# Copyright 2021 Asuhariet Ygvar # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. import sys import onnxruntime import numpy as np from PIL import Image import gradio as gr # Load ONNX model session = onnxruntime.InferenceSession('model.onnx') # Load output hash matrix seed1 = open('neuralhash_128x96_seed1.dat', 'rb').read()[128:] seed1 = np.frombuffer(seed1, dtype=np.float32) seed1 = seed1.reshape([96, 128]) # Preprocess image def inference(img): image = Image.open(img.name).convert('RGB') image = image.resize([360, 360]) arr = np.array(image).astype(np.float32) / 255.0 arr = arr * 2.0 - 1.0 arr = arr.transpose(2, 0, 1).reshape([1, 3, 360, 360]) # Run model inputs = {session.get_inputs()[0].name: arr} outs = session.run(None, inputs) # Convert model output to hex hash hash_output = seed1.dot(outs[0].flatten()) hash_bits = ''.join(['1' if it >= 0 else '0' for it in hash_output]) hash_hex = '{:0{}x}'.format(int(hash_bits, 2), len(hash_bits) // 4) return hash_hex title = "Anime2Sketch" description = "demo for Anime2Sketch. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "

Adversarial Open Domain Adaption for Sketch-to-Photo Synthesis | Github Repo

" gr.Interface( inference, gr.inputs.Image(type="file", label="Input"), gr.outputs.Textbox(label="Output Text"), title=title, description=description, article=article ).launch(debug=True)