import cv2 import os import numpy as np from collections import OrderedDict from PIL import Image as PILImage from utils.transforms import transform_parsing LABELS = ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', \ 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', 'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'] # LABELS = ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'] def get_palette(num_cls): """ Returns the color map for visualizing the segmentation mask. Args: num_cls: Number of classes Returns: The color map """ n = num_cls palette = [0] * (n * 3) for j in range(0, n): lab = j palette[j * 3 + 0] = 0 palette[j * 3 + 1] = 0 palette[j * 3 + 2] = 0 i = 0 while lab: palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) i += 1 lab >>= 3 return palette def get_confusion_matrix(gt_label, pred_label, num_classes): """ Calcute the confusion matrix by given label and pred :param gt_label: the ground truth label :param pred_label: the pred label :param num_classes: the nunber of class :return: the confusion matrix """ index = (gt_label * num_classes + pred_label).astype('int32') label_count = np.bincount(index) confusion_matrix = np.zeros((num_classes, num_classes)) for i_label in range(num_classes): for i_pred_label in range(num_classes): cur_index = i_label * num_classes + i_pred_label if cur_index < len(label_count): confusion_matrix[i_label, i_pred_label] = label_count[cur_index] return confusion_matrix def compute_mean_ioU(preds, scales, centers, num_classes, datadir, input_size=[473, 473], dataset='val'): val_file = os.path.join(datadir, dataset + '_id.txt') val_id = [i_id.strip() for i_id in open(val_file)] confusion_matrix = np.zeros((num_classes, num_classes)) for i, pred_out in enumerate(preds): im_name = val_id[i] gt_path = os.path.join(datadir, dataset + '_segmentations', im_name + '.png') gt = np.array(PILImage.open(gt_path)) h, w = gt.shape s = scales[i] c = centers[i] pred = transform_parsing(pred_out, c, s, w, h, input_size) gt = np.asarray(gt, dtype=np.int32) pred = np.asarray(pred, dtype=np.int32) ignore_index = gt != 255 gt = gt[ignore_index] pred = pred[ignore_index] confusion_matrix += get_confusion_matrix(gt, pred, num_classes) pos = confusion_matrix.sum(1) res = confusion_matrix.sum(0) tp = np.diag(confusion_matrix) pixel_accuracy = (tp.sum() / pos.sum()) * 100 mean_accuracy = ((tp / np.maximum(1.0, pos)).mean()) * 100 IoU_array = (tp / np.maximum(1.0, pos + res - tp)) IoU_array = IoU_array * 100 mean_IoU = IoU_array.mean() print('Pixel accuracy: %f \n' % pixel_accuracy) print('Mean accuracy: %f \n' % mean_accuracy) print('Mean IU: %f \n' % mean_IoU) name_value = [] for i, (label, iou) in enumerate(zip(LABELS, IoU_array)): name_value.append((label, iou)) name_value.append(('Pixel accuracy', pixel_accuracy)) name_value.append(('Mean accuracy', mean_accuracy)) name_value.append(('Mean IU', mean_IoU)) name_value = OrderedDict(name_value) return name_value def compute_mean_ioU_file(preds_dir, num_classes, datadir, dataset='val'): list_path = os.path.join(datadir, dataset + '_id.txt') val_id = [i_id.strip() for i_id in open(list_path)] confusion_matrix = np.zeros((num_classes, num_classes)) for i, im_name in enumerate(val_id): gt_path = os.path.join(datadir, 'segmentations', im_name + '.png') gt = cv2.imread(gt_path, cv2.IMREAD_GRAYSCALE) pred_path = os.path.join(preds_dir, im_name + '.png') pred = np.asarray(PILImage.open(pred_path)) gt = np.asarray(gt, dtype=np.int32) pred = np.asarray(pred, dtype=np.int32) ignore_index = gt != 255 gt = gt[ignore_index] pred = pred[ignore_index] confusion_matrix += get_confusion_matrix(gt, pred, num_classes) pos = confusion_matrix.sum(1) res = confusion_matrix.sum(0) tp = np.diag(confusion_matrix) pixel_accuracy = (tp.sum() / pos.sum()) * 100 mean_accuracy = ((tp / np.maximum(1.0, pos)).mean()) * 100 IoU_array = (tp / np.maximum(1.0, pos + res - tp)) IoU_array = IoU_array * 100 mean_IoU = IoU_array.mean() print('Pixel accuracy: %f \n' % pixel_accuracy) print('Mean accuracy: %f \n' % mean_accuracy) print('Mean IU: %f \n' % mean_IoU) name_value = [] for i, (label, iou) in enumerate(zip(LABELS, IoU_array)): name_value.append((label, iou)) name_value.append(('Pixel accuracy', pixel_accuracy)) name_value.append(('Mean accuracy', mean_accuracy)) name_value.append(('Mean IU', mean_IoU)) name_value = OrderedDict(name_value) return name_value