from transformers import pipeline from PIL import Image import gradio as gr import numpy as np # Load the Hugging Face depth estimation pipelines pipe_base = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-base-hf") pipe_small = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf") pipe_intel = pipeline(task="depth-estimation", model="Intel/dpt-swinv2-tiny-256") pipe_beit = pipeline(task="depth-estimation", model="Intel/dpt-beit-base-384") def process_and_display(pipe, output_component): def process_image(image): depth_map = pipe(image)["depth"] normalized_depth = normalize_depth(depth_map) output_component.value = normalized_depth return process_image def normalize_depth(depth_map): # Normalize depth map values to range [0, 255] for visualization normalized_depth = ((depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())) * 255 return normalized_depth.astype(np.uint8) # Create Gradio output components for each pipeline output_base = gr.Image(type="numpy", label="LiheYoung/depth-anything-base-hf") output_small = gr.Image(type="numpy", label="LiheYoung/depth-anything-small-hf") output_intel = gr.Image(type="numpy", label="Intel/dpt-swinv2-tiny-256") output_beit = gr.Image(type="numpy", label="Intel/dpt-beit-base-384") # Create Gradio interfaces for each pipeline iface_base = gr.Interface(process_and_display(pipe_base, output_base), inputs=gr.Image(type="pil"), outputs=output_base, title="Depth Estimation - LiheYoung/depth-anything-base-hf") iface_small = gr.Interface(process_and_display(pipe_small, output_small), inputs=gr.Image(type="pil"), outputs=output_small, title="Depth Estimation - LiheYoung/depth-anything-small-hf") iface_intel = gr.Interface(process_and_display(pipe_intel, output_intel), inputs=gr.Image(type="pil"), outputs=output_intel, title="Depth Estimation - Intel/dpt-swinv2-tiny-256") iface_beit = gr.Interface(process_and_display(pipe_beit, output_beit), inputs=gr.Image(type="pil"), outputs=output_beit, title="Depth Estimation - Intel/dpt-beit-base-384") # Launch the Gradio interfaces iface_base.launch() iface_small.launch() iface_intel.launch() iface_beit.launch() """ from transformers import pipeline from PIL import Image import requests # load pipe pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf") # load image url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) # inference depth = pipe(image)["depth"] """