File size: 3,169 Bytes
b7137b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import time
import streamlit as st
import torch
import string
from transformers import BertTokenizer, BertForMaskedLM
@st.cache()
def load_bert_model(model_name):
try:
bert_tokenizer = BertTokenizer.from_pretrained(model_name)
bert_model = BertForMaskedLM.from_pretrained(model_name).eval()
return bert_tokenizer,bert_model
except Exception as e:
pass
def decode(tokenizer, pred_idx, top_clean):
ignore_tokens = string.punctuation + '[PAD]'
tokens = []
for w in pred_idx:
token = ''.join(tokenizer.decode(w).split())
if token not in ignore_tokens:
tokens.append(token.replace('##', ''))
return '\n'.join(tokens[:top_clean])
def encode(tokenizer, text_sentence, add_special_tokens=True):
text_sentence = text_sentence.replace('<mask>', tokenizer.mask_token)
# if <mask> is the last token, append a "." so that models dont predict punctuation.
if tokenizer.mask_token == text_sentence.split()[-1]:
text_sentence += ' .'
input_ids = torch.tensor([tokenizer.encode(text_sentence, add_special_tokens=add_special_tokens)])
mask_idx = torch.where(input_ids == tokenizer.mask_token_id)[1].tolist()[0]
return input_ids, mask_idx
def get_all_predictions(text_sentence, top_clean=5):
# ========================= BERT =================================
input_ids, mask_idx = encode(bert_tokenizer, text_sentence)
with torch.no_grad():
predict = bert_model(input_ids)[0]
bert = decode(bert_tokenizer, predict[0, mask_idx, :].topk(top_k).indices.tolist(), top_clean)
return {'bert': bert}
def get_bert_prediction(input_text,top_k):
try:
input_text += ' <mask>'
res = get_all_predictions(input_text, top_clean=int(top_k))
return res
except Exception as error:
pass
try:
st.title("Qualitative evaluation of Pretrained BERT models")
st.markdown("""
<a href="https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html"><small style="font-size:18px; color: #8f8f8f">This app is used to qualitatively examine the performance of pretrained models to do NER , <b>with no fine tuning</b></small></a>
""", unsafe_allow_html=True)
st.write("Incomplete. Work in progress...")
#st.write("https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html")
st.write("CLS vectors as well as the model prediction for a blank position are examined")
top_k = 10
print(top_k)
bert_tokenizer, bert_model = load_bert_model('ajitrajasekharan/biomedical')
default_text = "Imatinib is used to treat"
input_text = st.text_area(
label="Original text",
value=default_text,
)
start = None
if st.button("Submit"):
start = time.time()
with st.spinner("Computing"):
try:
res = get_bert_prediction(default_text,top_k)
st.header("JSON:")
st.json(res)
except Exception as e:
st.error("Some error occured!" + str(e))
st.stop()
st.write("---")
if start is not None:
st.text(f"prediction took {time.time() - start:.2f}s")
except Exception as e:
print("SOME PROBLEM OCCURED")
|