import os os.system('pip install gradio==2.3.5b0') from transformers import AutoModelForCausalLM, AutoTokenizer import torch import gradio as gr tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") def dialogpt(text): history = gr.get_state() or [] # encode the new user input, add the eos_token and return a tensor in Pytorch for step in range(50000): new_user_input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) history.append((text, response)) gr.set_state(history) # pretty print last ouput tokens from bot html = "
DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation | Github Repo | Hugging Face DialoGPT-large
" examples = [ ["Hi, how are you?"], ["How far away is the moon?"], ] gr.Interface(dialogpt, inputs, "html", title=title, description=description, article=article, examples=examples,css=""" .chatbox {display:flex;flex-direction:column} .user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%} .user_msg {background-color:cornflowerblue;color:white;align-self:start} .resp_msg {background-color:lightgray;align-self:self-end} """).launch(debug=True)