import os import sys from typing import Dict sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import protac_degradation_predictor as pdp from collections import defaultdict import warnings import logging from typing import Literal from sklearn.preprocessing import OrdinalEncoder from sklearn.model_selection import StratifiedKFold, StratifiedGroupKFold from tqdm import tqdm import pandas as pd import numpy as np import pytorch_lightning as pl from rdkit import DataStructs root = logging.getLogger() root.setLevel(logging.DEBUG) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) root.addHandler(handler) def get_random_split_indices(active_df: pd.DataFrame, test_split: float) -> pd.Index: """ Get the indices of the test set using a random split. Args: active_df (pd.DataFrame): The DataFrame containing the active PROTACs. test_split (float): The percentage of the active PROTACs to use as the test set. Returns: pd.Index: The indices of the test set. """ test_df = active_df.sample(frac=test_split, random_state=42) return test_df.index def get_e3_ligase_split_indices(active_df: pd.DataFrame) -> pd.Index: """ Get the indices of the test set using the E3 ligase split. Args: active_df (pd.DataFrame): The DataFrame containing the active PROTACs. Returns: pd.Index: The indices of the test set. """ encoder = OrdinalEncoder() active_df['E3 Group'] = encoder.fit_transform(active_df[['E3 Ligase']]).astype(int) test_df = active_df[(active_df['E3 Ligase'] != 'VHL') & (active_df['E3 Ligase'] != 'CRBN')] return test_df.index def get_smiles2fp_and_avg_tanimoto(protac_df: pd.DataFrame) -> tuple: """ Get the SMILES to fingerprint dictionary and the average Tanimoto similarity. Args: protac_df (pd.DataFrame): The DataFrame containing the PROTACs. Returns: tuple: The SMILES to fingerprint dictionary and the average Tanimoto similarity. """ unique_smiles = protac_df['Smiles'].unique().tolist() smiles2fp = {} for smiles in tqdm(unique_smiles, desc='Precomputing fingerprints'): smiles2fp[smiles] = pdp.get_fingerprint(smiles) # # Get the pair-wise tanimoto similarity between the PROTAC fingerprints # tanimoto_matrix = defaultdict(list) # for i, smiles1 in enumerate(tqdm(protac_df['Smiles'].unique(), desc='Computing Tanimoto similarity')): # fp1 = smiles2fp[smiles1] # # TODO: Use BulkTanimotoSimilarity for better performance # for j, smiles2 in enumerate(protac_df['Smiles'].unique()[i:]): # fp2 = smiles2fp[smiles2] # tanimoto_dist = 1 - DataStructs.TanimotoSimilarity(fp1, fp2) # tanimoto_matrix[smiles1].append(tanimoto_dist) # avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()} # protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto) tanimoto_matrix = defaultdict(list) fps = list(smiles2fp.values()) # Compute all-against-all Tanimoto similarity using BulkTanimotoSimilarity for i, (smiles1, fp1) in enumerate(tqdm(zip(unique_smiles, fps), desc='Computing Tanimoto similarity', total=len(fps))): similarities = DataStructs.BulkTanimotoSimilarity(fp1, fps[i:]) # Only compute for i to end, avoiding duplicates for j, similarity in enumerate(similarities): distance = 1 - similarity tanimoto_matrix[smiles1].append(distance) # Store as distance if i != i + j: tanimoto_matrix[unique_smiles[i + j]].append(distance) # Symmetric filling # Calculate average Tanimoto distance for each unique SMILES avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()} protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto) smiles2fp = {s: np.array(fp) for s, fp in smiles2fp.items()} return smiles2fp, protac_df def get_tanimoto_split_indices( active_df: pd.DataFrame, active_col: str, test_split: float, n_bins_tanimoto: int = 100, # Original: 200 ) -> pd.Index: """ Get the indices of the test set using the Tanimoto-based split. Args: active_df (pd.DataFrame): The DataFrame containing the active PROTACs. n_bins_tanimoto (int): The number of bins to use for the Tanimoto similarity. Returns: pd.Index: The indices of the test set. """ tanimoto_groups = pd.cut(active_df['Avg Tanimoto'], bins=n_bins_tanimoto).copy() encoder = OrdinalEncoder() active_df['Tanimoto Group'] = encoder.fit_transform(tanimoto_groups.values.reshape(-1, 1)).astype(int) # Sort the groups so that samples with the highest tanimoto similarity, # i.e., the "less similar" ones, are placed in the test set first tanimoto_groups = active_df.groupby('Tanimoto Group')['Avg Tanimoto'].mean().sort_values(ascending=False).index test_df = [] # For each group, get the number of active and inactive entries. Then, add those # entries to the test_df if: 1) the test_df lenght + the group entries is less # 20% of the active_df lenght, and 2) the percentage of True and False entries # in the active_col in test_df is roughly 50%. for group in tanimoto_groups: group_df = active_df[active_df['Tanimoto Group'] == group] if test_df == []: test_df.append(group_df) continue num_entries = len(group_df) num_active_group = group_df[active_col].sum() num_inactive_group = num_entries - num_active_group tmp_test_df = pd.concat(test_df) num_entries_test = len(tmp_test_df) num_active_test = tmp_test_df[active_col].sum() num_inactive_test = num_entries_test - num_active_test # Check if the group entries can be added to the test_df if num_entries_test + num_entries < test_split * len(active_df): # Add anything at the beggining if num_entries_test + num_entries < test_split / 2 * len(active_df): test_df.append(group_df) continue # Be more selective and make sure that the percentage of active and # inactive is not over-exceeding 60% perc_active_group = (num_active_group + num_active_test) / (num_entries_test + num_entries) perc_inactive_group = (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) if perc_active_group < 0.6: if perc_inactive_group < 0.6: test_df.append(group_df) test_df = pd.concat(test_df) return test_df.index def get_target_split_indices(active_df: pd.DataFrame, active_col: str, test_split: float) -> pd.Index: """ Get the indices of the test set using the target-based split. Args: active_df (pd.DataFrame): The DataFrame containing the active PROTACs. active_col (str): The column containing the active/inactive information. test_split (float): The percentage of the active PROTACs to use as the test set. Returns: pd.Index: The indices of the test set. """ encoder = OrdinalEncoder() active_df['Uniprot Group'] = encoder.fit_transform(active_df[['Uniprot']]).astype(int) test_df = [] # For each group, get the number of active and inactive entries. Then, add those # entries to the test_df if: 1) the test_df lenght + the group entries is less # 20% of the active_df lenght, and 2) the percentage of True and False entries # in the active_col in test_df is roughly 50%. # Start the loop from the groups containing the smallest number of entries. for group in reversed(active_df['Uniprot'].value_counts().index): group_df = active_df[active_df['Uniprot'] == group] if test_df == []: test_df.append(group_df) continue num_entries = len(group_df) num_active_group = group_df[active_col].sum() num_inactive_group = num_entries - num_active_group tmp_test_df = pd.concat(test_df) num_entries_test = len(tmp_test_df) num_active_test = tmp_test_df[active_col].sum() num_inactive_test = num_entries_test - num_active_test # Check if the group entries can be added to the test_df if num_entries_test + num_entries < test_split * len(active_df): # Add anything at the beggining if num_entries_test + num_entries < test_split / 2 * len(active_df): test_df.append(group_df) continue # Be more selective and make sure that the percentage of active and # inactive is balanced if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6: if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6: test_df.append(group_df) test_df = pd.concat(test_df) return test_df.index def get_dataframe_stats( train_df = None, val_df = None, test_df = None, active_label = 'Active', ) -> Dict: """ Get some statistics from the dataframes. Args: train_df (pd.DataFrame): The training set. val_df (pd.DataFrame): The validation set. test_df (pd.DataFrame): The test set. """ stats = {} if train_df is not None: stats['train_len'] = len(train_df) stats['train_active_perc'] = train_df[active_label].sum() / len(train_df) stats['train_inactive_perc'] = (len(train_df) - train_df[active_label].sum()) / len(train_df) stats['train_avg_tanimoto_dist'] = train_df['Avg Tanimoto'].mean() if val_df is not None: stats['val_len'] = len(val_df) stats['val_active_perc'] = val_df[active_label].sum() / len(val_df) stats['val_inactive_perc'] = (len(val_df) - val_df[active_label].sum()) / len(val_df) stats['val_avg_tanimoto_dist'] = val_df['Avg Tanimoto'].mean() if test_df is not None: stats['test_len'] = len(test_df) stats['test_active_perc'] = test_df[active_label].sum() / len(test_df) stats['test_inactive_perc'] = (len(test_df) - test_df[active_label].sum()) / len(test_df) stats['test_avg_tanimoto_dist'] = test_df['Avg Tanimoto'].mean() if train_df is not None and val_df is not None: leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(val_df['Uniprot']))) leaking_smiles = list(set(train_df['Smiles']).intersection(set(val_df['Smiles']))) stats['num_leaking_uniprot_train_val'] = len(leaking_uniprot) stats['num_leaking_smiles_train_val'] = len(leaking_smiles) stats['perc_leaking_uniprot_train_val'] = len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df) stats['perc_leaking_smiles_train_val'] = len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df) key_cols = [ 'Smiles', 'Uniprot', 'E3 Ligase Uniprot', 'Cell Line Identifier', ] class_cols = ['DC50 (nM)', 'Dmax (%)'] # Check if there are any entries that are in BOTH train and val sets tmp_train_df = train_df[key_cols + class_cols].copy() tmp_val_df = val_df[key_cols + class_cols].copy() stats['leaking_train_val'] = len(tmp_train_df.merge(tmp_val_df, on=key_cols + class_cols, how='inner')) if train_df is not None and test_df is not None: leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(test_df['Uniprot']))) leaking_smiles = list(set(train_df['Smiles']).intersection(set(test_df['Smiles']))) stats['num_leaking_uniprot_train_test'] = len(leaking_uniprot) stats['num_leaking_smiles_train_test'] = len(leaking_smiles) stats['perc_leaking_uniprot_train_test'] = len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df) stats['perc_leaking_smiles_train_test'] = len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df) key_cols = [ 'Smiles', 'Uniprot', 'E3 Ligase Uniprot', 'Cell Line Identifier', ] class_cols = ['DC50 (nM)', 'Dmax (%)'] # Check if there are any entries that are in BOTH train and test sets tmp_train_df = train_df[key_cols + class_cols].copy() tmp_test_df = test_df[key_cols + class_cols].copy() stats['leaking_train_test'] = len(tmp_train_df.merge(tmp_test_df, on=key_cols + class_cols, how='inner')) return stats def merge_numerical_cols(group: pd.DataFrame) -> pd.DataFrame: """ Merge the numerical columns by computing the geometric mean. Args: group (pd.DataFrame): The group to merge. Returns: pd.DataFrame: The merged group (as a single row). """ key_cols = [ 'Smiles', 'Uniprot', 'E3 Ligase Uniprot', 'Cell Line Identifier', ] class_cols = ['DC50 (nM)', 'Dmax (%)'] # Loop over all numerical columns for col in group.select_dtypes(include=[np.number]).columns: if col == 'Compound ID': continue # Compute the geometric mean for the column values = group[col].dropna() if not values.empty: group[col] = np.prod(values) ** (1 / len(values)) row = group.drop_duplicates(subset=key_cols + class_cols).reset_index(drop=True) assert len(row) == 1 return row def remove_duplicates(df: pd.DataFrame) -> pd.DataFrame: """ Remove duplicates from the DataFrame. Args: df (pd.DataFrame): The DataFrame to remove duplicates from. Returns: pd.DataFrame: The DataFrame without duplicates. """ key_cols = [ 'Smiles', 'Uniprot', 'E3 Ligase Uniprot', 'Cell Line Identifier', ] class_cols = ['DC50 (nM)', 'Dmax (%)'] # Check if there are any duplicated entries having the same key columns, if # so, merge them by applying a geometric mean to their DC50 and Dmax columns duplicated = df[df.duplicated(subset=key_cols, keep=False)] # NOTE: Reset index to remove the multi-index merged = duplicated.groupby(key_cols).apply(lambda x: merge_numerical_cols(x)) merged = merged.reset_index(drop=True) # Remove the duplicated entries from the original dataframe df df = df[~df.duplicated(subset=key_cols, keep=False)] # Concatenate the merged dataframe with the original dataframe return pd.concat([df, merged], ignore_index=True) def main( active_col: str = 'Active (Dmax 0.6, pDC50 6.0)', test_split: float = 0.1, studies: str | Literal['all', 'standard', 'e3_ligase', 'similarity', 'target'] = 'all', cv_n_splits: int = 5, ): """ Get and save the datasets for the different studies. Args: active_col (str): The column containing the active/inactive information. It should be in the format 'Active (Dmax N, pDC50 M)', where N and M are the thresholds float values for Dmax and pDC50, respectively. test_split (float): The percentage of the active PROTACs to use as the test set. studies (str): The type of studies to save dataset for. Options: 'all', 'standard', 'e3_ligase', 'similarity', 'target'. """ pl.seed_everything(42) # Set the Column to Predict active_name = active_col.replace(' ', '_').replace('(', '').replace(')', '').replace(',', '') # Get Dmax_threshold from the active_col Dmax_threshold = float(active_col.split('Dmax')[1].split(',')[0].strip('(').strip(')').strip()) pDC50_threshold = float(active_col.split('pDC50')[1].strip('(').strip(')').strip()) # Load the PROTAC dataset protac_df = pd.read_csv('../data/PROTAC-Degradation-DB.csv') # Map E3 Ligase Iap to IAP protac_df['E3 Ligase'] = protac_df['E3 Ligase'].str.replace('Iap', 'IAP') # Remove duplicates protac_df = remove_duplicates(protac_df) # Remove legacy columns if they exist if 'Active - OR' in protac_df.columns: protac_df.drop(columns='Active - OR', inplace=True) if 'Active - AND' in protac_df.columns: protac_df.drop(columns='Active - AND', inplace=True) if 'Active' in protac_df.columns: protac_df.drop(columns='Active', inplace=True) # Calculate Activity and add it as a column protac_df[active_col] = protac_df.apply( lambda x: pdp.is_active(x['DC50 (nM)'], x['Dmax (%)'], pDC50_threshold=pDC50_threshold, Dmax_threshold=Dmax_threshold), axis=1 ) # Precompute fingerprints and average Tanimoto similarity _, protac_df = get_smiles2fp_and_avg_tanimoto(protac_df) ## Get the test sets test_indeces = {} active_df = protac_df[protac_df[active_col].notna()].copy() if studies == 'standard' or studies == 'all': test_indeces['standard'] = get_random_split_indices(active_df, test_split) if studies == 'target' or studies == 'all': test_indeces['target'] = get_target_split_indices(active_df, active_col, test_split) if studies == 'similarity' or studies == 'all': test_indeces['similarity'] = get_tanimoto_split_indices(active_df, active_col, test_split) # if studies == 'e3_ligase' or studies == 'all': # test_indeces['e3_ligase'] = get_e3_ligase_split_indices(active_df) # Make directory for studies datasets if it does not exist data_dir = '../data/studies' if not os.path.exists(data_dir): os.makedirs(data_dir) # Open file for reporting for split_type, indeces in test_indeces.items(): test_df = active_df.loc[indeces].copy() train_val_df = active_df[~active_df.index.isin(test_df.index)].copy() # Save the datasets train_val_perc = f'{int((1 - test_split) * 100)}' test_perc = f'{int(test_split * 100)}' train_val_filename = f'{data_dir}/{split_type}_train_val_{train_val_perc}split_{active_name}.csv' test_filename = f'{data_dir}/{split_type}_test_{test_perc}split_{active_name}.csv' train_val_df.to_csv(train_val_filename, index=False) test_df.to_csv(test_filename, index=False) # Report statistics of the cross-validation training datasets with open(f'{data_dir}/report_datasets.md', 'w') as f: # Print statistics on active/inactive percentages perc_active = train_val_df[active_col].sum() / len(train_val_df) print('-' * 80) print(f'{split_type.capitalize()} Split') print(f'Len Train/Val:{len(train_val_df)}') print(f'Len Test: {len(test_df)}') print(f'Percentage Active in Train/Val: {perc_active:.2%}') print(f'Percentage Inactive in Train/Val: {1 - perc_active:.2%}') # Get the CV object if split_type == 'standard': kf = StratifiedKFold(n_splits=cv_n_splits, shuffle=True, random_state=42) group = None elif split_type == 'e3_ligase': kf = StratifiedKFold(n_splits=cv_n_splits, shuffle=True, random_state=42) group = train_val_df['E3 Group'].to_numpy() elif split_type == 'similarity': kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42) group = train_val_df['Tanimoto Group'].to_numpy() elif split_type == 'target': kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42) group = train_val_df['Uniprot Group'].to_numpy() # Get the folds on the train_val_df, then collect statistics on active/inactive percentages stats = [] for i, (train_index, val_index) in enumerate(kf.split(train_val_df, train_val_df[active_col].to_list(), group)): train_df = train_val_df.iloc[train_index] val_df = train_val_df.iloc[val_index] s = get_dataframe_stats(train_df, val_df, test_df, active_col) s['fold'] = i + 1 stats.append(s) # Append the statistics as markdown to report file f stats_df = pd.DataFrame(stats) f.write(f'## {split_type.capitalize()} Split\n\n') f.write(stats_df.to_markdown(index=False)) f.write('\n\n') print('-' * 80) # Regression datasets # Load the PROTAC dataset protac_df = pd.read_csv('../data/PROTAC-Degradation-DB.csv') # Map E3 Ligase Iap to IAP protac_df['E3 Ligase'] = protac_df['E3 Ligase'].str.replace('Iap', 'IAP') # Calculate pDC50 on the 'DC50 (nM)' column protac_df['pDC50'] = -np.log10(protac_df['DC50 (nM)'] * 1e-9) # Precompute fingerprints and average Tanimoto similarity _, protac_df = get_smiles2fp_and_avg_tanimoto(protac_df) # Get the two datasets dmax_df = protac_df[protac_df['Dmax (%)'].notna()].copy() pdc50_df = protac_df[protac_df['pDC50'].notna()].copy() ## Get the test sets test_indeces = {'dmax': {}, 'pdc50': {}} if studies == 'standard' or studies == 'all': test_indeces['dmax']['standard'] = get_random_split_indices(dmax_df, test_split) test_indeces['pdc50']['standard'] = get_random_split_indices(pdc50_df, test_split) if studies == 'target' or studies == 'all': test_indeces['dmax']['target'] = get_target_split_indices(dmax_df, active_col, test_split) if studies == 'similarity' or studies == 'all': test_indeces['dmax']['similarity'] = get_tanimoto_split_indices(active_df, active_col, test_split) if __name__ == '__main__': main()