import os os.system("pip install gradio==2.9b23") from huggingface_hub import hf_hub_download os.system("pip -qq install facenet_pytorch") from facenet_pytorch import MTCNN from torchvision import transforms import torch, PIL from tqdm.notebook import tqdm import gradio as gr import torch modelarcanev4 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.4", filename="ArcaneGANv0.4.jit") modelarcanev3 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.3", filename="ArcaneGANv0.3.jit") modelarcanev2 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.2", filename="ArcaneGANv0.2.jit") mtcnn = MTCNN(image_size=256, margin=80) # simplest ye olde trustworthy MTCNN for face detection with landmarks def detect(img): # Detect faces batch_boxes, batch_probs, batch_points = mtcnn.detect(img, landmarks=True) # Select faces if not mtcnn.keep_all: batch_boxes, batch_probs, batch_points = mtcnn.select_boxes( batch_boxes, batch_probs, batch_points, img, method=mtcnn.selection_method ) return batch_boxes, batch_points # my version of isOdd, should make a separate repo for it :D def makeEven(_x): return _x if (_x % 2 == 0) else _x+1 # the actual scaler function def scale(boxes, _img, max_res=1_500_000, target_face=256, fixed_ratio=0, max_upscale=2, VERBOSE=False): x, y = _img.size ratio = 2 #initial ratio #scale to desired face size if (boxes is not None): if len(boxes)>0: ratio = target_face/max(boxes[0][2:]-boxes[0][:2]); ratio = min(ratio, max_upscale) if VERBOSE: print('up by', ratio) if fixed_ratio>0: if VERBOSE: print('fixed ratio') ratio = fixed_ratio x*=ratio y*=ratio #downscale to fit into max res res = x*y if res > max_res: ratio = pow(res/max_res,1/2); if VERBOSE: print(ratio) x=int(x/ratio) y=int(y/ratio) #make dimensions even, because usually NNs fail on uneven dimensions due skip connection size mismatch x = makeEven(int(x)) y = makeEven(int(y)) size = (x, y) return _img.resize(size) """ A useful scaler algorithm, based on face detection. Takes PIL.Image, returns a uniformly scaled PIL.Image boxes: a list of detected bboxes _img: PIL.Image max_res: maximum pixel area to fit into. Use to stay below the VRAM limits of your GPU. target_face: desired face size. Upscale or downscale the whole image to fit the detected face into that dimension. fixed_ratio: fixed scale. Ignores the face size, but doesn't ignore the max_res limit. max_upscale: maximum upscale ratio. Prevents from scaling images with tiny faces to a blurry mess. """ def scale_by_face_size(_img, max_res=1_500_000, target_face=256, fix_ratio=0, max_upscale=2, VERBOSE=False): boxes = None boxes, _ = detect(_img) if VERBOSE: print('boxes',boxes) img_resized = scale(boxes, _img, max_res, target_face, fix_ratio, max_upscale, VERBOSE) return img_resized size = 256 means = [0.485, 0.456, 0.406] stds = [0.229, 0.224, 0.225] t_stds = torch.tensor(stds).cuda().half()[:,None,None] t_means = torch.tensor(means).cuda().half()[:,None,None] def makeEven(_x): return int(_x) if (_x % 2 == 0) else int(_x+1) img_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(means,stds)]) def tensor2im(var): return var.mul(t_stds).add(t_means).mul(255.).clamp(0,255).permute(1,2,0) def proc_pil_img(input_image, model): transformed_image = img_transforms(input_image)[None,...].cuda().half() with torch.no_grad(): result_image = model(transformed_image)[0] output_image = tensor2im(result_image) output_image = output_image.detach().cpu().numpy().astype('uint8') output_image = PIL.Image.fromarray(output_image) return output_image modelv4 = torch.jit.load(modelarcanev4).eval().cuda().half() modelv3 = torch.jit.load(modelarcanev3).eval().cuda().half() modelv2 = torch.jit.load(modelarcanev2).eval().cuda().half() def process(im, version): if version == 'version 0.4': im = scale_by_face_size(im, target_face=256, max_res=1_500_000, max_upscale=1) res = proc_pil_img(im, modelv4) elif version == 'version 0.3': im = scale_by_face_size(im, target_face=256, max_res=1_500_000, max_upscale=1) res = proc_pil_img(im, modelv3) else: im = scale_by_face_size(im, target_face=256, max_res=1_500_000, max_upscale=1) res = proc_pil_img(im, modelv2) return res title = "ArcaneGAN" description = "Gradio demo for ArcaneGAN, portrait to Arcane style. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "
" gr.Interface( process, [gr.inputs.Image(type="pil", label="Input"),gr.inputs.Radio(choices=['version 0.2','version 0.3','version 0.4'], type="value", default='version 0.4', label='version') ], gr.outputs.Image(type="pil", label="Output"), title=title, description=description, article=article, examples=[['bill.png','version 0.3'],['keanu.png','version 0.4'],['will.jpeg','version 0.4']], allow_flagging=False, allow_screenshot=False ).launch()