import gradio as gr import requests import os from PIL import Image from io import BytesIO import base64 def error_str(error, title="Error"): return f"""#### {title} {error}""" if error else "" def inference(prompt, guidance, steps, image_size="Landscape", seed=0, img=None, strength=0.5, neg_prompt="", disable_auto_prompt_correction=False): try: response = requests.post(os.environ["BACKEND"], json={ "data": [ prompt, guidance, steps, image_size, seed, img, strength, neg_prompt, disable_auto_prompt_correction, ] }).json() data = response["data"] image=Image.open(BytesIO(base64.b64decode(data[0].split(',')[1]))) return image,data[1],data[2] except Exception as e: print(error_str(e)) return None, "Error", "Error" css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} """ with gr.Blocks(css=css) as demo: gr.HTML( f"""

ChatEmi Beta デモ

個人情報などは入れないでください。

サンプルプロンプト1:黒い髪の美少女の顔アップ

サンプルプロンプト2:白い髪の男性の上半身

""" ) with gr.Row(): with gr.Column(scale=55): with gr.Group(): with gr.Row(): prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="[your prompt]") generate = gr.Button(value="Generate") image_out = gr.Image(height=1024,width=1024) error_output = gr.Markdown() with gr.Column(scale=45): with gr.Tab("Options"): with gr.Group(): neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image") disable_auto_prompt_correction = gr.Checkbox(label="Disable auto prompt corretion.") with gr.Row(): image_size=gr.Radio(["Portrait","Landscape","Square"]) image_size.show_label=False image_size.value="Square" with gr.Row(): guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=25) steps = gr.Slider(label="Steps", value=8, minimum=2, maximum=30, step=1) seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) prompt_display= gr.Textbox(label="Upsampled prompt", interactive=False) with gr.Tab("Image to image"): with gr.Group(): image = gr.Image(label="Image", height=256, tool="editor", type="pil") strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5) inputs = [prompt, guidance, steps, image_size, seed, image, strength, neg_prompt, disable_auto_prompt_correction] outputs = [image_out, error_output, prompt_display] prompt.submit(inference, inputs=inputs, outputs=outputs) generate.click(inference, inputs=inputs, outputs=outputs) demo.queue(concurrency_count=1) demo.launch()