Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,711 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import yfinance as yf
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import plotly.graph_objects as go
|
| 7 |
+
from plotly.subplots import make_subplots
|
| 8 |
+
import datetime as dt
|
| 9 |
+
import json
|
| 10 |
+
from io import StringIO
|
| 11 |
+
|
| 12 |
+
# Helper functions for data processing
|
| 13 |
+
def format_large_number(num):
|
| 14 |
+
"""Format large numbers to K, M, B, T"""
|
| 15 |
+
if num is None or pd.isna(num):
|
| 16 |
+
return "N/A"
|
| 17 |
+
|
| 18 |
+
if isinstance(num, str):
|
| 19 |
+
return num
|
| 20 |
+
|
| 21 |
+
if abs(num) >= 1_000_000_000_000:
|
| 22 |
+
return f"{num / 1_000_000_000_000:.2f}T"
|
| 23 |
+
elif abs(num) >= 1_000_000_000:
|
| 24 |
+
return f"{num / 1_000_000_000:.2f}B"
|
| 25 |
+
elif abs(num) >= 1_000_000:
|
| 26 |
+
return f"{num / 1_000_000:.2f}M"
|
| 27 |
+
elif abs(num) >= 1_000:
|
| 28 |
+
return f"{num / 1_000:.2f}K"
|
| 29 |
+
else:
|
| 30 |
+
return f"{num:.2f}"
|
| 31 |
+
|
| 32 |
+
def get_ticker_info(ticker_symbol):
|
| 33 |
+
"""Get basic information about a ticker"""
|
| 34 |
+
try:
|
| 35 |
+
ticker = yf.Ticker(ticker_symbol)
|
| 36 |
+
info = ticker.info
|
| 37 |
+
|
| 38 |
+
# Create a more readable format
|
| 39 |
+
important_info = {
|
| 40 |
+
"Name": info.get("shortName", "N/A"),
|
| 41 |
+
"Sector": info.get("sector", "N/A"),
|
| 42 |
+
"Industry": info.get("industry", "N/A"),
|
| 43 |
+
"Country": info.get("country", "N/A"),
|
| 44 |
+
"Market Cap": format_large_number(info.get("marketCap", "N/A")),
|
| 45 |
+
"Current Price": info.get("currentPrice", info.get("regularMarketPrice", "N/A")),
|
| 46 |
+
"52 Week High": info.get("fiftyTwoWeekHigh", "N/A"),
|
| 47 |
+
"52 Week Low": info.get("fiftyTwoWeekLow", "N/A"),
|
| 48 |
+
"Website": info.get("website", "N/A"),
|
| 49 |
+
"Business Summary": info.get("longBusinessSummary", "N/A")
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
# Convert to formatted string
|
| 53 |
+
info_str = ""
|
| 54 |
+
for key, value in important_info.items():
|
| 55 |
+
info_str += f"**{key}**: {value}\n\n"
|
| 56 |
+
|
| 57 |
+
return info_str
|
| 58 |
+
except Exception as e:
|
| 59 |
+
return f"Error retrieving ticker info: {str(e)}"
|
| 60 |
+
|
| 61 |
+
def get_historical_data(ticker_symbol, period, interval):
|
| 62 |
+
"""Get historical price data and create a plotly chart"""
|
| 63 |
+
try:
|
| 64 |
+
ticker = yf.Ticker(ticker_symbol)
|
| 65 |
+
history = ticker.history(period=period, interval=interval)
|
| 66 |
+
|
| 67 |
+
if history.empty:
|
| 68 |
+
return "No historical data available for this ticker", None
|
| 69 |
+
|
| 70 |
+
# Create Plotly figure
|
| 71 |
+
fig = go.Figure()
|
| 72 |
+
fig.add_trace(go.Candlestick(
|
| 73 |
+
x=history.index,
|
| 74 |
+
open=history['Open'],
|
| 75 |
+
high=history['High'],
|
| 76 |
+
low=history['Low'],
|
| 77 |
+
close=history['Close'],
|
| 78 |
+
name='Price'
|
| 79 |
+
))
|
| 80 |
+
|
| 81 |
+
# Add volume as bar chart
|
| 82 |
+
fig.add_trace(go.Bar(
|
| 83 |
+
x=history.index,
|
| 84 |
+
y=history['Volume'],
|
| 85 |
+
name='Volume',
|
| 86 |
+
yaxis='y2',
|
| 87 |
+
marker_color='rgba(0, 100, 80, 0.4)'
|
| 88 |
+
))
|
| 89 |
+
|
| 90 |
+
# Layout with secondary y-axis
|
| 91 |
+
fig.update_layout(
|
| 92 |
+
title=f'{ticker_symbol} Price History',
|
| 93 |
+
yaxis_title='Price',
|
| 94 |
+
yaxis2=dict(
|
| 95 |
+
title='Volume',
|
| 96 |
+
overlaying='y',
|
| 97 |
+
side='right',
|
| 98 |
+
showgrid=False
|
| 99 |
+
),
|
| 100 |
+
xaxis_rangeslider_visible=False,
|
| 101 |
+
height=500
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
return f"Successfully retrieved historical data for {ticker_symbol}", fig
|
| 105 |
+
except Exception as e:
|
| 106 |
+
return f"Error retrieving historical data: {str(e)}", None
|
| 107 |
+
|
| 108 |
+
def get_financial_data(ticker_symbol, statement_type, period_type):
|
| 109 |
+
"""Get financial statements data"""
|
| 110 |
+
try:
|
| 111 |
+
ticker = yf.Ticker(ticker_symbol)
|
| 112 |
+
|
| 113 |
+
if statement_type == "Income Statement":
|
| 114 |
+
if period_type == "Annual":
|
| 115 |
+
data = ticker.income_stmt
|
| 116 |
+
else: # Quarterly
|
| 117 |
+
data = ticker.quarterly_income_stmt
|
| 118 |
+
elif statement_type == "Balance Sheet":
|
| 119 |
+
if period_type == "Annual":
|
| 120 |
+
data = ticker.balance_sheet
|
| 121 |
+
else: # Quarterly
|
| 122 |
+
data = ticker.quarterly_balance_sheet
|
| 123 |
+
elif statement_type == "Cash Flow":
|
| 124 |
+
if period_type == "Annual":
|
| 125 |
+
data = ticker.cashflow
|
| 126 |
+
else: # Quarterly
|
| 127 |
+
data = ticker.quarterly_cashflow
|
| 128 |
+
|
| 129 |
+
if data is None or data.empty:
|
| 130 |
+
return f"No {statement_type} data available for {ticker_symbol}"
|
| 131 |
+
|
| 132 |
+
# Format the DataFrame for display
|
| 133 |
+
data = data.fillna("N/A")
|
| 134 |
+
# Format date columns to be more readable
|
| 135 |
+
data.columns = [col.strftime('%Y-%m-%d') if hasattr(col, 'strftime') else str(col) for col in data.columns]
|
| 136 |
+
|
| 137 |
+
# HTML representation will be more readable in the UI
|
| 138 |
+
return data.to_html(classes="table table-striped")
|
| 139 |
+
except Exception as e:
|
| 140 |
+
return f"Error retrieving financial data: {str(e)}"
|
| 141 |
+
|
| 142 |
+
def get_company_news(ticker_symbol):
|
| 143 |
+
"""Get latest news for the company"""
|
| 144 |
+
try:
|
| 145 |
+
ticker = yf.Ticker(ticker_symbol)
|
| 146 |
+
news = ticker.news
|
| 147 |
+
|
| 148 |
+
if not news:
|
| 149 |
+
return "No recent news available for this ticker"
|
| 150 |
+
|
| 151 |
+
# Format news items
|
| 152 |
+
formatted_news = ""
|
| 153 |
+
for i, item in enumerate(news[:5]): # Show top 5 news items
|
| 154 |
+
# Extract from nested content structure if present
|
| 155 |
+
news_item = item.get('content', item)
|
| 156 |
+
|
| 157 |
+
# Get title
|
| 158 |
+
title = news_item.get('title', 'No title')
|
| 159 |
+
|
| 160 |
+
# Get publisher
|
| 161 |
+
publisher = "Unknown publisher"
|
| 162 |
+
if 'provider' in news_item and isinstance(news_item['provider'], dict):
|
| 163 |
+
publisher = news_item['provider'].get('displayName', 'Unknown publisher')
|
| 164 |
+
|
| 165 |
+
# Get link
|
| 166 |
+
link = "#"
|
| 167 |
+
if 'clickThroughUrl' in news_item and isinstance(news_item['clickThroughUrl'], dict):
|
| 168 |
+
link = news_item['clickThroughUrl'].get('url', '#')
|
| 169 |
+
elif 'canonicalUrl' in news_item and isinstance(news_item['canonicalUrl'], dict):
|
| 170 |
+
link = news_item['canonicalUrl'].get('url', '#')
|
| 171 |
+
|
| 172 |
+
# Get date
|
| 173 |
+
publish_date = 'Unknown date'
|
| 174 |
+
if 'pubDate' in news_item:
|
| 175 |
+
publish_date = news_item['pubDate']
|
| 176 |
+
|
| 177 |
+
formatted_news += f"### {i+1}. {title}\n\n"
|
| 178 |
+
formatted_news += f"**Source**: {publisher} | **Date**: {publish_date}\n\n"
|
| 179 |
+
formatted_news += f"**Link**: [Read full article]({link})\n\n"
|
| 180 |
+
|
| 181 |
+
# Add description if available
|
| 182 |
+
if 'description' in news_item:
|
| 183 |
+
description = news_item['description']
|
| 184 |
+
# Limit description length and strip HTML tags
|
| 185 |
+
if len(description) > 200:
|
| 186 |
+
description = description[:200] + "..."
|
| 187 |
+
formatted_news += f"{description}\n\n"
|
| 188 |
+
|
| 189 |
+
formatted_news += "---\n\n"
|
| 190 |
+
|
| 191 |
+
return formatted_news
|
| 192 |
+
except Exception as e:
|
| 193 |
+
return f"Error retrieving news: {str(e)}"
|
| 194 |
+
|
| 195 |
+
def get_analyst_recommendations(ticker_symbol):
|
| 196 |
+
"""Get analyst recommendations"""
|
| 197 |
+
try:
|
| 198 |
+
ticker = yf.Ticker(ticker_symbol)
|
| 199 |
+
recommendations = ticker.recommendations
|
| 200 |
+
|
| 201 |
+
if recommendations is None or recommendations.empty:
|
| 202 |
+
return "No analyst recommendations available for this ticker"
|
| 203 |
+
|
| 204 |
+
# Create a figure for visualization
|
| 205 |
+
fig = plt.figure(figsize=(10, 6))
|
| 206 |
+
|
| 207 |
+
# Count occurrences of each recommendation
|
| 208 |
+
rec_counts = recommendations['To Grade'].value_counts()
|
| 209 |
+
|
| 210 |
+
# Create a pie chart
|
| 211 |
+
plt.pie(rec_counts, labels=rec_counts.index, autopct='%1.1f%%',
|
| 212 |
+
shadow=True, startangle=90, colors=['#ff9999','#66b3ff','#99ff99','#ffcc99','#c2c2f0'])
|
| 213 |
+
|
| 214 |
+
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
|
| 215 |
+
plt.title(f'Analyst Recommendations for {ticker_symbol}')
|
| 216 |
+
|
| 217 |
+
return f"Found {len(recommendations)} analyst recommendations for {ticker_symbol}", fig
|
| 218 |
+
except Exception as e:
|
| 219 |
+
return f"Error retrieving analyst recommendations: {str(e)}", None
|
| 220 |
+
|
| 221 |
+
def get_options_data(ticker_symbol, expiration_date=None):
|
| 222 |
+
"""Get options chain data for the ticker"""
|
| 223 |
+
try:
|
| 224 |
+
ticker = yf.Ticker(ticker_symbol)
|
| 225 |
+
|
| 226 |
+
# Get available expiration dates
|
| 227 |
+
expirations = ticker.options
|
| 228 |
+
|
| 229 |
+
if not expirations:
|
| 230 |
+
return "No options data available for this ticker", None
|
| 231 |
+
|
| 232 |
+
# If no expiration date is provided or the provided one is invalid, use the first available
|
| 233 |
+
if expiration_date is None or expiration_date not in expirations:
|
| 234 |
+
expiration_date = expirations[0]
|
| 235 |
+
|
| 236 |
+
# Get options chain for the selected expiration date
|
| 237 |
+
options = ticker.option_chain(expiration_date)
|
| 238 |
+
|
| 239 |
+
calls = options.calls
|
| 240 |
+
puts = options.puts
|
| 241 |
+
|
| 242 |
+
# Prepare data for visualization
|
| 243 |
+
strike_prices = sorted(list(set(calls['strike'].tolist() + puts['strike'].tolist())))
|
| 244 |
+
call_volumes = []
|
| 245 |
+
put_volumes = []
|
| 246 |
+
|
| 247 |
+
for strike in strike_prices:
|
| 248 |
+
call_vol = calls[calls['strike'] == strike]['volume'].sum()
|
| 249 |
+
put_vol = puts[puts['strike'] == strike]['volume'].sum()
|
| 250 |
+
call_volumes.append(call_vol)
|
| 251 |
+
put_volumes.append(put_vol)
|
| 252 |
+
|
| 253 |
+
# Create figure for visualization
|
| 254 |
+
fig = plt.figure(figsize=(12, 6))
|
| 255 |
+
|
| 256 |
+
# Plot the data
|
| 257 |
+
plt.bar(np.array(strike_prices) - 0.2, call_volumes, width=0.4, label='Calls', color='green', alpha=0.6)
|
| 258 |
+
plt.bar(np.array(strike_prices) + 0.2, put_volumes, width=0.4, label='Puts', color='red', alpha=0.6)
|
| 259 |
+
|
| 260 |
+
plt.xlabel('Strike Price')
|
| 261 |
+
plt.ylabel('Volume')
|
| 262 |
+
plt.title(f'Options Volume for {ticker_symbol} (Expiry: {expiration_date})')
|
| 263 |
+
plt.legend()
|
| 264 |
+
plt.grid(True, alpha=0.3)
|
| 265 |
+
|
| 266 |
+
# Format for readability
|
| 267 |
+
current_price = ticker.info.get('regularMarketPrice', ticker.info.get('currentPrice', None))
|
| 268 |
+
if current_price:
|
| 269 |
+
plt.axvline(x=current_price, color='blue', linestyle='--', label=f'Current Price: {current_price}')
|
| 270 |
+
plt.legend()
|
| 271 |
+
|
| 272 |
+
# Create summary table data
|
| 273 |
+
summary = f"""
|
| 274 |
+
### Options Summary for {ticker_symbol} (Expiry: {expiration_date})
|
| 275 |
+
|
| 276 |
+
**Available Expiration Dates:** {', '.join(expirations)}
|
| 277 |
+
|
| 278 |
+
#### Calls Summary:
|
| 279 |
+
- Count: {len(calls)}
|
| 280 |
+
- Total Volume: {calls['volume'].sum():,}
|
| 281 |
+
- Average Implied Volatility: {calls['impliedVolatility'].mean():.2%}
|
| 282 |
+
|
| 283 |
+
#### Puts Summary:
|
| 284 |
+
- Count: {len(puts)}
|
| 285 |
+
- Total Volume: {puts['volume'].sum():,}
|
| 286 |
+
- Average Implied Volatility: {puts['impliedVolatility'].mean():.2%}
|
| 287 |
+
"""
|
| 288 |
+
|
| 289 |
+
return summary, fig
|
| 290 |
+
except Exception as e:
|
| 291 |
+
return f"Error retrieving options data: {str(e)}", None
|
| 292 |
+
|
| 293 |
+
def get_institutional_holders(ticker_symbol):
|
| 294 |
+
"""Get institutional holders of the stock"""
|
| 295 |
+
try:
|
| 296 |
+
ticker = yf.Ticker(ticker_symbol)
|
| 297 |
+
holders = ticker.institutional_holders
|
| 298 |
+
|
| 299 |
+
if holders is None or holders.empty:
|
| 300 |
+
return "No institutional holders data available for this ticker", None
|
| 301 |
+
|
| 302 |
+
# Create figure for visualization
|
| 303 |
+
fig = plt.figure(figsize=(12, 6))
|
| 304 |
+
|
| 305 |
+
# Sort by percentage held
|
| 306 |
+
holders = holders.sort_values(by='% Out', ascending=False)
|
| 307 |
+
|
| 308 |
+
# Take top 10 holders for visualization
|
| 309 |
+
top_holders = holders.head(10)
|
| 310 |
+
|
| 311 |
+
# Plot the data
|
| 312 |
+
plt.barh(top_holders['Holder'], top_holders['% Out'] * 100)
|
| 313 |
+
plt.xlabel('Percentage Held (%)')
|
| 314 |
+
plt.ylabel('Institution')
|
| 315 |
+
plt.title(f'Top Institutional Holders of {ticker_symbol}')
|
| 316 |
+
plt.grid(True, alpha=0.3)
|
| 317 |
+
|
| 318 |
+
# Format x-axis as percentage
|
| 319 |
+
plt.gca().xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: f'{x:.1f}%'))
|
| 320 |
+
|
| 321 |
+
# Format the DataFrame for display
|
| 322 |
+
holders_html = holders.to_html(classes="table table-striped")
|
| 323 |
+
|
| 324 |
+
return holders_html, fig
|
| 325 |
+
except Exception as e:
|
| 326 |
+
return f"Error retrieving institutional holders: {str(e)}", None
|
| 327 |
+
|
| 328 |
+
def get_sector_industry_info(ticker_symbol):
|
| 329 |
+
"""Get sector and industry information for the ticker"""
|
| 330 |
+
try:
|
| 331 |
+
ticker = yf.Ticker(ticker_symbol)
|
| 332 |
+
info = ticker.info
|
| 333 |
+
|
| 334 |
+
sector_key = info.get('sectorKey')
|
| 335 |
+
industry_key = info.get('industryKey')
|
| 336 |
+
|
| 337 |
+
if not sector_key or not industry_key:
|
| 338 |
+
return "Sector or industry information not available for this ticker"
|
| 339 |
+
|
| 340 |
+
try:
|
| 341 |
+
# Get sector information
|
| 342 |
+
sector = yf.Sector(sector_key)
|
| 343 |
+
sector_info = f"""
|
| 344 |
+
### Sector Information
|
| 345 |
+
|
| 346 |
+
**Name:** {sector.name}
|
| 347 |
+
**Key:** {sector.key}
|
| 348 |
+
**Symbol:** {sector.symbol}
|
| 349 |
+
|
| 350 |
+
#### Overview
|
| 351 |
+
{sector.overview}
|
| 352 |
+
|
| 353 |
+
#### Top Companies in {sector.name} Sector
|
| 354 |
+
"""
|
| 355 |
+
for company in sector.top_companies[:5]: # Show top 5 companies
|
| 356 |
+
sector_info += f"- {company.get('name', 'N/A')} ({company.get('symbol', 'N/A')})\n"
|
| 357 |
+
|
| 358 |
+
# Get industry information
|
| 359 |
+
industry = yf.Industry(industry_key)
|
| 360 |
+
industry_info = f"""
|
| 361 |
+
### Industry Information
|
| 362 |
+
|
| 363 |
+
**Name:** {industry.name}
|
| 364 |
+
**Key:** {industry.key}
|
| 365 |
+
**Sector:** {industry.sector_name}
|
| 366 |
+
|
| 367 |
+
#### Top Performing Companies in {industry.name}
|
| 368 |
+
"""
|
| 369 |
+
for company in industry.top_performing_companies[:5]: # Show top 5 companies
|
| 370 |
+
industry_info += f"- {company.get('name', 'N/A')} ({company.get('symbol', 'N/A')})\n"
|
| 371 |
+
|
| 372 |
+
return sector_info + industry_info
|
| 373 |
+
except Exception as e:
|
| 374 |
+
return f"Error retrieving sector/industry details: {str(e)}"
|
| 375 |
+
except Exception as e:
|
| 376 |
+
return f"Error retrieving sector/industry information: {str(e)}"
|
| 377 |
+
|
| 378 |
+
def search_stocks(query, max_results=10):
|
| 379 |
+
"""Search for stocks using the YF Search API"""
|
| 380 |
+
try:
|
| 381 |
+
# First try with the standard approach
|
| 382 |
+
search_results = yf.Search(query, max_results=max_results)
|
| 383 |
+
quotes = search_results.quotes
|
| 384 |
+
|
| 385 |
+
if not quotes:
|
| 386 |
+
return "No search results found"
|
| 387 |
+
|
| 388 |
+
# Format the results
|
| 389 |
+
formatted_results = "### Search Results\n\n"
|
| 390 |
+
|
| 391 |
+
for quote in quotes:
|
| 392 |
+
symbol = quote.get('symbol', 'N/A')
|
| 393 |
+
name = quote.get('shortname', quote.get('longname', 'N/A'))
|
| 394 |
+
exchange = quote.get('exchange', 'N/A')
|
| 395 |
+
quote_type = quote.get('quoteType', 'N/A').capitalize()
|
| 396 |
+
|
| 397 |
+
formatted_results += f"**{symbol}** - {name}\n"
|
| 398 |
+
formatted_results += f"Exchange: {exchange} | Type: {quote_type}\n\n"
|
| 399 |
+
|
| 400 |
+
return formatted_results
|
| 401 |
+
except AttributeError as e:
|
| 402 |
+
if "has no attribute 'update'" in str(e):
|
| 403 |
+
# Alternative: Use the Ticker directly for basic information
|
| 404 |
+
try:
|
| 405 |
+
# If search fails, try to get info directly for the symbol
|
| 406 |
+
if len(query.strip()) <= 5: # Likely a symbol
|
| 407 |
+
ticker = yf.Ticker(query.strip())
|
| 408 |
+
info = ticker.info
|
| 409 |
+
|
| 410 |
+
formatted_results = "### Direct Ticker Results\n\n"
|
| 411 |
+
formatted_results += f"**{query.strip()}** - {info.get('shortName', 'N/A')}\n"
|
| 412 |
+
formatted_results += f"Exchange: {info.get('exchange', 'N/A')} | "
|
| 413 |
+
formatted_results += f"Type: {info.get('quoteType', 'N/A').capitalize()}\n\n"
|
| 414 |
+
|
| 415 |
+
return formatted_results
|
| 416 |
+
else:
|
| 417 |
+
return f"Search functionality unavailable due to version compatibility issue. If you know the exact ticker symbol, try entering it in the Single Ticker Analysis tab."
|
| 418 |
+
except:
|
| 419 |
+
return f"Search functionality unavailable due to version compatibility issue. If you know the exact ticker symbol, try entering it in the Single Ticker Analysis tab."
|
| 420 |
+
else:
|
| 421 |
+
return f"Error searching stocks: {str(e)}"
|
| 422 |
+
except Exception as e:
|
| 423 |
+
return f"Error searching stocks: {str(e)}"
|
| 424 |
+
|
| 425 |
+
def get_multi_ticker_comparison(ticker_symbols, period="1y"):
|
| 426 |
+
"""Compare multiple tickers in a single chart"""
|
| 427 |
+
try:
|
| 428 |
+
if not ticker_symbols:
|
| 429 |
+
return "Please enter at least one ticker symbol", None
|
| 430 |
+
|
| 431 |
+
# Split input string into list of ticker symbols
|
| 432 |
+
tickers = [t.strip() for t in ticker_symbols.split() if t.strip()]
|
| 433 |
+
|
| 434 |
+
if not tickers:
|
| 435 |
+
return "Please enter at least one ticker symbol", None
|
| 436 |
+
|
| 437 |
+
# Download data for all tickers
|
| 438 |
+
data = yf.download(tickers, period=period, group_by='ticker')
|
| 439 |
+
|
| 440 |
+
if data.empty:
|
| 441 |
+
return "No data available for the provided tickers", None
|
| 442 |
+
|
| 443 |
+
# For a single ticker, the structure is different
|
| 444 |
+
if len(tickers) == 1:
|
| 445 |
+
ticker = tickers[0]
|
| 446 |
+
price_data = data['Close']
|
| 447 |
+
price_data.name = ticker
|
| 448 |
+
price_data = pd.DataFrame(price_data)
|
| 449 |
+
else:
|
| 450 |
+
# Extract closing prices for each ticker
|
| 451 |
+
price_data = pd.DataFrame()
|
| 452 |
+
for ticker in tickers:
|
| 453 |
+
try:
|
| 454 |
+
if (ticker, 'Close') in data.columns:
|
| 455 |
+
price_data[ticker] = data[ticker]['Close']
|
| 456 |
+
except:
|
| 457 |
+
continue
|
| 458 |
+
|
| 459 |
+
if price_data.empty:
|
| 460 |
+
return "Could not retrieve closing price data for the provided tickers", None
|
| 461 |
+
|
| 462 |
+
# Normalize the data to start at 100 for fair comparison
|
| 463 |
+
normalized_data = price_data.copy()
|
| 464 |
+
for col in normalized_data.columns:
|
| 465 |
+
normalized_data[col] = normalized_data[col] / normalized_data[col].iloc[0] * 100
|
| 466 |
+
|
| 467 |
+
# Create figure for visualization
|
| 468 |
+
fig = plt.figure(figsize=(12, 6))
|
| 469 |
+
|
| 470 |
+
for col in normalized_data.columns:
|
| 471 |
+
plt.plot(normalized_data.index, normalized_data[col], label=col)
|
| 472 |
+
|
| 473 |
+
plt.xlabel('Date')
|
| 474 |
+
plt.ylabel('Normalized Price (Base = 100)')
|
| 475 |
+
plt.title(f'Comparative Performance ({period})')
|
| 476 |
+
plt.legend()
|
| 477 |
+
plt.grid(True, alpha=0.3)
|
| 478 |
+
|
| 479 |
+
# Calculate performance metrics
|
| 480 |
+
performance = {}
|
| 481 |
+
for ticker in price_data.columns:
|
| 482 |
+
start_price = price_data[ticker].iloc[0]
|
| 483 |
+
end_price = price_data[ticker].iloc[-1]
|
| 484 |
+
pct_change = (end_price - start_price) / start_price * 100
|
| 485 |
+
performance[ticker] = pct_change
|
| 486 |
+
|
| 487 |
+
# Create a summary of the performance
|
| 488 |
+
summary = "### Performance Summary\n\n"
|
| 489 |
+
for ticker, pct in sorted(performance.items(), key=lambda x: x[1], reverse=True):
|
| 490 |
+
summary += f"**{ticker}**: {pct:.2f}%\n\n"
|
| 491 |
+
|
| 492 |
+
return summary, fig
|
| 493 |
+
except Exception as e:
|
| 494 |
+
return f"Error comparing tickers: {str(e)}", None
|
| 495 |
+
|
| 496 |
+
def get_market_status():
|
| 497 |
+
"""Get current market status and summary"""
|
| 498 |
+
try:
|
| 499 |
+
# Get US market status
|
| 500 |
+
us_market = yf.Market("US")
|
| 501 |
+
status = us_market.status
|
| 502 |
+
|
| 503 |
+
if not status:
|
| 504 |
+
return "Unable to retrieve market status"
|
| 505 |
+
|
| 506 |
+
# Format the response
|
| 507 |
+
market_info = "### Market Status\n\n"
|
| 508 |
+
|
| 509 |
+
market_state = status.get('marketState', 'Unknown')
|
| 510 |
+
trading_status = "Open" if market_state == "REGULAR" else "Closed"
|
| 511 |
+
|
| 512 |
+
market_info += f"**US Market Status:** {trading_status} ({market_state})\n\n"
|
| 513 |
+
|
| 514 |
+
# Get summary for different markets
|
| 515 |
+
markets = ["US", "EUROPE", "ASIA", "CRYPTOCURRENCIES"]
|
| 516 |
+
|
| 517 |
+
for market_id in markets:
|
| 518 |
+
try:
|
| 519 |
+
market = yf.Market(market_id)
|
| 520 |
+
summary = market.summary
|
| 521 |
+
|
| 522 |
+
if summary is None:
|
| 523 |
+
market_info += f"### {market_id} Market Summary\n\nNo data available\n\n---\n\n"
|
| 524 |
+
continue
|
| 525 |
+
|
| 526 |
+
market_info += f"### {market_id} Market Summary\n\n"
|
| 527 |
+
|
| 528 |
+
# Make sure we handle the summary data correctly, regardless of its type
|
| 529 |
+
summary_items = []
|
| 530 |
+
if isinstance(summary, list):
|
| 531 |
+
summary_items = summary[:5] # Get first 5 items
|
| 532 |
+
elif hasattr(summary, '__getitem__'):
|
| 533 |
+
try:
|
| 534 |
+
summary_items = summary[:5] # Try to get first 5 items
|
| 535 |
+
except:
|
| 536 |
+
# If slicing fails, try to convert to list first
|
| 537 |
+
try:
|
| 538 |
+
summary_items = list(summary)[:5]
|
| 539 |
+
except:
|
| 540 |
+
summary_items = []
|
| 541 |
+
|
| 542 |
+
# Display market indices
|
| 543 |
+
if not summary_items:
|
| 544 |
+
market_info += "No summary data available\n\n"
|
| 545 |
+
else:
|
| 546 |
+
for item in summary_items:
|
| 547 |
+
if not isinstance(item, dict):
|
| 548 |
+
continue
|
| 549 |
+
|
| 550 |
+
symbol = item.get('symbol', 'N/A')
|
| 551 |
+
name = item.get('shortName', item.get('longName', 'N/A'))
|
| 552 |
+
price = item.get('regularMarketPrice', 'N/A')
|
| 553 |
+
change = item.get('regularMarketChangePercent', 0)
|
| 554 |
+
|
| 555 |
+
# Format change with color indicator
|
| 556 |
+
change_text = f"{change:.2f}%" if isinstance(change, (int, float)) else change
|
| 557 |
+
if isinstance(change, (int, float)):
|
| 558 |
+
if change > 0:
|
| 559 |
+
change_text = f"🟢 +{change_text}"
|
| 560 |
+
elif change < 0:
|
| 561 |
+
change_text = f"🔴 {change_text}"
|
| 562 |
+
|
| 563 |
+
market_info += f"**{name} ({symbol}):** {price} ({change_text})\n\n"
|
| 564 |
+
|
| 565 |
+
market_info += "---\n\n"
|
| 566 |
+
except Exception as e:
|
| 567 |
+
market_info += f"### {market_id} Market Summary\n\nError retrieving {market_id} market summary: {str(e)}\n\n---\n\n"
|
| 568 |
+
|
| 569 |
+
return market_info
|
| 570 |
+
except Exception as e:
|
| 571 |
+
return f"Error retrieving market status: {str(e)}"
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
|
| 575 |
+
# Gradio UI components
|
| 576 |
+
with gr.Blocks(title="YFinance Explorer") as app:
|
| 577 |
+
gr.Markdown("# YFinance Explorer\nA comprehensive tool to test all features of the yfinance library")
|
| 578 |
+
|
| 579 |
+
with gr.Tab("Single Ticker Analysis"):
|
| 580 |
+
with gr.Row():
|
| 581 |
+
ticker_input = gr.Textbox(label="Enter Ticker Symbol", placeholder="e.g. AAPL, MSFT, GOOG", value="AAPL")
|
| 582 |
+
ticker_submit = gr.Button("Analyze")
|
| 583 |
+
|
| 584 |
+
with gr.Tabs():
|
| 585 |
+
with gr.Tab("Overview"):
|
| 586 |
+
ticker_info_output = gr.Markdown()
|
| 587 |
+
|
| 588 |
+
with gr.Tab("Price History"):
|
| 589 |
+
with gr.Row():
|
| 590 |
+
period_dropdown = gr.Dropdown(
|
| 591 |
+
choices=["1d", "5d", "1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"],
|
| 592 |
+
value="1y",
|
| 593 |
+
label="Period"
|
| 594 |
+
)
|
| 595 |
+
interval_dropdown = gr.Dropdown(
|
| 596 |
+
choices=["1m", "2m", "5m", "15m", "30m", "60m", "90m", "1h", "1d", "5d", "1wk", "1mo", "3mo"],
|
| 597 |
+
value="1d",
|
| 598 |
+
label="Interval"
|
| 599 |
+
)
|
| 600 |
+
history_status = gr.Markdown()
|
| 601 |
+
history_plot = gr.Plot()
|
| 602 |
+
|
| 603 |
+
with gr.Tab("Financials"):
|
| 604 |
+
with gr.Row():
|
| 605 |
+
statement_dropdown = gr.Dropdown(
|
| 606 |
+
choices=["Income Statement", "Balance Sheet", "Cash Flow"],
|
| 607 |
+
value="Income Statement",
|
| 608 |
+
label="Financial Statement"
|
| 609 |
+
)
|
| 610 |
+
period_type_dropdown = gr.Dropdown(
|
| 611 |
+
choices=["Annual", "Quarterly"],
|
| 612 |
+
value="Annual",
|
| 613 |
+
label="Period Type"
|
| 614 |
+
)
|
| 615 |
+
financial_data_output = gr.HTML()
|
| 616 |
+
|
| 617 |
+
with gr.Tab("News"):
|
| 618 |
+
news_output = gr.Markdown()
|
| 619 |
+
|
| 620 |
+
|
| 621 |
+
|
| 622 |
+
with gr.Tab("Multi-Ticker Comparison"):
|
| 623 |
+
with gr.Row():
|
| 624 |
+
multi_ticker_input = gr.Textbox(label="Enter Ticker Symbols (space separated)", placeholder="e.g. AAPL MSFT GOOG", value="AAPL MSFT GOOG")
|
| 625 |
+
comparison_period = gr.Dropdown(
|
| 626 |
+
choices=["1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"],
|
| 627 |
+
value="1y",
|
| 628 |
+
label="Comparison Period"
|
| 629 |
+
)
|
| 630 |
+
compare_button = gr.Button("Compare")
|
| 631 |
+
|
| 632 |
+
comparison_status = gr.Markdown()
|
| 633 |
+
comparison_plot = gr.Plot()
|
| 634 |
+
|
| 635 |
+
with gr.Tab("Market Status"):
|
| 636 |
+
market_status_button = gr.Button("Get Market Status")
|
| 637 |
+
market_status_output = gr.Markdown()
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
with gr.Tab("Stock Search"):
|
| 642 |
+
with gr.Row():
|
| 643 |
+
search_input = gr.Textbox(label="Search Term", placeholder="Enter company name or ticker")
|
| 644 |
+
max_results_slider = gr.Slider(minimum=5, maximum=30, value=10, step=5, label="Max Results")
|
| 645 |
+
search_button = gr.Button("Search")
|
| 646 |
+
|
| 647 |
+
search_results = gr.Markdown()
|
| 648 |
+
|
| 649 |
+
# Event handlers
|
| 650 |
+
ticker_submit.click(
|
| 651 |
+
fn=get_ticker_info,
|
| 652 |
+
inputs=[ticker_input],
|
| 653 |
+
outputs=[ticker_info_output]
|
| 654 |
+
)
|
| 655 |
+
|
| 656 |
+
ticker_submit.click(
|
| 657 |
+
fn=get_historical_data,
|
| 658 |
+
inputs=[ticker_input, period_dropdown, interval_dropdown],
|
| 659 |
+
outputs=[history_status, history_plot]
|
| 660 |
+
)
|
| 661 |
+
|
| 662 |
+
ticker_submit.click(
|
| 663 |
+
fn=get_financial_data,
|
| 664 |
+
inputs=[ticker_input, statement_dropdown, period_type_dropdown],
|
| 665 |
+
outputs=[financial_data_output]
|
| 666 |
+
)
|
| 667 |
+
|
| 668 |
+
ticker_submit.click(
|
| 669 |
+
fn=get_company_news,
|
| 670 |
+
inputs=[ticker_input],
|
| 671 |
+
outputs=[news_output]
|
| 672 |
+
)
|
| 673 |
+
|
| 674 |
+
|
| 675 |
+
|
| 676 |
+
|
| 677 |
+
compare_button.click(
|
| 678 |
+
fn=get_multi_ticker_comparison,
|
| 679 |
+
inputs=[multi_ticker_input, comparison_period],
|
| 680 |
+
outputs=[comparison_status, comparison_plot]
|
| 681 |
+
)
|
| 682 |
+
|
| 683 |
+
market_status_button.click(
|
| 684 |
+
fn=get_market_status,
|
| 685 |
+
inputs=[],
|
| 686 |
+
outputs=[market_status_output]
|
| 687 |
+
)
|
| 688 |
+
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
search_button.click(
|
| 692 |
+
fn=search_stocks,
|
| 693 |
+
inputs=[search_input, max_results_slider],
|
| 694 |
+
outputs=[search_results]
|
| 695 |
+
)
|
| 696 |
+
|
| 697 |
+
# Update statement and interval options based on selections
|
| 698 |
+
def update_interval_choices(period):
|
| 699 |
+
if period in ["1d", "5d"]:
|
| 700 |
+
return gr.Dropdown.update(choices=["1m", "2m", "5m", "15m", "30m", "60m", "90m", "1h"], value="1m")
|
| 701 |
+
else:
|
| 702 |
+
return gr.Dropdown.update(choices=["1d", "5d", "1wk", "1mo", "3mo"], value="1d")
|
| 703 |
+
|
| 704 |
+
period_dropdown.change(
|
| 705 |
+
fn=update_interval_choices,
|
| 706 |
+
inputs=[period_dropdown],
|
| 707 |
+
outputs=[interval_dropdown]
|
| 708 |
+
)
|
| 709 |
+
|
| 710 |
+
if __name__ == "__main__":
|
| 711 |
+
app.launch()
|