import langchain from langchain.agents import create_csv_agent from langchain.schema import HumanMessage from langchain.chat_models import ChatOpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from typing import List, Dict from langchain.agents import AgentType from langchain.chains.conversation.memory import ConversationBufferWindowMemory class Bot: def __init__( self, openai_api_key: str, table_descriptions: List[Dict[str, any]], text_documents: List[langchain.schema.Document], verbose: bool = False ): self.verbose = verbose self.table_descriptions = table_descriptions self.llm = ChatOpenAI( openai_api_key=openai_api_key, temperature=0, model_name="gpt-3.5-turbo" ) embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) vector_store = Chroma.from_documents(text_documents, embeddings) self.text_retriever = langchain.chains.RetrievalQAWithSourcesChain.from_chain_type( llm=self.llm, chain_type='stuff', retriever=vector_store.as_retriever() ) self.text_search_tool = langchain.agents.Tool( func=self._text_search, description="Use this tool when searching for text information", name="search text information" ) def __call__( self, question: str ): self.tools = [] self.tools.append(self.text_search_tool) table = self._define_appropriate_table(question) if table != "None of the tables": number = int(table[table.find('№')+1:]) table_description = [x for x in self.table_descriptions if x['number'] == number][0] table_path = table_description['path'] self.csv_agent = create_csv_agent( llm=self.llm, path=table_path, verbose=self.verbose ) self._init_tabular_search_tool(table_description) self.tools.append(self.tabular_search_tool) self._init_chatbot() print(table) response = self.agent(question) return response def _init_chatbot(self): conversational_memory = ConversationBufferWindowMemory( memory_key='chat_history', k=5, return_messages=True ) self.agent = langchain.agents.initialize_agent( agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION, tools=self.tools, llm=self.llm, verbose=self.verbose, max_iterations=5, early_stopping_method='generate', memory=conversational_memory ) sys_msg = ( "You are an expert summarizer and deliverer of information. " "Yet, the reason you are so intelligent is that you make complex " "information incredibly simple to understand. It's actually rather incredible." "When users ask information you refer to the relevant tools." "if one of the tools helped you with only a part of the necessary information, you must " "try to find the missing information using another tool" "if you can't find the information using the provided tools, you MUST " "say 'I don't know'. Don't try to make up an answer." ) prompt = self.agent.agent.create_prompt( system_message=sys_msg, tools=self.tools ) self.agent.agent.llm_chain.prompt = prompt def _text_search( self, query: str ) -> str: query = self.text_retriever.prep_inputs(query) res = self.text_retriever(query)['answer'] return res def _tabular_search( self, query: str ) -> str: res = self.csv_agent.run(query) return res def _init_tabular_search_tool( self, table_description: Dict[str, any] ) -> None: columns = table_description["columns"] columns = '"' + '", "'.join(columns) + '"' tittle = table_description["tittle"] description = f""" Use this tool when searching for tabular information. With this tool you could get access to table. This table tittle is "{tittle}" and the names of the columns in this table: {columns} """ self.tabular_search_tool = langchain.agents.Tool( func=self._tabular_search, description=description, name="search tabular information" ) def _define_appropriate_table( self, question: str ) -> str: ''' Определяет по описаниям таблиц в какой из них может содержаться ответ на вопрос. Возвращает номер таблицы по шаблону "Table №1" или "None of the tables" ''' message = 'I have list of table descriptions: \n' k = 0 for description in self.table_descriptions: k += 1 number = description["number"] columns = description["columns"] columns = '"' + '", "'.join(columns) + '"' tittle = description["tittle"] str_description = f""" {k}) description for Table №{number}: a) table consist of columns with names: {columns}; b) table tittle: {tittle}.\n""" message += str_description question = f""" How do you think, which table can help answer the question: "{question}" . Your answer MUST be specific, for example if you think that Table №2 can help answer the question, you MUST just write "Table №2". If you think that none of the tables can help answer the question just write "None of the tables" Don't include to answer information about your thinking. """ message += question res = self.llm([HumanMessage(content=message)]) return res.content[:-1]