import os import uuid import joblib import json import gradio as gr import pandas as pd from huggingface_hub import CommitScheduler from pathlib import Path # Run the training script in the same directory os.system("python train.py") # Load the freshly trained model machine_failure_predictor = joblib.load('model.joblib') # Prepare the logging functionality log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" log_folder = log_file.parent ''' scheduler = CommitScheduler( repo_id="machine-failure-logs", repo_type="dataset", folder_path=log_folder, path_in_repo="data", every=2 )''' # Set up UI components for input and output air_temperature_input = gr.Number(label='Air temperature [K]') process_temperature_input = gr.Number(label='Process temperature [K]') rotational_speed_input = gr.Number(label='Rotational speed [rpm]') torque_input = gr.Number(label='Torque [Nm]') tool_wear_input = gr.Number(label='Tool wear [min]') type_input = gr.Dropdown( ['L', 'M', 'H'], label='Type' ) model_output = gr.Label(label="Machine failure") # Define the predict function that runs when 'Submit' is clicked or when a API request is made def predict_machine_failure(air_temperature, process_temperature, rotational_speed, torque, tool_wear, type): sample = { 'Air temperature [K]': air_temperature, 'Process temperature [K]': process_temperature, 'Rotational speed [rpm]': rotational_speed, 'Torque [Nm]': torque, 'Tool wear [min]': tool_wear, 'Type': type } data_point = pd.DataFrame([sample]) prediction = machine_failure_predictor.predict(data_point).tolist() ''' with scheduler.lock: with log_file.open("a") as f: f.write(json.dumps( { 'Air temperature [K]': air_temperature, 'Process temperature [K]': process_temperature, 'Rotational speed [rpm]': rotational_speed, 'Torque [Nm]': torque, 'Tool wear [min]': tool_wear, 'Type': type, 'prediction': prediction[0] } )) f.write("\n") ''' return prediction[0] # Create the interface demo = gr.Interface( fn=predict_machine_failure, inputs=[air_temperature_input, process_temperature_input, rotational_speed_input, torque_input, tool_wear_input, type_input], outputs=model_output, title="Machine Failure Predictor", description="This API allows you to predict the machine failure status of an equipment", allow_flagging="auto", concurrency_limit=8 ) # Launch with a load balancer demo.queue() demo.launch(share=False)