (p.major_dim - 1) / p.loop_major + 1); } AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] { switch (mode) { case 1: upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 4, 4, 16, 64><<<grid_size, block_size, 0, stream>>>( out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p ); break; case 2: upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 3, 3, 16, 64><<<grid_size, block_size, 0, stream>>>( out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p ); break; case 3: upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 4, 4, 16, 64><<<grid_size, block_size, 0, stream>>>( out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p ); break; case 4: upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 2, 2, 16, 64><<<grid_size, block_size, 0, stream>>>( out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p ); break; case 5: upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32><<<grid_size, block_size, 0, stream>>>( out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p ); break; case 6: upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32><<<grid_size, block_size, 0, stream>>>( out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p ); break; } }); return out; }