import gradio as gr import numpy as np import random import spaces import torch import time from diffusers import DiffusionPipeline # Ensure sentencepiece is installed in your environment try: import sentencepiece except ImportError: raise ImportError("The 'sentencepiece' library is required but not installed. Please add it to your environment.") # Set the device and dtype dtype = torch.float16 # Change to float16 for better compatibility and performance device = "cuda" if torch.cuda.is_available() else "cpu" # Load the diffusion pipeline without requiring an API token pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 @spaces.GPU() def infer(prompt, negative_prompt=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)): start_time = time.time() if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE: raise ValueError("Image size exceeds the maximum allowed dimensions.") if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) try: # Include negative prompts in the diffusion pipeline call image = pipe( prompt=prompt, negative_prompt=negative_prompt, # Using the negative prompt here width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale ).images[0] except Exception as e: print(f"Error generating image: {e}") return None, seed, f"Error: {str(e)}" if time.time() - start_time > 60: # 60 seconds timeout return None, seed, "Image generation took too long and was cancelled." return image, seed, None examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css = """ #col-container { margin: 0 auto; max-width: 640px; padding: 20px; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); border-radius: 10px; background-color: #f8f9fa; } #run-button { background-color: #007bff; color: white; border: none; padding: 10px 20px; font-size: 16px; border-radius: 5px; } #run-button:hover { background-color: #0056b3; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(""" # Custom Image Creator A 12B param rectified flow transformer from [FLUX.1](https://blackforestlabs.ai/) for 4-step generation. """, elem_id="title") prompt = gr.Textbox( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt...", ) negative_prompt = gr.Textbox( label="Negative Prompt", show_label=False, max_lines=1, placeholder="Enter negative prompts (what to avoid)...", ) run_button = gr.Button("Run", elem_id="run-button") result = gr.Image(label="Result", show_label=False, interactive=True) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, tooltip="Seed value for reproducibility. Randomize for unique results." ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, tooltip="Adjust the width of the generated image." ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, tooltip="Adjust the height of the generated image." ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, tooltip="Controls the quality and coherence of the output." ) guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.0, maximum=20.0, step=0.5, value=7.5, tooltip="Higher values result in outputs closer to the prompt." ) gr.Examples( examples=examples, fn=infer, inputs=[prompt], outputs=[result, seed], cache_examples="lazy" ) run_button.click( fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, num_inference_steps, guidance_scale], outputs=[result, seed], ) gr.Markdown(""" ## Save Your Image Right-click on the image and select 'Save As' to download the generated image. """) demo.launch()