"
],
"text/plain": [
" Compound ID Uniprot Smiles \\\n",
"173 192 Q8IXJ6 Cc1cc(C)nc(SCC(=O)Nc2ncc(Cc3cccc(OCc4cn(CCCCNC... \n",
"793 1016 P10276 CC(C)C[C@H](NC(=O)[C@@H](O)[C@H](N)Cc1ccccc1)C... \n",
"924 1215 P62937 CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C/C=C/CCC... \n",
"1606 1782 O14744 Cc1ncsc1-c1ccc([C@H](C)NC(=O)[C@@H]2C[C@@H](O)... \n",
"1956 2672 P14679 N[C@@H](Cc1ccc(O)c(O)c1)C(=O)NCCCCCNc1cccc2c1C... \n",
"1980 2720 P07900 COc1c(C)cnc(Cn2cc(C#CCCNc3cccc4c3C(=O)N(C3CCC(... \n",
"\n",
" E3 Ligase InChI \\\n",
"173 CRBN InChI=1S/C40H40N10O8S2/c1-23-15-24(2)44-40(43-... \n",
"793 cIAP1 InChI=1S/C51H72N4O11/c1-34(2)27-42(55-48(60)46... \n",
"924 VHL InChI=1S/C89H147N15O16S/c1-29-63-83(115)97(22)... \n",
"1606 VHL InChI=1S/C55H76N10O12S/c1-36(38-10-12-40(13-11... \n",
"1956 CRBN InChI=1S/C27H31N5O7/c28-17(13-15-7-9-20(33)21(... \n",
"1980 CRBN InChI=1S/C32H29ClN8O5/c1-16-13-36-21(17(2)26(1... \n",
"\n",
" InChI Key Molecular Weight Heavy Atom Count \\\n",
"173 GRYRXFYWVDWPQY-UHFFFAOYSA-N 852.956 60 \n",
"793 ZAOSGDCLGNWLSI-ACALULJJSA-N 917.154 66 \n",
"924 RSBPUBFGFMTCCP-NIDZIXQMSA-N 1715.311 121 \n",
"1606 XUJMNOQMXWVXQE-STHBVIMFSA-N 1101.338 78 \n",
"1956 GTUJRUVNUQLCDT-KKFHFHRHSA-N 537.573 39 \n",
"1980 ZSERQSKFLSKTGE-UHFFFAOYSA-N 641.088 46 \n",
"\n",
" Ring Count Rotatable Bond Count ... Active (Dmax 0.9, pDC50 5.0) \\\n",
"173 7 18 ... False \n",
"793 3 28 ... True \n",
"924 4 26 ... True \n",
"1606 7 29 ... False \n",
"1956 4 11 ... False \n",
"1980 6 7 ... False \n",
"\n",
" Active (Dmax 0.9, pDC50 5.5) Active (Dmax 0.9, pDC50 6.0) \\\n",
"173 False False \n",
"793 False False \n",
"924 True True \n",
"1606 False False \n",
"1956 False False \n",
"1980 False False \n",
"\n",
" Active (Dmax 0.9, pDC50 6.5) Active (Dmax 0.9, pDC50 7.0) \\\n",
"173 False False \n",
"793 False False \n",
"924 True True \n",
"1606 False False \n",
"1956 False False \n",
"1980 False False \n",
"\n",
" Active (Dmax 0.9, pDC50 7.5) Active (Dmax 0.9, pDC50 8.0) \\\n",
"173 False False \n",
"793 False False \n",
"924 True False \n",
"1606 False False \n",
"1956 False False \n",
"1980 False False \n",
"\n",
" Active (Dmax 0.9, pDC50 8.5) Active (Dmax 0.9, pDC50 9.0) \\\n",
"173 False False \n",
"793 False False \n",
"924 False False \n",
"1606 False False \n",
"1956 False False \n",
"1980 False False \n",
"\n",
" Active (Dmax 0.9, pDC50 9.5) \n",
"173 False \n",
"793 False \n",
"924 False \n",
"1606 False \n",
"1956 False \n",
"1980 False \n",
"\n",
"[6 rows x 135 columns]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from rdkit import Chem\n",
"from rdkit.Chem import Draw\n",
"\n",
"\n",
"active_col = f'Active (Dmax 0.6, pDC50 6.0)'\n",
"active_df = protac_df[protac_df[active_col].notna()]\n",
"\n",
"# Find the samples that:\n",
"# * have their SMILES appearing only once in the dataframe\n",
"# * have their Uniprot appearing only once in the dataframe\n",
"# * have their (Smiles, Uniprot) pair appearing only once in the dataframe\n",
"unique_smiles = active_df['Smiles'].value_counts() == 1\n",
"unique_uniprot = active_df['Uniprot'].value_counts() == 1\n",
"unique_smiles_uniprot = active_df.groupby(['Smiles', 'Uniprot']).size() == 1\n",
"\n",
"# Get the indices of the unique samples\n",
"unique_smiles_idx = active_df['Smiles'].map(unique_smiles)\n",
"unique_uniprot_idx = active_df['Uniprot'].map(unique_uniprot)\n",
"unique_smiles_uniprot_idx = active_df.set_index(['Smiles', 'Uniprot']).index.map(unique_smiles_uniprot)\n",
"\n",
"# Cross the indices to get the unique samples\n",
"unique_samples = active_df[unique_smiles_idx & unique_uniprot_idx & unique_smiles_uniprot_idx].index\n",
"# unique_samples = active_df[unique_smiles_idx & unique_uniprot_idx].index\n",
"test_df = active_df.loc[unique_samples]\n",
"\n",
"# Reporting\n",
"print(f'Number of unique samples: {len(unique_samples)}')\n",
"img = Draw.MolsToGridImage(\n",
" [Chem.MolFromSmiles(s) for s in test_df['Smiles']],\n",
" molsPerRow=5,\n",
" subImgSize=(400, 200),\n",
" legends=[f'{u}\\n({s})' for u, s in zip(test_df['Article DOI'], test_df['Database'])],\n",
")\n",
"display(img)\n",
"display(test_df[['Active', 'Active - OR']])\n",
"print(f'Percentage of active/inactive PROTACs in test set:\\n{test_df[active_col].value_counts(normalize=True)}')\n",
"test_df"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:19: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES'] = active_df[active_df['Smiles'].isin(smiles)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:19: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES'] = active_df[active_df['Smiles'].isin(smiles)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:20: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES and not Uniprot'] = active_df[active_df['Smiles'].isin(smiles) & (active_df['Uniprot'] != uniprot_id)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:20: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES and not Uniprot'] = active_df[active_df['Smiles'].isin(smiles) & (active_df['Uniprot'] != uniprot_id)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:22: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of active entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == True)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:22: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of active entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == True)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:23: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of inactive entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == False)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:23: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of inactive entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == False)].shape[0]\n"
]
},
{
"data": {
"text/plain": [
"Uniprot O60885\n",
"Number of entries 55\n",
"Number of entries per E3 ligase 5\n",
"Number of entries with same SMILES 69\n",
"Number of entries with same SMILES and not Uniprot 14\n",
"Number of active entries 41\n",
"Number of inactive entries 14\n",
"Name: 2, dtype: object"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkMklEQVR4nO3deXhM5/8+8HuyTRZZZSci9j2IfYs1hGqJpUqV2vd9/dgpaglaitaSomjs1WqVClr70obYkiBBkdoTkkgkef/+8M35GUlIIszkuF/XNRfznGfOec+czOTO85xzRiMiAiIiIiLK94z0XQARERER5Q0GOyIiIiKVYLAjIiIiUgkGOyIiIiKVYLAjIiIiUgkGOyIiIiKVYLAjIiIiUgkGOyIiIiKVYLAjIiIiUgkGO3pj33//PTQajXIzNzeHq6srGjVqhNmzZ+POnTsZHjN16lRoNJocbSchIQFTp07FgQMHcvS4zLZVtGhRfPDBBzlaz+ts2LABixYtynSZRqPB1KlT83R7eW3fvn2oVq0arKysoNFosGPHjkz7RUdH6+zvl28vPs+NGzeiQYMGcHFxgVarhbu7O1q3bo0jR45kq6aGDRuiYcOGOm354bXMjuy+3nnhwIED0Gg02LJlS6bLBw0alOP3Y7r09390dLTS1r17d52fCa1Wi9KlS2PKlCl4+vRprraTmVu3bmHq1KkIDQ3NVv/MXofcfH69ysWLF9G9e3cUKVIEZmZmcHR0RMuWLfHbb79l+Zhz586hQ4cOcHJyglarRdGiRTFgwIAM/a5evYqAgADY2dmhQIECaNasGf7+++8M/eLi4jBhwgSUKlUKlpaWKFSoEDp06IDz589n6PvPP/+gTZs2cHd3h6WlJcqUKYPp06cjISFBp9/L+zT9VqZMmRy9PvT2mei7AFKPoKAglClTBs+ePcOdO3dw6NAhzJkzB/Pnz0dwcDCaNm2q9O3VqxdatGiRo/UnJCRg2rRpAJDhl/2r5GZbubFhwwacO3cOw4YNy7Ds6NGjKFy48FuvIbdEBB07dkSpUqWwc+dOWFlZoXTp0q98zODBg9G5c+cM7S8+z/v376Nu3boYOnQoHB0dcfv2bSxYsAANGjTAvn374Ovrm+NaDf21zI7cvN6GqlWrVjh69Cjc3Nx02i0sLBASEgIAePjwITZu3Ijp06fj0qVLCA4OzpNt37p1C9OmTUPRokVRuXLlN1pXTj6/srJt2zZ07twZxYoVw6RJk1C6dGn8999/CAoKQsuWLTF69GjMnTtX5zH79+9Hq1atUL9+fSxfvhyOjo64fv06/vnnH51+d+/eRf369WFvb4/Vq1fD3Nwcs2fPRsOGDXHy5Emdn5/WrVvj1KlTmDp1KqpVq4Z///0X06dPR+3atREWFgZPT08AwIULF1CnTh2ULl0aixYtgqOjI/78809Mnz4dp0+fxk8//aRTw4v79MU2MjBC9IaCgoIEgJw8eTLDsmvXromHh4dYW1tLTEzMG23n7t27AkCmTJmSrf7x8fFZLvP09JRWrVq9UT0va9WqlXh6eubpOt+Vf//9VwDInDlzXts3KipKAMi8efNyta1Hjx6JqampdO3a9bV9fX19xdfXN1fbMWQ5eb2zKyEhQdLS0jJdtn//fgEgmzdvznT5wIEDJS9/HXTr1k2srKwytNevX18AyL///pvlYxMSErK9nZMnTwoACQoKylb/zF6HvPr8unz5slhaWkq1atXkyZMnGZb369dPAMjGjRuVtvj4eHFzc5NWrVplue/SjR49WkxNTSU6Olppi42NFUdHR+nYsaPSFhkZKQBk4sSJOo8/cuSIAJAFCxYobRMmTBAAcvnyZZ2+ffr0EQDy4MEDpS2rfUqGh1Ox9FYVKVIEgYGBePz4Mb799lulPbPp0ZCQEDRs2BAFCxaEhYUFihQpgnbt2iEhIQHR0dFwcnICAEybNk2ZBujevbvO+v7++2+0b98e9vb2KF68eJbbSrd9+3ZUqlQJ5ubmKFasGL7++mud5ZlNMwH/f0onfVq4YcOG2LVrF65du6YzTZEus+nDc+fO4aOPPoK9vT3Mzc1RuXJlrFmzJtPtbNy4ERMmTIC7uztsbGzQtGlThIeHZ/3Cv+DQoUNo0qQJrK2tYWlpiTp16mDXrl3K8qlTpyojYGPHjoVGo0HRokWzte7csLa2hrm5OUxMcjdhkNlreejQIdSuXRvm5uYoVKgQJk2ahJUrV2bYd8HBwfDz84ObmxssLCxQtmxZjBs3DvHx8Trru3r1Kjp16gR3d3dotVq4uLigSZMmGab8goODUbt2bVhZWaFAgQJo3rx5hpGWl73u9X7d/gL+/8/lnj170KNHDzg5OcHS0hJJSUnZexGzQaPRYNCgQVi3bh3Kli0LS0tLeHt745dffsm0lpffI5mpVasWAODatWsA/v8hEdu2bUOVKlVgbm6ujMq/7v1x4MABVK9eHQDw+eefZ3oowJvK6vMrMwsXLkRCQgIWL14MKyurDMsDAwNhZ2eHmTNnKm2bN2/G7du3MXr06NdOhW/fvh2NGzdWRtsAwMbGBgEBAfj555+RkpICADA1NQUA2Nra6jzezs4OAGBubq60vaqvkZERzMzMXlkTGSYGO3rrWrZsCWNjY/z5559Z9omOjkarVq1gZmaG1atXY/fu3fjyyy9hZWWF5ORkuLm5Yffu3QCAnj174ujRozh69CgmTZqks56AgACUKFECmzdvxvLly19ZV2hoKIYNG4bhw4dj+/btqFOnDoYOHYr58+fn+DkuXboUdevWhaurq1Lb0aNHs+wfHh6OOnXq4Pz58/j666+xbds2lCtXDt27d88wVQMA//vf/3Dt2jWsXLkS3333HSIjI9G6dWukpqa+sq6DBw+icePGiI2NxapVq7Bx40ZYW1ujdevWynRYr169sG3bNgDPp1ePHj2K7du3v/Y5p6WlISUlJcMtM6mpqXj27Bmio6PRv39/iAgGDhz42m1kx9mzZ9GsWTMkJCRgzZo1WL58Of7++2+dX6DpIiMj0bJlS6xatQq7d+/GsGHDsGnTJrRu3VqnX8uWLXH69GnMnTsXe/fuxbJly1ClShU8evRI6TNr1ix88sknKFeuHDZt2oR169bh8ePHqF+/Pi5cuJBlva96vbOzv17Uo0cPmJqaYt26ddiyZYvyizqv7Nq1C0uWLMH06dOxdetWODg4oG3btrh69Wqu1nf58mUAUP5IA4C///4bo0ePxpAhQ7B79260a9cuW++PqlWrIigoCAAwceJE5T3Xq1evN3zWurLz+QUAe/fuhYuLixJeX2ZpaQk/Pz+cO3cOMTExAKCsMzU1FfXq1YOZmRns7e3xySef4NatW8pjExMTceXKFVSqVCnDeitVqoTExERln3h6euKjjz7CwoULsX//fjx58gSXLl3CkCFDUKRIEXTq1El5bLdu3WBnZ4f+/fvj6tWrePz4MX755Rd8++23GDhwYIaAmpiYCFdXVxgbG6Nw4cIYNGgQHjx4kI1Xkd4pfQ8ZUv73qqmMdC4uLlK2bFnl/pQpU3SmfrZs2SIAJDQ0NMt1vGoqNn19kydPznLZizw9PUWj0WTYXrNmzcTGxkaZxk1/blFRUTr90qd09u/fr7S9air25bo7deokWq1Wrl+/rtPP399fLC0t5dGjRzrbadmypU6/TZs2CQA5evRopttLV6tWLXF2dpbHjx8rbSkpKVKhQgUpXLiwMv2Tk+nV9L5Z3f76668MjyldurSy3M3NTQ4dOvTa7YhkPhX78mvZoUMHsbKykrt37yptqampUq5cuUz3Xbq0tDR59uyZHDx4UADImTNnRETk3r17AkAWLVqUZV3Xr18XExMTGTx4sE7748ePxdXVVWdqLDNZvd7Z3V/pP5efffbZK7eTLjdTsQDExcVF4uLilLaYmBgxMjKS2bNnK22ZvUfSp+2ePXsmz549k7t378pXX30lGo1GqlevrvTz9PQUY2NjCQ8P19l2dt8fb3sqNt3Ln1+ZMTc3l1q1ar2yz9ixYwWAHD9+XEREmjdvLgDEzs5OxowZIyEhIbJ8+XIpWLCglChRQvkcunnzpgDQed3TbdiwQQDIkSNHlLbk5GTp3bu3zvuyUqVKmb4XLl68KGXKlNHpO2TIkAxTwwsWLJAFCxbInj17ZM+ePTJhwgSxtLSUMmXK6Py8kv5xxI7eCRF55fLKlSvDzMwMffr0wZo1a3I9ItCuXbts9y1fvjy8vb112jp37oy4uLhMzzTLSyEhIWjSpAk8PDx02rt3746EhIQMo30ffvihzv30v9zTp7QyEx8fj+PHj6N9+/YoUKCA0m5sbIyuXbvi33//zfZ0bmaGDh2KkydPZrhldhD71q1bcfz4cWzevBnlypWDv79/js9uzkr6KJejo6PSZmRkhI4dO2boe/XqVXTu3FkZdTA1NVVO4Lh48SIAwMHBAcWLF8e8efOwYMEC/PPPP0hLS9NZz++//46UlBR89tlnOqOV5ubm8PX1zdVzy83+ysnPe240atQI1tbWyn0XFxc4Ozu/8ucuXXx8PExNTWFqagonJycMGzYM/v7+GUaDK1WqhFKlSum05fT98ba97vMrp+tJn3ZN/7n6+OOPMWfOHDRq1Ah9+/bFqlWrcPnyZWzYsEHn8a+arn1xWf/+/bF161YsXLgQBw8eRHBwMMzMzNC4cWOdfRcdHY3WrVujYMGC2LJlCw4ePIi5c+fi+++/zzDyOXz4cAwfPhzNmjVDs2bN8MUXX2Dt2rW4dOkSVqxY8WYvDOUpnhVLb118fDzu37+PihUrZtmnePHi+OOPPzB37lwMHDgQ8fHxKFasGIYMGYKhQ4dme1svn5n3Kq6urlm23b9/P9vryY379+9nWqu7u3um2y9YsKDOfa1WC+D51EhWHj58CBHJ0XZyonDhwqhWrVq2+pYvXx4AUKNGDbRp0wZVqlTB0KFDcebMmVxvP939+/fh4uKSof3ltidPnqB+/fowNzfHF198oVwK4saNGwgICFBeS41Gg3379mH69OmYO3cuRo4cCQcHB3Tp0gUzZ86EtbU1/vvvPwBQjvF6mZFRzv9mzs3+yu7Pe/rxjFlN3aekpGR6zOPLP3fA85+9V/3cpbOwsFCmGrVaLTw9PWFjY5OhX2bPIafvj7cpO59fwPPj8aKiol7ZJ/04xPTAmv76Nm/eXKdf8+bNlWOGAcDe3h4ajSbT550+Ferg4AAA2L17N1atWoXNmzejffv2Sj8/Pz8ULVoUU6dOVaawx40bh7i4OISGhirTrg0aNICjoyN69OiBzz777JVnrrdt2xZWVlY4duzYK583vVsMdvTW7dq1C6mpqa+9REn9+vVRv359pKam4tSpU1i8eDGGDRsGFxcXneNCXiUn1+JKP84ls7b0D9z0A41fPij93r172d5OZgoWLIjbt29naE8/rubF0afcsre3h5GR0VvfTk6ZmJigatWq2LRpU56sr2DBgkrQetHL+zckJAS3bt3CgQMHdH5ZvXjcXDpPT0+sWrUKABAREYFNmzZh6tSpSE5OVi5JAQBbtmzROZj9TeRmf2X35z095N68eTPT5Tdv3sw0HL8JIyOjbAX/zJ7Du3h/ZFd2P7+aNWuGb775BseOHcv0OLuEhATs3bsXFSpUUP6ArFSpEn788ccs15n+B4KFhQVKlCiBsLCwDH3CwsJgYWGBYsWKAYBygs/Lf3TY2dmhRIkSOHfunNIWGhqKcuXKZTiWLv2x586de+0liUQkV3/I0NvDvUFv1fXr1zFq1CjY2tqib9++2XqMsbExatasiW+++QYAlL9aszNKlRPnz5/PMGK0YcMGWFtbo2rVqgCgnK149uxZnX47d+7MsL7sjmQAQJMmTZSg8aK1a9fC0tIyywOwc8LKygo1a9bEtm3bdOpKS0vDDz/8gMKFC2eYAnsXnj59imPHjqFEiRJ5sj5fX1+EhITohO20tDRs3rxZp196gEj/OUr3urMdS5UqhYkTJ6JixYrKz2Lz5s1hYmKCK1euoFq1apnecupt7q+SJUvC09MTmzdvzjCtePfuXezfvz9b12l7V7L7/sjrz4SX5eTza/jw4bCwsMDgwYMznGUNAKNGjcLDhw8xceJEpa1t27bQaDQZLl7822+/QUR0Pgfatm2LkJAQ3LhxQ2l7/Pgxtm3bhg8//FAZcU0f1Xx5FO3+/fuIiIjQuQaku7s7zp8/jydPnuj0TZ/qft31Irds2YKEhIQ8+byivMMRO8oz586dU441unPnDv766y8EBQXB2NgY27dv1zkT7mXLly9HSEgIWrVqhSJFiuDp06dYvXo1ACi/cKytreHp6YmffvoJTZo0gYODAxwdHXN9aQ53d3d8+OGHmDp1Ktzc3PDDDz9g7969mDNnDiwtLQE8/8u1dOnSGDVqFFJSUmBvb4/t27fj0KFDGdZXsWJFbNu2DcuWLYOPj88rRyymTJmCX375BY0aNcLkyZPh4OCA9evXY9euXZg7d26Gyw/k1uzZs9GsWTM0atQIo0aNgpmZGZYuXYpz585h48aNuf62AeD5L73MpmCcnJyUS83UqVMHH374IcqWLQtbW1tER0dj2bJluHLlSrbOvM2OCRMm4Oeff0aTJk0wYcIEWFhYYPny5cov1/TRhDp16sDe3h79+vXDlClTYGpqivXr12cI92fPnsWgQYPQoUMHlCxZEmZmZggJCcHZs2cxbtw4AM8D//Tp0zFhwgRcvXoVLVq0gL29Pf777z+cOHECVlZWymU7cuJt7q/58+ejY8eOaNKkCXr37g1XV1dERkbiyy+/hJmZWYYzzPUpu++P4sWLw8LCAuvXr0fZsmVRoEABuLu7K+EmJ97k8yu9lnXr1qFLly6oXr06RowYoVygePXq1fjtt98watQofPzxx8pjypQpg4EDB2Lp0qWwtraGv78/IiIiMHHiRFSpUkXnONFRo0Zh3bp1aNWqFaZPnw6tVosvv/wST58+1bnES0BAACZPnoz+/fvj33//RdWqVXH79m3MmzcPCQkJOoe2DBs2DG3atEGzZs0wfPhwODo64tixY5g9e7ZyLCzw/Fjezp07o1OnTihRogQ0Gg0OHjyIRYsWoXz58nl+JjK9If2dt0FqkX5WWfrNzMxMnJ2dxdfXV2bNmiV37tzJ8JiXz1Q9evSotG3bVjw9PUWr1UrBggXF19dXdu7cqfO4P/74Q6pUqSJarVYASLdu3XTW9+KZkVltS+T/X6B4y5YtUr58eTEzM5OiRYvqXLwzXUREhPj5+YmNjY04OTnJ4MGDZdeuXRnOin3w4IG0b99e7OzsRKPR6GwTmZzNGxYWJq1btxZbW1sxMzMTb2/vDGf3ZXU2Y/pZldk5G/Cvv/6Sxo0bi5WVlVhYWEitWrXk559/znR9eXFWbJcuXZS+I0eOFG9vb7G1tRUTExNxdXWVtm3byuHDh1+7HZHsnRWb/hxr1qwpWq1WXF1dZfTo0TJnzhwBoJxBKfL8Iq21a9cWS0tLcXJykl69esnff/+t81r+999/0r17dylTpoxYWVlJgQIFpFKlSrJw4UJJSUnR2e6OHTukUaNGYmNjI1qtVjw9PaV9+/byxx9/ZOs1zOz1zs7+ys6ZnJn5448/xM/PT+zs7MTExETc3Nzk008/lcjIyAx9AcjAgQMztHt6eirvuxdryeys2Nd51YXCs/P+EBHZuHGjlClTRkxNTV97AfNXnRWbk8+vVzl//rx069ZNChcuLKampuLg4CAtWrSQXbt2Zdo/JSVFvvzySylRooSYmpqKm5ub9O/fXx4+fJih7+XLl6VNmzZiY2MjlpaW0qRJEzl9+nSGfrdv35ZBgwZJiRIlxNzcXNzd3aVVq1aZnkUfEhIifn5+4urqKhYWFlKqVCkZOXKk3Lt3T+nz4MEDadu2rRQtWlQsLCzEzMxMSpYsKWPGjNF5f5Fh0Ijk0ek+REQGxM/PD9HR0YiIiNB3KURE7wynYoko3xsxYgSqVKkCDw8PPHjwAOvXr8fevXuVEyCIiN4XDHZElO+lpqZi8uTJiImJgUajQbly5bBu3Tp8+umn+i6NiOid4lQsERERkUrwcidEREREKsFgR0RERKQSDHZEREREKqH6kyfS0tJw69YtWFtbv9HFPYmIiIj0QUTw+PFjuLu7v/Yr3FQf7G7duqV84TIRERFRfnXjxo3XftWb6oOdtbU1gOcvho2NjZ6rISIiIsqZuLg4eHh4KJnmVVQf7NKnX21sbBjsiIiIKN/KziFlPHmCiIiISCUY7IiIiIhUgsGOiIiISCVUf4wdERG9ubS0NCQnJ+u7DCJVMjU1hbGxcZ6si8GOiIheKTk5GVFRUUhLS9N3KUSqZWdnB1dX1ze+5i6DHRERZUlEcPv2bRgbG8PDw+O1F0clopwRESQkJODOnTsAADc3tzdaH4MdERFlKSUlBQkJCXB3d4elpaW+yyFSJQsLCwDAnTt34Ozs/EbTsvzTi4iIspSamgoAMDMz03MlROqW/ofTs2fP3mg9DHZERPRa/K5torcrr95jDHZEREREKsFgR0REBuX777+HnZ3dO9lW165dMWvWrHeyLXp/Va9eHdu2bXsn22KwIyKiN3LkyBEYGxujRYsWOX5s0aJFsWjRIp22jz/+GBEREXlUXdbOnj2LXbt2YfDgwUpbw4YNodFooNFooNVqUahQIbRu3fqd/VLOrbCwMPj6+sLCwgKFChXC9OnTISKvfdyuXbtQs2ZNWFhYwNHREQEBAXle29SpU5XX1MTEBI6OjmjQoAEWLVqEpKSkDP0vX76Mzz//HIULF4ZWq4WXlxc++eQTnDp1SulTtGhRZZ3pt3Hjxums5/r162jdujWsrKzg6OiIIUOGZOtajEePHkXjxo1hZWUFOzs7NGzYEImJia98zNKlS+Hl5QVzc3P4+Pjgr7/+0lk+adIkjBs37p1cMojBjoiI3sjq1asxePBgHDp0CNevX3/j9VlYWMDZ2TkPKnu1JUuWoEOHDrC2ttZp7927N27fvo3Lly9j69atKFeuHDp16oQ+ffq89ZpyIy4uDs2aNYO7uztOnjyJxYsXY/78+ViwYMErH7d161Z07doVn3/+Oc6cOYPDhw+jc+fOb6XG8uXL4/bt27h+/Tr279+PDh06YPbs2ahTpw4eP36s9Dt16hR8fHwQERGBb7/9FhcuXMD27dtRpkwZjBw5Umed06dPx+3bt5XbxIkTlWWpqalo1aoV4uPjcejQIfz444/YunVrhnW87OjRo2jRogX8/Pxw4sQJnDx5EoMGDXrlZX6Cg4MxbNgwTJgwAf/88w/q168Pf39/nfdCq1atEBsbi99//z2nL13OicrFxsYKAImNjdV3KURE+U5iYqJcuHBBEhMTM13+5MkTsba2lkuXLsnHH38s06ZNy9Dnp59+Eh8fH9FqtVKwYEFp27atiIj4+voKAJ2biEhQUJDY2tqKiMilS5cEgFy8eFFnnYGBgeLp6SlpaWkiInL+/Hnx9/cXKysrcXZ2lk8//VTu3r2b5fNKTU0VOzs7+eWXX3TafX19ZejQoRn6r169WgDI3r17RUQkKipKAEhwcLDUq1dPzM3NpVq1ahIeHi4nTpwQHx8fsbKykubNm8udO3eU9Zw4cUKaNm0qBQsWFBsbG2nQoIGcPn1aWb5//34xNTWVP//8U2mbP3++FCxYUG7dupXpc1m6dKnY2trK06dPlbbZs2eLu7u78vq87NmzZ1KoUCFZuXJllq9RdkyZMkW8vb1l+fLlUrhwYbGwsJD27dvLw4cPM/R52cWLF8XMzEwmTJggIiJpaWlSvnx58fHxkdTU1Az9X1ynp6enLFy4MMu6fv31VzEyMpKbN28qbRs3bhStVvvKPFCzZk2ZOHFi1k84EzVq1JB+/frptJUpU0bGjRun09a9e3fp2rVrlut51XstJ1mG17EjMgDXp1fUdwk5VmRymL5LIAMQHByM0qVLo3Tp0vj0008xePBgTJo0STnDb9euXQgICMCECROwbt06JCcnY9euXQCAbdu2wdvbG3369EHv3r0zXX/p0qXh4+OD9evXY8aMGUr7hg0b0LlzZ2g0Gty+fRu+vr7o3bs3FixYgMTERIwdOxYdO3ZESEhIpus9e/YsHj16hGrVqmXreXbr1g0jR47Etm3b0LRpU6V9ypQpWLRoEYoUKYIePXrgk08+gY2NDb766itYWlqiY8eOmDx5MpYtWwYAePz4Mbp164avv/4aABAYGIiWLVsiMjIS1tbWaNiwIYYNG4auXbvizJkziI6OxoQJE7Bx48YsL1x79OhR+Pr6QqvVKm3NmzfH+PHjER0dDS8vrwyP+fvvv3Hz5k0YGRmhSpUqiImJQeXKlTF//nyUL18+W69JusuXL2PTpk34+eefERcXh549e2LgwIFYv379Kx9XpkwZ+Pv7Y9u2bfjiiy8QGhqK8+fPY8OGDZmOkL183OWcOXMwY8YMeHh4oEOHDhg9erRyWZ6jR4+iQoUKcHd313lNkpKScPr0aTRq1CjD+u/cuYPjx4+jS5cuqFOnDq5cuYIyZcpg5syZqFevXqbPITk5GadPn84wDezn54cjR47otNWoUQNz58595WuSFxjsiIgo11atWoVPP/0UANCiRQs8efIE+/btU8LPzJkz0alTJ0ybNk15jLe3NwDAwcEBxsbGsLa2hqura5bb6NKlC5YsWaIEu4iICJw+fRpr164FACxbtgxVq1bVOQli9erV8PDwQEREBEqVKpVhndHR0TA2Ns72lK+RkRFKlSqF6OhonfZRo0ahefPmAIChQ4fik08+wb59+1C3bl0AQM+ePfH9998r/Rs3bqzz+G+//Rb29vY4ePAgPvjgAwDAF198gT/++AN9+vTB+fPn0bVrV7Rt2zbL2mJiYlC0aFGdNhcXF2VZZsHu6tWrAJ4f/7ZgwQIULVoUgYGB8PX1RUREBBwcHF7/ovyfp0+fYs2aNShcuDAAYPHixWjVqhUCAwNfuV+B5+Fuz549AIDIyEil7XWGDh2KqlWrwt7eHidOnMD48eMRFRWFlStXKs87/TVIZ29vDzMzM8TExGS6zhdfk/nz56Ny5cpYu3YtmjRpgnPnzqFkyZIZHnPv3j2kpqZm2JaLi0uG7RQqVAjXr19HWlraW/0GFx5jR0REuRIeHo4TJ06gU6dOAAATExN8/PHHWL16tdInNDQUTZo0eaPtdOrUCdeuXcOxY8cAAOvXr0flypVRrlw5AMDp06exf/9+FChQQLmlh4MrV65kus7ExERotdocXTtMRDL0r1SpkvL/9F/uFStW1GlL/6oo4PmoUL9+/VCqVCnY2trC1tYWT5480Tkey8zMDD/88AO2bt2KxMTEDCeXZObluuT/TpzI6vmlH8Q/YcIEtGvXDj4+PggKCoJGo8HmzZtfu70XFSlSRAl1AFC7dm2kpaUhPDz8tY998TV9Xc0vGj58OHx9fVGpUiX06tULy5cvx6pVq3D//n2lT2bryWwfpkt/Tfr27YvPP/8cVapUwcKFC1G6dGmdn+nMZPb6v9xmYWGBtLS0TE8YyUscsSMiolxZtWoVUlJSUKhQIaVNRGBqaoqHDx/C3t5e+aqkN+Hm5oZGjRphw4YNqFWrFjZu3Ii+ffsqy9PS0tC6dWvMmTMn08dmxtHREQkJCUhOTs7Wt2qkpqYiMjIS1atX12k3NTVV/p/+i/zlthfPhOzevTvu3r2LRYsWwdPTE1qtFrVr185wtmb6NN6DBw/w4MEDWFlZZVmbq6trhtGh9DD58khSuvTXJT0cA4BWq0WxYsXe+ASY9NchOwHt4sWLyohi+sjqxYsXUbly5Rxts1atWgCeTwsXLFgQrq6uOH78uE6fhw8f4tmzZzl6TQCgbNmyWb4mjo6OMDY2zvT1f3k7Dx48gKWlZZ68J16FI3ZERJRjKSkpWLt2LQIDAxEaGqrczpw5A09PT+X4qkqVKmHfvn1ZrsfMzEz52rJX6dKlC4KDg3H06FFcuXJFGSUEgKpVq+L8+fMoWrQoSpQooXPLKhClB4cLFy5k6/muWbMGDx8+RLt27bLVPyt//fUXhgwZgpYtW6J8+fLQarW4d++eTp8rV65g+PDhWLFiBWrVqoXPPvvslZfJqF27Nv7880+dcLhnzx64u7tnmKJN5+PjA61WqzOq9uzZM0RHR8PT0zNHz+n69eu4deuWcv/o0aPK1PWrXLp0Cbt371Ze0/RR2MDAwEyf76NHj7Jc1z///APg/4ez2rVr49y5c7h9+7bSZ8+ePdBqtfDx8cl0HUWLFoW7u3uGkcaIiIgsXxMzMzP4+Phg7969Ou179+5FnTp1dNrOnTuHqlWrZvkc8gqDHRER5dgvv/yChw8fomfPnqhQoYLOrX379li1ahWA5ycXbNy4EVOmTMHFixcRFhamcwB50aJF8eeff+LmzZsZAs6LAgICEBcXh/79+6NRo0Y6o4QDBw7EgwcP8Mknn+DEiRO4evUq9uzZgx49emQZGp2cnFC1alUcOnQow7KEhATExMTg33//xfHjxzF27Fj069dP2fabKFGiBNatW4eLFy8qB+q/OIKTmpqKrl27ws/PD59//jmCgoJw7tw5BAYGZrnOzp07Q6vVonv37jh37hy2b9+OWbNmYcSIEcqo2YkTJ1CmTBncvHkTAGBjY4N+/fphypQp2LNnD8LDw9G/f38AQIcOHXL0nMzNzdGtWzecOXNGCa4dO3bUOb4uJSUFMTExuHXrFsLCwrB48WL4+vqicuXKGD16NIDnI3xBQUGIiIhAgwYN8Ouvv+Lq1as4e/YsZs6ciY8++gjA8+C4cOFChIaGIioqCps2bULfvn3x4YcfokiRIgCen7xQrlw5dO3aFf/88w/27duHUaNGoXfv3rCxscn0eWg0GowePRpff/01tmzZgsuXL2PSpEm4dOkSevbsqfRr0qQJlixZotwfMWIEVq5cidWrV+PixYsYPnw4rl+/jn79+ums/6+//oKfn1+OXtvcYLAjIqIcW7VqFZo2bQpbW9sMy9q1a4fQ0FD8/fffaNiwITZv3oydO3eicuXKaNy4sc4U2fTp0xEdHY3ixYvDyckpy+3Z2NigdevWOHPmDLp06aKzzN3dHYcPH0ZqaiqaN2+OChUqYOjQobC1tX3lQep9+vTJ9MzNFStWwM3NDcWLF0fbtm1x4cIFBAcHY+nSpdl5aV5p9erVePjwIapUqYKuXbtiyJAhOidwzJw5E9HR0fjuu+8APJ9mXblyJSZOnIjQ0NBM12lra4u9e/fi33//RbVq1TBgwACMGDECI0aMUPokJCQgPDxc5wvm582bh06dOqFr166oXr06rl27hpCQENjb2yt9ihYtiqlTp77yOZUoUQIBAQFo2bIl/Pz8UKFChQyv1fnz5+Hm5oYiRYqgYcOG2LRpE8aPH4+//voLBQoUUPrVqFEDp06dQvHixdG7d2+ULVsWH374Ic6fP68ca6jVahEcHIyGDRuiXLlymDx5Mnr37o2NGzcq6zE2NsauXbtgbm6OunXromPHjmjTpg3mz5//yucybNgwjB8/HsOHD4e3tzf27duHvXv3onjx4kqfK1eu6PwR8vHHH2PRokWYPn06KleujD///BO//vqrzijfzZs3ceTIEXz++eev3H5e0Ihk49LU+VhcXBxsbW0RGxubZUon0jde7oQM1dOnTxEVFaVcVV9Nnj59itKlS+PHH39E7dq19V2OwUlMTISDgwN+/fXXLEcqp06dih07dmQZOum50aNHIzY2VgnsmXnVey0nWYYnTxAR0XvJ3Nwca9eufeUU8Pvs4MGDaNy48RtPPxPg7OyMUaNGvZNtMdgREdF7y9fXV98lGKwWLVrk6vt/KaP04wjfBR5jR0RERLkydepUTsMaGAY7IiIiIpVgsCMiIiJSCQY7IiIiIpVgsCMiIiJSCQY7IiIiIpVgsCMiIiJSCQY7IiIiytT3338POzs7fZdBOcALFBMREb0Bn9Fr3+n2Ts/7LMeP6d69O9asWZOhPTIyEiVKlMiLsshAMNgRERG9B1q0aIGgoCCdNicnJz1VQ28Lp2KJiIjeA1qtFq6urjq3r776ChUrVoSVlRU8PDwwYMAAPHnyJMt1nDlzBo0aNYK1tTVsbGzg4+ODU6dOKcuPHDmCBg0awMLCAh4eHhgyZAji4+PfxdOj/6PXYDd79mxUr14d1tbWcHZ2Rps2bRAeHq7Tp3v37tBoNDq3WrVq6aliIiIi9TAyMsLXX3+Nc+fOYc2aNQgJCcGYMWOy7N+lSxcULlwYJ0+exOnTpzFu3DiYmpoCAMLCwtC8eXMEBATg7NmzCA4OxqFDhzBo0KB39XQIep6KPXjwIAYOHIjq1asjJSUFEyZMgJ+fHy5cuAArKyul38vDx2ZmZvool4iIKN/65ZdfUKBAAeW+v78/Nm/erNz38vLCjBkz0L9/fyxdujTTdVy/fh2jR49GmTJlAAAlS5ZUls2bNw+dO3fGsGHDlGVff/01fH19sWzZMpibm7+FZ0Uv02uw2717t879oKAgODs74/Tp02jQoIHSnj58TERERLnTqFEjLFu2TLlvZWWF/fv3Y9asWbhw4QLi4uKQkpKCp0+fIj4+XmeAJd2IESPQq1cvrFu3Dk2bNkWHDh1QvHhxAMDp06dx+fJlrF+/XukvIkhLS0NUVBTKli379p8kGdYxdrGxsQAABwcHnfYDBw7A2dkZpUqVQu/evXHnzh19lEdERJRvWVlZoUSJEsotOTkZLVu2RIUKFbB161acPn0a33zzDQDg2bNnma5j6tSpOH/+PFq1aoWQkBCUK1cO27dvBwCkpaWhb9++CA0NVW5nzpxBZGSkEv7o7TOYs2JFBCNGjEC9evVQoUIFpd3f3x8dOnSAp6cnoqKiMGnSJDRu3BinT5+GVqvNsJ6kpCQkJSUp9+Pi4t5J/URERPnJqVOnkJKSgsDAQBgZPR/n2bRp02sfV6pUKZQqVQrDhw/HJ598gqCgILRt2xZVq1bF+fPnefkUPTOYEbtBgwbh7Nmz2Lhxo077xx9/jFatWqFChQpo3bo1fvvtN0RERGDXrl2Zrmf27NmwtbVVbh4eHu+ifCIionylePHiSElJweLFi3H16lWsW7cOy5cvz7J/YmIiBg0ahAMHDuDatWs4fPgwTp48qUyxjh07FkePHsXAgQMRGhqKyMhI7Ny5E4MHD35XT4lgIMFu8ODB2LlzJ/bv34/ChQu/sq+bmxs8PT0RGRmZ6fLx48cjNjZWud24ceNtlExERJSvVa5cGQsWLMCcOXNQoUIFrF+/HrNnz86yv7GxMe7fv4/PPvsMpUqVQseOHeHv749p06YBACpVqoSDBw8iMjIS9evXR5UqVTBp0iS4ubm9q6dEADQiIvrauIhg8ODB2L59Ow4cOKBzdk1W7t+/j0KFCuG7777DZ5+9/urbcXFxsLW1RWxsLGxsbPKibKI8d316RX2XkGNFJofpuwR6B54+fYqoqCh4eXnxrEait+hV77WcZBm9jtgNHDgQP/zwAzZs2ABra2vExMQgJiYGiYmJAIAnT55g1KhROHr0KKKjo3HgwAG0bt0ajo6OaNu2rT5LJyIiIjI4ej15Iv2064YNG+q0BwUFoXv37jA2NkZYWBjWrl2LR48ewc3NDY0aNUJwcDCsra31UDERERGR4dJrsHvdLLCFhQV+//33d1QNERERUf5mECdPEBEREdGbY7AjIiIiUgkGOyIiIiKVYLAjIiIiUgkGOyIiIiKVYLAjIiIiUgkGOyIiIiKV0Ot17IiIiPK7d/2VgDn5Oj+NRvPK5d26dcP333//hhWRIWGwIyIiUqnbt28r/w8ODsbkyZMRHh6utFlYWOj0f/bsGUxNTd9ZfZT3OBVLRESkUq6ursrN1tYWGo1Guf/06VPY2dlh06ZNaNiwIczNzfHDDz9g6tSpqFy5ss56Fi1ahKJFi+q0BQUFoWzZsjA3N0eZMmWwdOnSd/fEKEsMdkRERO+xsWPHYsiQIbh48SKaN2+ercesWLECEyZMwMyZM3Hx4kXMmjULkyZNwpo1a95ytfQ6nIolIiJ6jw0bNgwBAQE5esyMGTMQGBioPM7LywsXLlzAt99+i27dur2NMimbGOyIiIjeY9WqVctR/7t37+LGjRvo2bMnevfurbSnpKTA1tY2r8ujHGKwIyIieo9ZWVnp3DcyMoKI6LQ9e/ZM+X9aWhqA59OxNWvW1OlnbGz8lqqk7GKwIyIiIoWTkxNiYmIgIsrlUkJDQ5XlLi4uKFSoEK5evYouXbroqUrKCoMdERERKRo2bIi7d+9i7ty5aN++PXbv3o3ffvsNNjY2Sp+pU6diyJAhsLGxgb+/P5KSknDq1Ck8fPgQI0aM0GP1xLNiiYiISFG2bFksXboU33zzDby9vXHixAmMGjVKp0+vXr2wcuVKfP/996hYsSJ8fX3x/fffw8vLS09VUzqNvDyRrjJxcXGwtbVFbGyszl8bRIbkXV+5Pi/k5Or3lH89ffoUUVFR8PLygrm5ub7LIVKtV73XcpJlOGJHREREpBIMdkREREQqwWBHREREpBIMdkREREQqwWBHRESvpfLz7Ij0Lq/eYwx2RESUpfRvEkhOTtZzJUTqlpCQAAAwNTV9o/XwAsVERJQlExMTWFpa4u7duzA1NYWREccDiPKSiCAhIQF37tyBnZ3dG38tG4MdERFlSaPRwM3NDVFRUbh27Zq+yyFSLTs7O7i6ur7xehjsiIjolczMzFCyZElOxxK9Jaampm88UpeOwY6IiF7LyMiI3zxBlA/wYAkiIiIilWCwIyIiIlIJBjsiIiIilWCwIyIiIlIJBjsiIiIilWCwIyIiIlIJBjsiIiIilWCwIyIiIlIJBjsiIiIilWCwIyIiIlIJBjsiIiIilWCwIyIiIlIJBjsiIiIilWCwIyIiIlIJBjsiIiIilWCwIyIiIlIJBjsiIiIilWCwIyIiIlIJBjsiIiIilWCwIyIiIlIJBjsiIiIilWCwIyIiIlIJBjsiIiIilWCwIyIiIlIJvQa72bNno3r16rC2toazszPatGmD8PBwnT4igqlTp8Ld3R0WFhZo2LAhzp8/r6eKiYiIiAyXXoPdwYMHMXDgQBw7dgx79+5FSkoK/Pz8EB8fr/SZO3cuFixYgCVLluDkyZNwdXVFs2bN8PjxYz1WTkRERGR4NCIi+i4i3d27d+Hs7IyDBw+iQYMGEBG4u7tj2LBhGDt2LAAgKSkJLi4umDNnDvr27fvadcbFxcHW1haxsbGwsbF520+BKFeuT6+o7xJyrMjkMH2XQET0XshJljGoY+xiY2MBAA4ODgCAqKgoxMTEwM/PT+mj1Wrh6+uLI0eO6KVGIiIiIkNlou8C0okIRowYgXr16qFChQoAgJiYGACAi4uLTl8XFxdcu3Yt0/UkJSUhKSlJuR8XF/eWKiYiIiIyLAYzYjdo0CCcPXsWGzduzLBMo9Ho3BeRDG3pZs+eDVtbW+Xm4eHxVuolIiIiMjQGEewGDx6MnTt3Yv/+/ShcuLDS7urqCuD/j9ylu3PnToZRvHTjx49HbGyscrtx48bbK5yIiIjIgOg12IkIBg0ahG3btiEkJAReXl46y728vODq6oq9e/cqbcnJyTh48CDq1KmT6Tq1Wi1sbGx0bkRERETvA70eYzdw4EBs2LABP/30E6ytrZWROVtbW1hYWECj0WDYsGGYNWsWSpYsiZIlS2LWrFmwtLRE586d9Vk6ERERkcHRa7BbtmwZAKBhw4Y67UFBQejevTsAYMyYMUhMTMSAAQPw8OFD1KxZE3v27IG1tfU7rpaIiIjIsBnUdezeBl7HjvIDXseOiIiykm+vY0dEREREucdgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKsFgR0RERKQSDHZEREREKpGrYNe4cWM8evQoQ3tcXBwaN278pjURERERUS7kKtgdOHAAycnJGdqfPn2Kv/76642LIiIiIqKcM8lJ57Nnzyr/v3DhAmJiYpT7qamp2L17NwoVKpR31RERERFRtuUo2FWuXBkajQYajSbTKVcLCwssXrw42+v7888/MW/ePJw+fRq3b9/G9u3b0aZNG2V59+7dsWbNGp3H1KxZE8eOHctJ2URERETvhRwFu6ioKIgIihUrhhMnTsDJyUlZZmZmBmdnZxgbG2d7ffHx8fD29sbnn3+Odu3aZdqnRYsWCAoK0tkOEREREWWUo2Dn6ekJAEhLS8uTjfv7+8Pf3/+VfbRaLVxdXfNke0RERERqlqNg96KIiAgcOHAAd+7cyRD0Jk+e/MaFpTtw4ACcnZ1hZ2cHX19fzJw5E87Ozln2T0pKQlJSknI/Li4uz2ohIiIiMmS5CnYrVqxA//794ejoCFdXV2g0GmWZRqPJs2Dn7++PDh06wNPTE1FRUZg0aRIaN26M06dPQ6vVZvqY2bNnY9q0aXmyfSIiIqL8RCMiktMHeXp6YsCAARg7dmzeFaLRZDh54mW3b9+Gp6cnfvzxRwQEBGTaJ7MROw8PD8TGxsLGxibP6iXKS9enV9R3CTlWZHKYvksgInovxMXFwdbWNltZJlcjdg8fPkSHDh1yVdybcHNzg6enJyIjI7Pso9VqsxzNIyIiIlKzXF2guEOHDtizZ09e1/Ja9+/fx40bN+Dm5vbOt01ERERk6HI1YleiRAlMmjQJx44dQ8WKFWFqaqqzfMiQIdlaz5MnT3D58mXlflRUFEJDQ+Hg4AAHBwdMnToV7dq1g5ubG6Kjo/G///0Pjo6OaNu2bW7KJiIiIlK1XB1j5+XllfUKNRpcvXo1W+s5cOAAGjVqlKG9W7duWLZsGdq0aYN//vkHjx49gpubGxo1aoQZM2bAw8Mj27XmZF6aSF94jB0REWXlrR9jFxUVlavCXtawYUO8Klf+/vvvebIdIiIiovdBro6xIyIiIiLDk6sRux49erxy+erVq3NVDBERERHlXq4vd/KiZ8+e4dy5c3j06BEaN26cJ4URERERUc7kKtht3749Q1taWhoGDBiAYsWKvXFRRERERJRzeXaMnZGREYYPH46FCxfm1SqJiIiIKAfy9OSJK1euICUlJS9XSURERETZlKup2BEjRujcFxHcvn0bu3btQrdu3fKkMCIiIiLKmVwFu3/++UfnvpGREZycnBAYGPjaM2aJiIiI6O3IVbDbv39/XtdBRERERG8oV8Eu3d27dxEeHg6NRoNSpUrByckpr+oiIiIiohzK1ckT8fHx6NGjB9zc3NCgQQPUr18f7u7u6NmzJxISEvK6RiIiIiLKhlwFuxEjRuDgwYP4+eef8ejRIzx69Ag//fQTDh48iJEjR+Z1jURERESUDbmait26dSu2bNmChg0bKm0tW7aEhYUFOnbsiGXLluVVfURERESUTbkasUtISICLi0uGdmdnZ07FEhEREelJroJd7dq1MWXKFDx9+lRpS0xMxLRp01C7du08K46IiIiIsi9XU7GLFi2Cv78/ChcuDG9vb2g0GoSGhkKr1WLPnj15XSMRERERZUOugl3FihURGRmJH374AZcuXYKIoFOnTujSpQssLCzyukYiIiIiyoZcBbvZs2fDxcUFvXv31mlfvXo17t69i7Fjx+ZJcURERESUfbk6xu7bb79FmTJlMrSXL18ey5cvf+OiiIiIiCjnchXsYmJi4ObmlqHdyckJt2/ffuOiiIiIiCjnchXsPDw8cPjw4Qzthw8fhru7+xsXRUREREQ5l6tj7Hr16oVhw4bh2bNnaNy4MQBg3759GDNmDL95goiIiEhPchXsxowZgwcPHmDAgAFITk4GAJibm2Ps2LEYP358nhZIRERERNmTq2Cn0WgwZ84cTJo0CRcvXoSFhQVKliwJrVab1/URERERUTblKtilK1CgAKpXr55XtRARERHRG8jVyRNEREREZHgY7IiIiIhUgsGOiIiISCUY7IiIiIhUgsGOiIiISCUY7IiIiIhUgsGOiIiISCUY7IiIiIhUgsGOiIiISCUY7IiIiIhUgsGOiIiISCUY7IiIiIhUgsGOiIiISCUY7IiIiIhUgsGOiIiISCUY7IiIiIhUgsGOiIiISCUY7IiIiIhUgsGOiIiISCUY7IiIiIhUgsGOiIiISCUY7IiIiIhUgsGOiIiISCUY7IiIiIhUgsGOiIiISCUY7IiIiIhUgsGOiIiISCX0Guz+/PNPtG7dGu7u7tBoNNixY4fOchHB1KlT4e7uDgsLCzRs2BDnz5/XT7FEREREBk6vwS4+Ph7e3t5YsmRJpsvnzp2LBQsWYMmSJTh58iRcXV3RrFkzPH78+B1XSkRERGT4TPS5cX9/f/j7+2e6TESwaNEiTJgwAQEBAQCANWvWwMXFBRs2bEDfvn3fZalEREREBs9gj7GLiopCTEwM/Pz8lDatVgtfX18cOXIky8clJSUhLi5O50ZERET0PjDYYBcTEwMAcHFx0Wl3cXFRlmVm9uzZsLW1VW4eHh5vtU4iIiIiQ2GwwS6dRqPRuS8iGdpeNH78eMTGxiq3GzduvO0SiYiIiAyCXo+xexVXV1cAz0fu3NzclPY7d+5kGMV7kVarhVarfev1ERERERkagx2x8/LygqurK/bu3au0JScn4+DBg6hTp44eKyMiIiIyTHodsXvy5AkuX76s3I+KikJoaCgcHBxQpEgRDBs2DLNmzULJkiVRsmRJzJo1C5aWlujcubMeqyYiIiIyTHoNdqdOnUKjRo2U+yNGjAAAdOvWDd9//z3GjBmDxMREDBgwAA8fPkTNmjWxZ88eWFtb66tkIiIiIoOlERHRdxFvU1xcHGxtbREbGwsbGxt9l0OUqevTK+q7hBwrMjlM3yUQEb0XcpJlDPYYOyIiIiLKGQY7IiIiIpVgsCMiIiJSCQY7IiIiIpVgsCMiIiJSCQY7IiIiIpUw2K8Uo+zjpTKIiIgI4IgdERERkWow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUqY6LsAQ+Mzeq2+S8ix7db6roCIiIgMAUfsiIiIiFSCwY6IiIhIJRjsiIiIiFSCwY6IiIhIJRjsiIiIiFSCwY6IiIhIJRjsiIiIiFTCoIPd1KlTodFodG6urq76LouIiIjIIBn8BYrLly+PP/74Q7lvbGysx2qIiIiIDJfBBzsTExOO0hERERFlg0FPxQJAZGQk3N3d4eXlhU6dOuHq1auv7J+UlIS4uDidGxEREdH7wKBH7GrWrIm1a9eiVKlS+O+///DFF1+gTp06OH/+PAoWLJjpY2bPno1p06a940rJkPD7fomI6H1l0CN2/v7+aNeuHSpWrIimTZti165dAIA1a9Zk+Zjx48cjNjZWud24ceNdlUtERESkVwY9YvcyKysrVKxYEZGRkVn20Wq10Gq177AqIiIiIsNg0CN2L0tKSsLFixfh5uam71KIiIiIDI5BB7tRo0bh4MGDiIqKwvHjx9G+fXvExcWhW7du+i6NiIiIyOAY9FTsv//+i08++QT37t2Dk5MTatWqhWPHjsHT01PfpREREREZHIMOdj/++KO+SyAiIiLKNwx6KpaIiIiIso/BjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVMJE3wUQERGRYfEZvVbfJeTYdut5+i4hx4pMDsvzdXLEjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVILBjoiIiEglGOyIiIiIVMJE3wUQEanB9ekV9V1CjhWZHKbvEgwG9x+pBUfsiIiIiFSCwY6IiIhIJRjsiIiIiFSCwY6IiIhIJRjsiIiIiFSCwY6IiIhIJRjsiIiIiFQiXwS7pUuXwsvLC+bm5vDx8cFff/2l75KIiIiIDI7BB7vg4GAMGzYMEyZMwD///IP69evD398f169f13dpRERERAbF4IPdggUL0LNnT/Tq1Qtly5bFokWL4OHhgWXLlum7NCIiIiKDYtBfKZacnIzTp09j3LhxOu1+fn44cuRIpo9JSkpCUlKScj82NhYAEBcXl61tpiYl5rJa/XlsmqrvEnIsu/sjN7gP3423uQ/zo8dPuQ/zM+4/XfwcfTeyuw/T+4nI6zuLAbt586YAkMOHD+u0z5w5U0qVKpXpY6ZMmSIAeOONN95444033lR1u3Hjxmuzk0GP2KXTaDQ690UkQ1u68ePHY8SIEcr9tLQ0PHjwAAULFszyMflZXFwcPDw8cOPGDdjY2Oi7HMoF7sP8j/swf+P+y//Uvg9FBI8fP4a7u/tr+xp0sHN0dISxsTFiYmJ02u/cuQMXF5dMH6PVaqHVanXa7Ozs3laJBsPGxkaVP8zvE+7D/I/7MH/j/sv/1LwPbW1ts9XPoE+eMDMzg4+PD/bu3avTvnfvXtSpU0dPVREREREZJoMesQOAESNGoGvXrqhWrRpq166N7777DtevX0e/fv30XRoRERGRQTH4YPfxxx/j/v37mD59Om7fvo0KFSrg119/haenp75LMwharRZTpkzJMP1M+Qf3Yf7HfZi/cf/lf9yH/59GJDvnzhIRERGRoTPoY+yIiIiIKPsY7IiIiIhUgsGOiIiISCUY7IiIiIhUgsGOiIiISCUY7N4DKSkp+i6BiIiI3gEGO5W7ceMGatWqhcjISH2XQtnAqw+pS1paWqbt3M9EhkGN70WDv0AxvRmtVotnz57hgw8+wG+//YZixYrpuyTKREJCAiwtLaHRaCAi0Gg0+i6J3lBaWhqMjIxw5coV7Ny5E1euXEHdunXRtGlTODk56bs8yqGkpCRotVrlvZq+fyn/uHLlClavXo1nz56hTJky6NGjhyo/a/lTqWIiAmdnZ/z+++9wdXVFs2bNcPXqVX2XRS+5ceMGevbsiR07dgCAEu4o/0r/pR8WFoa6devi0KFDOHjwIBYsWIA5c+YgKSlJ3yVSDly6dAk9e/ZEkyZN0LJlS5w5cwZGRkZZjsiS4Tlz5gxq166NsLAw/PHHH1i2bBnWrFmjLFfTZy6DnQolJiYCgPKXiKurK3788Ue4u7sz3BmgO3fu4OLFiwgKCsKvv/4K4PXhTk0fQmpkZGSE69evo0OHDujRowe2bt2KsLAwBAQEYPfu3cp7lAzf+fPnUbduXdja2qJGjRooWLAgGjdujOvXr3PELp8ICwtD7dq10bt3b+zcuRO//vorzM3Nce/ePaWPmkbu+FOpMhEREfD390fPnj0REhKC8PBwAICbmxt27NiBwoULo1GjRgx3BuDhw4dISEiAj48PvvvuO8TGxmLp0qU64e7FEYHU1FRlf6rpQ0iN0tLSsHv3bpQtWxaDBg1S9mP//v3x6NEjnD9/Xs8VUnbcuXMHvXv3Rs+ePfHNN99g9uzZWLRoETw9PXHw4EEA/CPL0EVERMDb2xu9e/fGzJkzATwf7ChUqBB++eUXNG3aFB06dEBUVBQAdexPBjsVSU5OxqJFi/Dnn38iKCgIX375JXx8fPDZZ5/hyy+/RFJSEtauXQtvb2+0bNlS+UGmd++///7Dxx9/jPnz5yM+Ph41atTAnDlzEB8fj2+++Qa7du0C8HzkR0SQnJyMIUOGYPz48Xj8+LGeq6fXMTIygoODA1q0aAF3d3edkZ1nz55lug85rWd4Ll26BBFBp06dlDYPDw/Y2dnh0qVLeqyMsuvhw4cAnge2mJgYAMCcOXOwbds21KlTB1WrVsXff/+NgIAAPH36VBV/NPPkCRUxMzND9+7dAQAnTpzAhx9+iP/9738IDg7G4sWLsWbNGpiamqJ58+b45Zdf0LJlS+zevRuenp76Lfw9ZG9vj4IFC+L333+HpaUl+vfvj5o1a+LLL7/EuHHjsHTpUmg0GrRs2RIAMHLkSHz33Xc4fvw4rK2t9Vw9ZUf79u2V/6efEGNnZwc3NzdotVpl2Y8//ghfX1+4ubnpo0zKRHJyMszMzFCtWjWMHDkSVatWBfA8lJuamsLe3l4J4moIAmqVlpaGmjVrYs+ePWjRogVMTU1haWmJpUuX4pdffoGfnx8AwM/PD35+fti2bRs6d+6s56rfHEfsVKZGjRro2rUrvL298c0330Cj0WDZsmW4fPkyFi1ahFatWuH06dPQarUIDw9XxbBzfpOamgozMzOsWrUK5cuXx5YtW7B8+XLEx8cr4S4hIQHffPMNdu7ciREjRmDVqlU4ceKE8guG8o/U1FSdX/6pqalITU0FAEyYMAH9+vXjMXcG5NKlSxg6dChOnjwJS0tLJaCnpaXB1NQUAGBlZYX4+HjlMbNnz0ZISIhe6qXMpZ/AlJaWhqZNm+LXX3/F119/jZkzZ2LZsmVKqAMAR0dHFC9eHO7u7nqsOO9wxC6fi46Oxk8//YS0tDR4e3ujcePGqF27NszMzJCSkoL+/ftjxowZaNeuHZo3b47mzZsjLi4Ojx49gohwtE4PjI2NkZycDEtLS3z33Xfw8fHBypUrISI6I3cTJ05Ez549ER8fj0OHDqFKlSr6Lp1eIX1U7syZM3jw4AEsLCxQq1YtGBsbK8ufPHmC+/fvA3g+HbRgwQIcOnSIlyEyEE+ePIG/vz+uXbuG1NRUmJiYKO+7F6fT09LSlHA+adIkzJw5E3///bdeaiZdN2/ehIODAywsLHTCnZ+fH/bv34+GDRviwIEDqFevnhLktm7dCnNzc5QqVUrP1ecRoXwrNDRU3NzcpHHjxuLi4iKNGzeWgwcPKstPnjwp3bp1k3LlysmOHTuU9mfPnumj3PdaeHi4bN68WURE0tLSlPZFixaJnZ2dNG/eXGrUqCHz5s2TJ0+eiIjI0aNH5YMPPpBz587ppWbKue3bt4uFhYWUKlVKTExMZMqUKZKSkqIsT0pKkpo1a0qNGjXEwsJCTp48qcdqKTPjxo0TFxcXcXBwkICAADlz5oyyLDk5WURE2rdvL1OmTJGvv/5atFqtnD59Wl/l0gsuXrwoGo1GvL29JSEhQUREUlNTdf7ds2ePGBsbS58+fSQ2NlamTJkiWq1W/vnnH32VnecY7PKpM2fOiIWFhYwfP15SUlLk4sWLUrhwYVm3bp1Ov+PHj0u3bt2kUqVKsmnTJj1V+36LjY2Vr776SjQajfzwww9K+5dffin29vZy+PBhERHp3bu31KhRQwIDA+Xx48ciIvL06VO91Ew5k5aWJk+ePJEmTZrIqlWrJCIiQtauXStmZmYydOhQSUpKEpHn+7N8+fJia2urExhI/9ID+NGjR6Vv374SHBwsHh4e0qpVqwz7qmfPnqLRaMTa2lpOnDihj3LpJf/99580bNhQWrRoIWXKlJHq1au/MtyZm5uLh4eH2NjYyKlTp/RW99vAYJcPXbp0SYyMjGTChAk67a1bt5ZPP/1UunbtKiNHjlTaT5w4IQEBAVKrVi15/PixzogRvV0PHz6UggULyo4dOyQwMFBMTExk9+7dMnfuXHFwcJA9e/YofZ8+fSr9+vWTkiVLyuLFiyUtLY37ysCl75/Hjx/Lo0ePZMyYMXLr1i1l+Y4dOzKEu6+//loiIiL0Ui9l9PIMRmJiolSrVk1mzJght2/flsKFC8uHH36oE+5Gjx4tZmZmHE03IHv27JFPP/1UQkJCJDQ0VMqWLasT7tKDe3q42717tzg5Ocnff/+tt5rfFga7fOjHH38UjUYjixcvVtpmz54tGo1G+vfvLwEBAWJpaSl+fn7K8tDQULl586Y+yn2vpaSkSNu2baVNmzby+PFjGTVqlGg0GjExMZE//vhDp5/I83A3dOhQuXr1qr5Kphzavn271KtXT6pUqSJubm5y7NgxneU7duwQKysr+fzzz/VUIWXlwoUL0qdPH/nuu+8kMTFRaT9y5IhUqVJFbt68KWFhYeLu7i4fffSRhIaGiojIzZs3+XlqINL/uEpKSpKQkBCl/Z9//lHCXXx8vIg8D3WpqanKH1npoU9tGOzyqW+++UY0Go2sWLFCvvzyS3FwcJBff/1VRJ7/8C5dujRDeCD9+Oabb8TBwUEiIyNFRGTGjBmi0WiUY+7S8djH/OfkyZPi5OQkAwcOlLFjx4pWq5XOnTvLv//+q9MvODhYXFxc5Pbt23qqlF72+PFj8fDwEI1GIyVKlJBy5crJqlWr5NSpU5KSkiItWrSQ77//XkSe/2Hs6ekpDRs2lAsXLui5ckp35coVWbt2rdy5cyfT5ZmN3AUGBsru3btFRFQ7I8Jgl48tXrxYNBqNaDQa+f3330Xk/w8z//HHH+Lp6cnjePToxQ+NKlWqSIcOHZT7Y8aMEVNTU9mwYYM+SqNceHkqJyIiQubMmSMzZsxQ+hw4cEBMTU2le/fuGcJd+nGTZDjWrFkjhQoVklGjRkmPHj2kd+/eUqhQIVmyZIl07NhRPDw8lP2YPgJ0/fp1PVdNIiK3bt0SrVYrjo6OsmrVKnn48GGm/dLDXa1ataRPnz6i0WhUfygEg10+cOPGDVm3bp2sWbNGjh8/rrPs+++/F41GIwsWLFB+4Yg8P7PLx8dH/vvvv3dd7nvt5ZMd0kfh5s+fL5UrV5aLFy8qy8aOHStWVlayevXqd1oj5VxQUJDMmDFD+av/zp074uHhIVqtVvr376/T9+DBg2Jqaio9e/ZkCDBQL46OL1++XIoWLSqTJk2Sv//+Ww4cOCAtWrSQevXqiUajkbCwMOWzNX0Kj/Tv0aNHUrx4cTEzM5NixYrJt99+K48ePVKWv/iH9cmTJ8XIyEgcHBxUeUzdyxjsDNyZM2ekaNGiUqNGDdFqtVK1alX58ccfdfosWbJENBqNzJ07V0REJk+eLBYWFqo6fTs/uHr1qnzwwQeyYsWKDKMzN27cEAcHB5k0aZJO+8CBA8XZ2VliY2PfZamUA6mpqdKpUyepWrWqLFy4UDleJyQkREqUKCG1a9fOcNmSP//8UzQajQwYMEDnciekX+n74sUTXEREli5dKoUKFZJhw4bJkydPJCEhQS5fvqxM2aVT69RdfpMezFeuXCkjR46UHj16iIODg3z77bcZPktTU1OlT58+YmFhIefPn9dHue8cg50BO3PmjFhaWsr48eMlLi5OQkJCxMnJSTp27CjPnj3T+ZBZsmSJaLVaqVatmhQoUEB1p2/nBxcuXJAPPvhATExMpF69ejJmzBiJi4tTDsr+8ssvpWzZshk+XDiqavgSExOlX79+UqdOHZkzZ45yrcGQkBApWrSofPrppxlGAg4fPszjsQzI1atXZfz48VKtWjVxdHSUZs2ayaJFi5Tl3377rbi5ucmwYcPkypUrSjvDnOHat2+flChRQq5cuSIzZszINNwdO3ZM6tat+179TmSwM1CRkZFSoEAB6d27t0579erVpUSJEnLv3r0Mj1m4cKHY29u/F0PNhuzs2bPSp08f8fLykiJFisjIkSPl7NmzcurUKSlcuLBysWiO5OQP6RelvXbtmgQEBGQYudu7d68ULVpUunTpopw1SYbl7NmzUqxYMenatauMGjVKVq5cKZUrVxZXV1fp1q2b0u+7774Td3d3GT16tOqPw8pvLl++LGvXrpWwsDCd9r59+yrHLw8dOlQcHR11wl1ycrLcv3//nderTwx2Buq3334TjUYjo0aNUs6mTL+kibe3t7Rq1Ur69+8vCxculEePHikjCC8eY0D68/TpU3n48KGMGjVK6tatKyYmJjJ58mRxdHQUb29vHkifT6SP1mzcuFFatGghjRs3Fnt7e3FxcZHAwEDlfbd3714pWbKkfPjhh3L27Fl9lkwvCQ0NFSsrK2UEPd3du3dl6NCh4urqKkOGDFHag4KCxNzcXCZMmMAz1Q3EzZs3RaPRiLGxsXh5ecmUKVPkyJEjIvL8+LmmTZsqZ5wPGjRI3NzcZNGiRVmeUKF2DHYG5s6dO3Ly5Em5deuW/P7771KoUCH53//+JyNHjhQHBwfZvHmzhIWFyfbt22XEiBHi7u4ubm5u8tFHH0lKSgqnDQzQ3bt3JSgoSHx9fcXS0lJsbW2zPD2f9OvFE5DSnT59WmxsbGT16tVy48YNiYuLk/bt20uVKlUkMDBQGbn79ddfxdvbm9c3MyCXL18WS0tLGT16tIj8/1Hy9FHYu3fvyieffCJeXl461x/84YcfOGJnQBITE6Vx48bi5eUlgwcPljp16kjr1q3lgw8+kLNnz0qJEiVk0KBBSv9evXpJ8eLFGexI/86fPy9169aVZs2aSdu2bUXk+en4zs7OYmpqmunZk3FxcbJixQq5fPnyuy6XXuPlkP3ff//J8ePHdY7fIcORHuqioqLkp59+Uto3btwonp6eEhMTo7TFx8dL27ZtxdnZWb766itlBDY95JFhWLhwoTg7O8ukSZOUM1rTw136+zMiIkIsLCxk+fLlequTMhcZGamMzCUmJkqTJk3E399fVq1aJSdPnpQuXbpI8+bNxc3NTYoWLarzR9WL79f3jQnIIJw/fx716tXDgAED0LdvX7i7uwMAPvvsM1hZWWHQoEE4d+4cIiMjUbJkSQDAs2fPYG1tjV69eumzdMqCRqPRue/s7AxnZ2c9VUOvY2RkhFu3bqF69epwcnJCXFwcPv30U9jZ2SE1NRXx8fEAgOTkZFhaWmLZsmUoV64clixZAhHBkCFDYGFhoednQQAQHR2NK1euYMiQIUhISMD27duRmJiIL774AlqtFmlpaTAyMgIAeHl5wcnJCQ8ePNBz1fSi0NBQ+Pr6IjAwELVq1YK5uTl+/vlnfPDBB/j2228xZcoU/PDDDzh79iwOHDgABwcHuLu7IzU1FcbGxnBxcdH3U9AbBjsD8ODBA/Tr1w9du3bFzJkzlfaUlBSYmJigXbt2SExMxLhx45CSkoLBgwejRIkSMDU11WPVROoTHh6O+/fvw8vLC1u2bIGJiQnatGkDjUaDKVOmYN26dTAzMwMAPHr0CNWrV0ehQoXQtm3bDEGe9CM9nNvb22P+/PkYN24cUlNTsXPnTkycOBEzZ86EmZmZEgDOnj0LZ2dn1KtXT9+l0/85c+YM6tatiyFDhugMXFhYWODnn3/GRx99hAkTJuDZs2do2bIlKlWqpPQxNjbWR8kGxUjfBRAQExOD27dvo127dkhLS1PaTUxMIM+ny/Hpp59izpw52LFjB2bNmoWrV6/qsWIidWrUqBE+//xzJCcnw8TEBMuWLcO+ffsQHByM3bt3o3PnzggLC8P169fxww8/wMLCAgsXLkSRIkX0XTr9n/RwbmdnhxUrVmDHjh2YMGECPvzwQxw4cAATJkxAUlKSEgA2bNgAKysrlClTRs+VE/A81NWpUwdDhw7F7NmzlfaQkBBcuXIFlpaW2LlzJ5ycnDBjxgzs2rULz54902PFBkjPU8EkIuvXrxcTExPlmI/MDuCOj4+Xf//9V7Zv3y5ly5Z9r48fIMoLL7/P0r81ZNeuXdK9e3f5/fffJSAgQBo0aCDr1q2T48ePS7FixcTd3V08PDzE2dn5vbo2Vn7So0cP8fb2lnbt2omvr6/s2LFDUlNTZfr06VKtWjUZNWqUiIjMmjVL7OzseCazgbh27ZrY29tL165dddqnT58uxYsXl4iICOV9m5CQIP7+/lK8eHH5+eef9VGuweKInQEoWrQoTExMsG3bNgBQjv140cqVK/H555+jTZs2OHr06Ht9/ADRm0o/xurGjRvYsWMHAECr1QIAqlevjmPHjiEyMhLLli2Do6MjVq5cifv37+PixYvYsmULvv32W5w6dQo+Pj56fBb0sqSkJABAu3btUKVKFfTp0wcFCxbEvHnz8Msvvygjd4cPH0aFChUwbdo0/PHHH6hYsaKeK6fExERcuHABhQsXRlJSEsLCwgAAs2fPxldffYUlS5agZMmSMDIyQmpqKiwsLLBlyxZUqFAB5cuX13P1hoXBzgB4enrCxsYGa9euxbVr15R2EVH+f/36dVSuXBkiAhsbG32USaQa6aGuSpUqCAgIQKtWrbBp0yZERETAyckJc+fORXBwMDQaDb744gsULFhQaatduzb8/f3h4eGh76dBwGvD+fLly+Hi4qIT7ho1agQRwfHjxxnODcCpU6dQpUoVVKtWDZMmTcK9e/cwc+ZMDB48GAsXLsT69evRokULpb+xsTHCw8NhaWmJHTt2wMvLS4/VGyA9jxjS/9m6datotVrp2rWrzldOxcfHy/jx48XT01PCw8P1WCGRukRHR0u1atWkdu3a4uPjI7169RJPT09Zvny5BAcHywcffCC//vqriDy/FFHTpk2ldevWvAi4Abl+/boULFhQNBqNtGzZUoKDg5XPyZ07d0r9+vXlzp07cuHCBQkICJBGjRrJpk2bJC0tLdNv76F3LzQ0VKytrXWuQ7dhwwapV6+emJmZydKlS0VE99CJiRMnSsmSJSUuLi7TQ5fedxqRF4aFSG/S0tKwYsUKDBo0CMWLF0edOnVgbm6Omzdv4tixY9i9ezeqVKmi7zKJVCUyMhLjxo1DWloaPvvsMxgZGWHRokWws7PDTz/9hOrVq+Ovv/6CmZkZwsPDYWVlhcKFC+u7bPo/165dQ/v27WFqaork5GRUqVIFe/fuxfjx42Fvb49169ZhwIAB8Pf3x4ULFzB06FCYmZkhODgYBQoU0Hf5772zZ8+idu3aGDZsGGbOnAkRUc4u37t3L2bOnAkHBwdMmTIF3t7eAIDJkydj3rx5OHToEEdbs8BgZ2BOnDiBefPm4cqVK7CyskLdunXRs2dP5dp1RJS3wsPDMXz4cKSmpmLx4sUoVKgQwsLCMHPmTHTs2BFdu3bV+YVDhoXhPH+6ceMGqlatisaNGyM4OFhpDwwMxL179zB79mz8+OOPWLFiBaytrREYGIitW7diypQpDHWvwWBngF68eCYRvX2RkZEYNGgQgOcjAnXr1tVzRZQTDOf5T3R0NDp27Ag3NzeMGTMGdevWxZdffonZs2dj27ZtaNKkCQAgODgYq1evRlhYGO7du4ejR48y1L0Gg50BevEDiB9GRO9GZGQkhgwZAhHBxIkTecHafIbhPP9Jf8+ZmZnBxcUFP/30E9atWwc/Pz+dAY4ffvgB69atQ2BgICpUqKDnqg0fgx0R0f+JjIzEiBEjcO/ePSxcuBC1atXSd0mUAwzn+U9ERAQGDRqEQ4cOYcaMGRg5cqSy7MVw9+TJEx4XmU2c7yMi+j8lS5bEvHnzULhwYeX7min/KFmyJL7++muYmppi9OjROHbsmL5LotcoVaoUli1bhvr162Pfvn04dOiQskyj0SiX/WKoyz6O2BERvSQ5OVn5TljKfy5duoRJkyYhMDCQX/eWT7w42jpp0iROpb8BBjsiIlIdhvP8h4dC5A1OxRIRkeow1OU/PBQib3DEjoiIiAwGR1vfDIMdERERkUpwKpaIiIhIJRjsiIiIiFSCwY6IiIhIJRjsiIiIiFSCwY6IiIhIJRjsiIiIiFSCwY6IKJc0Gg127Nih7zKIiBQMdkSU73Xv3h0ajSbDrUWLFkqfvn37onjx4rCwsICTkxM++ugjXLp06bXrbdOmTZbLb9++DX9//7x6GkREb8xE3wUQEeWFFi1aICgoSKdNq9Uq//fx8UGXLl1QpEgRPHjwAFOnToWfnx+ioqJgbGycq226urq+Uc1ERHmNI3ZEpAparRaurq46N3t7e2V5nz590KBBAxQtWhRVq1bFF198gRs3biA6OjrX23x5KvbIkSOoXLkyzM3NUa1aNezYsQMajQahoaEAgNTUVPTs2RNeXl6wsLBA6dKl8dVXX+ms88CBA6hRowasrKxgZ2eHunXr4tq1a8ryn3/+GT4+PjA3N0exYsUwbdo0pKSk5Po5EJG6cMSOiN478fHxCAoKgpeXFzw8PPJknY8fP0br1q3RsmVLbNiwAdeuXcOwYcN0+qSlpaFw4cLYtGkTHB0dceTIEfTp0wdubm7o2LEjUlJS0KZNG/Tu3RsbN25EcnIyTpw4AY1GAwD4/fff8emnn+Lrr79G/fr1ceXKFfTp0wcAMGXKlDx5HkSUvzHYEZEq/PLLLyhQoIBO29ixYzFp0iTl/tKlSzFmzBjEx8ejTJky2Lt3b5592fj69euh0WiwYsUKmJubo1y5crh58yZ69+6t9DE1NcW0adOU+15eXjhy5Ag2bdqEjh07Ii4uDrGxsfjggw9QvHhxAEDZsmWV/jNnzsS4cePQrVs3AECxYsUwY8YMjBkzhsGOiAAw2BGRSjRq1AjLli3TaXNwcNC536VLFzRr1gy3b9/G/Pnz0bFjRxw+fBjm5uZvvP3w8HBUqlRJZ101atTI0G/58uVYuXIlrl27hsTERCQnJ6Ny5cpKvd27d0fz5s3RrFkzNG3aFB07doSbmxsA4PTp0zh58iRmzpyprC81NRVPnz5FQkICLC0t3/h5EFH+xmBHRKpgZWWFEiVKvLKPra0tbG1tUbJkSdSqVQv29vbYvn07PvnkkzfevogoU6Yvtr1o06ZNGD58OAIDA1G7dm1YW1tj3rx5OH78uNInKCgIQ4YMwe7duxEcHIyJEydi7969qFWrFtLS0jBt2jQEBARk2H5ehFMiyv8Y7IjovSUiSEpKypN1lSlTBuvXr0dSUpJyNu6pU6d0+vz111+oU6cOBgwYoLRduXIlw7qqVKmCKlWqYPz48ahduzY2bNiAWrVqoWrVqggPD39tgCWi9xeDHRGpQlJSEmJiYnTaTExM4OjoiKtXryI4OBh+fn5wcnLCzZs3MWfOHFhYWKBly5avXG9sbKxyVms6BwcHFClSRKetc+fOmDBhAvr06YNx48bh+vXrmD9/PgAoI3klSpTA2rVr8fvvv8PLywvr1q3DyZMn4eXlBQCIiorCd999hw8//BDu7u4IDw9HREQEPvvsMwDA5MmT8cEHH8DDwwMdOnSAkZERzp49i7CwMHzxxRe5fu2ISEWEiCif69atmwDIcCtdurSIiNy8eVP8/f3F2dlZTE1NpXDhwtK5c2e5dOlSrtbbrVs3EREBINu3b1f6Hz58WCpVqiRmZmbi4+MjGzZsEADKdp4+fSrdu3cXW1tbsbOzk/79+8u4cePE29tbRERiYmKkTZs24ubmJmZmZuLp6SmTJ0+W1NRUZRu7d++WOnXqiIWFhdjY2EiNGjXku+++y7sXk4jyNY3ISweBEBFRnli/fj0+//xzxMbGwsLCQt/lENF7gFOxRER5ZO3atShWrBgKFSqEM2fOYOzYsejYsSNDHRG9Mwx2RER5JCYmBpMnT0ZMTAzc3NzQoUMHnUuTEBG9bZyKJSIiIlIJflcsERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUow2BERERGpBIMdERERkUr8P8Fjc12YIED+AAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:19: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES'] = active_df[active_df['Smiles'].isin(smiles)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:19: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES'] = active_df[active_df['Smiles'].isin(smiles)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:20: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES and not Uniprot'] = active_df[active_df['Smiles'].isin(smiles) & (active_df['Uniprot'] != uniprot_id)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:20: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES and not Uniprot'] = active_df[active_df['Smiles'].isin(smiles) & (active_df['Uniprot'] != uniprot_id)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:22: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of active entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == True)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:22: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of active entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == True)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:23: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of inactive entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == False)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:23: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of inactive entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == False)].shape[0]\n"
]
},
{
"data": {
"text/plain": [
"Uniprot P00533\n",
"Number of entries 45\n",
"Number of entries per E3 ligase 4\n",
"Number of entries with same SMILES 45\n",
"Number of entries with same SMILES and not Uniprot 0\n",
"Number of active entries 22\n",
"Number of inactive entries 23\n",
"Name: 3, dtype: object"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkdUlEQVR4nO3dd1QU198G8GdpS5EiShcBewfEhokCdjQm9hrF3gsaG1FsUYktIRpLbGAP9hg1xt4idrGLqAgGIXZRkH7fP3yZnytFQGBxeD7n7DnunTsz3xl24XHuFIUQQoCIiIiIPnsa6i6AiIiIiPIHgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0VuMDAQCgUCumlq6sLS0tLeHh4wM/PD48fP84wz/Tp06FQKHK1nvj4eEyfPh3Hjh3L1XyZrcve3h5fffVVrpbzMZs2bYK/v3+m0xQKBaZPn56v68tvhw8fRp06dWBgYACFQoFdu3Zl2u/BgwcqP+8PX+9v5+bNm9G4cWNYWFhAqVTC2toabdu2xenTp3NUk7u7O9zd3VXaPod9mRM53d/54dixY1AoFNi2bVum00eMGJHr72O69O//gwcPpLY+ffqofCaUSiUqV66MadOmISEhIU/rycyjR48wffp0hISE5Kh/ZvshL7+/slt2+ktTUxMWFhbo3Lkzbt26laH/4sWLUaVKFSiVSjg4OGDGjBlITk7O0O/x48fo06cPSpcuDX19fbi6uuLw4cMZ+rm7u2f6fWzVqpVKv4cPH6J9+/YoV64cDAwMYGxsDGdnZ/z6669ISUlR6fup318qGFrqLoCKj4CAAFSpUgXJycl4/PgxTp06hblz52LBggUICgpCs2bNpL4DBgzI8AvnY+Lj4zFjxgwAyPDHPjt5WVdebNq0CdevX4e3t3eGacHBwShTpkyB15BXQgh06dIFlSpVwu7du2FgYIDKlStnO8/IkSPRo0ePDO3vb+ezZ8/wxRdfYPTo0ShdujSio6Px008/oXHjxjh8+DDc3NxyXWtR35c5kZf9XVS1adMGwcHBsLKyUmnX09PDkSNHAAAvXrzA5s2bMXPmTNy+fRtBQUH5su5Hjx5hxowZsLe3h5OT0yctKze/v7IzZ84ceHh4ICkpCRcuXMDMmTNx+PBhXLt2DTY2NgCA2bNnw9fXF5MmTUKLFi1w/vx5TJkyBVFRUVixYoW0rMTERDRt2hQvX77EL7/8AnNzcyxZsgStWrXCoUOHMnx/ypUrh40bN6q0mZiYqLyPi4uDkZERfH19UbZsWSQlJWHfvn0YOXIkQkJCsGrVKqlvQXx/KR8IogIWEBAgAIjz589nmBYRESFsbW2FoaGhiImJ+aT1PHnyRAAQ06ZNy1H/uLi4LKfZ2dmJNm3afFI9H2rTpo2ws7PL12UWln///VcAEHPnzv1o3/DwcAFAzJ8/P0/revnypdDW1ha9evX6aF83Nzfh5uaWp/UUZbnZ3zkVHx8v0tLSMp129OhRAUBs3bo10+nDhw8X+fnnwsvLSxgYGGRob9SokQAg/v333yznjY+Pz/F6zp8/LwCIgICAHPXPbD/k1++vrPbx6tWrBQAxa9YsIYQQT58+Fbq6umLQoEEq/WbPni0UCoW4ceOG1LZkyRIBQJw+fVpqS05OFtWqVRP16tVTmd/NzU1Ur179I3sga126dBFaWloiISEh2365+f5SweBQLKlV2bJlsXDhQrx+/Rq//fab1J7Z8OiRI0fg7u6OUqVKQU9PD2XLlkXHjh0RHx+PBw8ewMzMDAAwY8YMaZihT58+Ksu7dOkSOnXqhJIlS6J8+fJZrivdzp07UatWLejq6qJcuXJYtGiRyvTMhpmA/w27pA8Lu7u7Y+/evYiIiFAZBkmX2fDh9evX8c0336BkyZLQ1dWFk5MT1q5dm+l6Nm/ejMmTJ8Pa2hpGRkZo1qwZQkNDs97x7zl16hSaNm0KQ0ND6Ovro2HDhti7d680ffr06dIRsIkTJ0KhUMDe3j5Hy84LQ0ND6OrqQksrbwMKme3LU6dOwdXVFbq6urCxsYGvry9WrVqV4WcXFBSEFi1awMrKCnp6eqhatSomTZqEuLg4leXdv38f3bp1g7W1NZRKJSwsLNC0adMMQ35BQUFwdXWFgYEBSpQogZYtW+Ly5cvZ1v+x/f2xnxfwv8/lgQMH0K9fP5iZmUFfXx+JiYk524k5oFAoMGLECKxfvx5Vq1aFvr4+HB0dsWfPnkxr+fA7kpkGDRoAACIiIgD875SIHTt2wNnZGbq6utJR+Y99P44dO4a6desCAPr27ZvpqQCfKqvfX7nx4Tbv378fCQkJ6Nu3r0q/vn37QgihMiS/c+dOVK5cGa6urlKblpYWvv32W5w7dw5RUVF5qikzZmZm0NDQgKamZrb9PvX7S5+OwY7UrnXr1tDU1MSJEyey7PPgwQO0adMGOjo6WLNmDfbv348ff/wRBgYGSEpKgpWVFfbv3w8A6N+/P4KDgxEcHAxfX1+V5XTo0AEVKlTA1q1bsXz58mzrCgkJgbe3N8aMGYOdO3eiYcOGGD16NBYsWJDrbVy6dCm++OILWFpaSrUFBwdn2T80NBQNGzbEjRs3sGjRIuzYsQPVqlVDnz59MG/evAz9v//+e0RERGDVqlVYsWIFwsLC0LZtW6SmpmZb1/Hjx9GkSRO8evUKq1evxubNm2FoaIi2bdtKw2EDBgzAjh07ALwbXg0ODsbOnTs/us1paWlISUnJ8MpMamoqkpOT8eDBAwwdOhRCCAwfPvyj68iJq1evonnz5oiPj8fatWuxfPlyXLp0CbNnz87QNywsDK1bt8bq1auxf/9+eHt7Y8uWLWjbtq1Kv9atW+PixYuYN28eDh48iGXLlsHZ2RkvX76U+syZMwfdu3dHtWrVsGXLFqxfvx6vX79Go0aNcPPmzSzrzW5/5+Tn9b5+/fpBW1sb69evx7Zt26CtrZ2XXZilvXv34tdff8XMmTOxfft2mJqaon379rh//36elnf37l0AkP6TBgCXLl3C+PHjMWrUKOzfvx8dO3bM0fejdu3aCAgIAABMmTJF+s4NGDDgE7daVU5+f2Xnw22+fv06AKBmzZoq/aysrFC6dGlpenrfWrVqZVhmetuNGzdU2u/duwdTU1NoaWmhfPnymDx5Mt6+fZtpXUIIpKSk4MWLFwgKCkJgYCC+++67TANbQX5/KQ/Ue8CQioPshjLSWVhYiKpVq0rvp02bpjL0s23bNgFAhISEZLmM7IZi05c3derULKe9z87OTigUigzra968uTAyMpKGcdO3LTw8XKVf+rDL0aNHpbbshmI/rLtbt25CqVSKyMhIlX6enp5CX19fvHz5UmU9rVu3Vum3ZcsWAUAEBwdnur50DRo0EObm5uL169dSW0pKiqhRo4YoU6aMNHSXm+HV9L5ZvU6ePJlhnsqVK0vTraysxKlTpz66HiEyH4r9cF927txZGBgYiCdPnkhtqampolq1apn+7NKlpaWJ5ORkcfz4cQFAXLlyRQjxbqgMgPD398+yrsjISKGlpSVGjhyp0v769WthaWkpunTpku12ZbW/c/rzSv9c9u7dO9v1pMvLUCwAYWFhIWJjY6W2mJgYoaGhIfz8/KS2zL4j6UOxycnJIjk5WTx58kT88ssvQqFQiLp160r97OzshKampggNDVVZd06/HwU9FJvuw99f2S07KChIJCcni/j4eHHixAlRoUIFoampKX2+Bg4cKJRKZabLqFSpkmjRooX0XltbWwwePDhDv9OnTwsAYtOmTVLb5MmTxdKlS8WRI0fE3r17xYgRI4SWlpZo3LixSE1NzbAMPz8/6TupUCjE5MmTs9y2vH5/qWDwiB0VCUKIbKc7OTlBR0cHgwYNwtq1a/N8RKBjx4457lu9enU4OjqqtPXo0QOxsbG4dOlSntafU0eOHEHTpk1ha2ur0t6nTx/Ex8dnONr39ddfq7xP/x97+vBOZuLi4nD27Fl06tQJJUqUkNo1NTXRq1cv/Pvvvzkezs3M6NGjcf78+QyvzE5i3759O86ePYutW7eiWrVq8PT0zPXVzVlJP8pVunRpqU1DQwNdunTJ0Pf+/fvo0aMHLC0toampCW1tbekE8PQrF01NTVG+fHnMnz8fP/30Ey5fvoy0tDSV5fz9999ISUlB7969VY5W6urqws3NLU/blpefV24+73nh4eEBQ0ND6b2FhQXMzc2z/dyli4uLg7a2NrS1tWFmZgZvb294enpmOBpcq1YtVKpUSaUtt9+Pgvax31/v69q1K7S1taGvr4/GjRsjNTUV27ZtUznylt0VyB9Oy2nfWbNmYejQofDw8EDr1q2xePFi/Pjjjzhx4gT++OOPDPP26dMH58+fx99//40JEyZg/vz5GDlyZKbrKcjvL+UeB8FJ7eLi4vDs2bMMQw/vK1++PA4dOoR58+Zh+PDhiIuLQ7ly5TBq1CiMHj06x+v68Mq87FhaWmbZ9uzZsxwvJy+ePXuWaa3W1taZrr9UqVIq75VKJQBkOcwCvLsSUQiRq/XkRpkyZVCnTp0c9a1evToAoF69emjXrh2cnZ0xevRoXLlyJc/rT/fs2TNYWFhkaP+w7c2bN2jUqBF0dXUxa9YsVKpUCfr6+nj48CE6dOgg7UuFQoHDhw9j5syZmDdvHr777juYmpqiZ8+emD17NgwNDfHff/8BgHSO14c0NHL/f+q8/Lxy+nlPH17Laug+JSUl0yG4Dz93wLvPXnafu3R6enrS8KVSqYSdnR2MjIwy9MtsG3L7/ShIOfn99b65c+eiSZMm0NTUROnSpTOE01KlSiEhIQHx8fHQ19dXmfb8+XO4uLio9M1sW58/fw7g3X9CsvPtt99i3LhxOHPmDNq3b68yzdLSUvp916JFC5QsWRKTJk1Cv3794OzsrNK3IL+/lHsMdqR2e/fuRWpq6kdvUdKoUSM0atQIqampuHDhAhYvXgxvb29YWFigW7duOVpXbu7FFRMTk2Vb+h80XV1dAMhwUvrTp09zvJ7MlCpVCtHR0RnaHz16BAAqR5/yqmTJktDQ0Cjw9eSWlpYWateujS1btuTL8kqVKiUFrfd9+PM9cuQIHj16hGPHjqncpuH98+bS2dnZYfXq1QCAO3fuYMuWLZg+fTqSkpKwfPlyab9t27YNdnZ2+bIdefl55fTznh5yszrZPioqKtNw/Ck0NDRyFPwz24bC+H7kVE5/f6UrV65cttudHhCvXbuG+vXrS+0xMTF4+vQpatSoodL32rVrGZaR3vZ+3+zk5D8a9erVA/Du8/5hsHtffn9/Kfc4FEtqFRkZiXHjxsHY2BiDBw/O0TyampqoX78+lixZAgDSsGhOjlLlxo0bNzL8j3PTpk0wNDRE7dq1AUC6WvHq1asq/Xbv3p1heTk9kgEATZs2lYLG+9atWwd9fX3pSrpPYWBggPr162PHjh0qdaWlpWHDhg0oU6ZMhiGwwpCQkIAzZ86gQoUK+bI8Nzc3HDlyRCVsp6WlYevWrSr90gNE+uco3ceudqxUqRKmTJmCmjVrSp/Fli1bQktLC/fu3UOdOnUyfeVWQf68KlasCDs7O2zdujXDsOKTJ09w9OjRHN+nrTDk9PuR378TPpSX318f06pVK+jq6iIwMFClPf3q4nbt2klt7du3x+3bt3H27FmpLSUlBRs2bED9+vWlI5hZSb+KOCe/T44ePQoAH/1e5vf3l3KPR+yo0Fy/fl061+jx48c4efIkAgICoKmpiZ07d6pcCfeh5cuX48iRI2jTpg3Kli2LhIQErFmzBgCkPziGhoaws7PDH3/8gaZNm8LU1BSlS5fO8605rK2t8fXXX2P69OmwsrLChg0bcPDgQcydO1caIqlbty4qV66McePGISUlBSVLlsTOnTtx6tSpDMurWbMmduzYgWXLlsHFxSXbIxbTpk3Dnj174OHhgalTp8LU1BQbN27E3r17MW/ePBgbG+dpmz7k5+eH5s2bw8PDA+PGjYOOjg6WLl2K69evY/PmzXl+2gDw7o/emTNnMrSbmZlJt5pp2LAhvv76a1StWhXGxsZ48OABli1bhnv37uXoytucmDx5Mv788080bdoUkydPhp6eHpYvXy7dwiT9aEXDhg1RsmRJDBkyBNOmTYO2tjY2btyYIdxfvXoVI0aMQOfOnVGxYkXo6OjgyJEjuHr1KiZNmgTgXeCfOXMmJk+ejPv376NVq1YoWbIk/vvvP5w7dw4GBgbSbTtyoyB/XgsWLECXLl3QtGlTDBw4EJaWlggLC8OPP/4IHR2dDFeYq1NOvx/ly5eHnp4eNm7ciKpVq6JEiRKwtrb+aODJzKf8/soNU1NTTJkyBb6+vjA1NZVuUDx9+nQMGDAA1apVk/r269cPS5YsQefOnfHjjz/C3NwcS5cuRWhoKA4dOiT1O3nyJGbPni09USIhIQF//fUXVqxYgSZNmqhc9T1t2jT8999/aNy4MWxsbPDy5Uvs378fK1euROfOnVWGggvj+0t5oNZLN6hYSL+qLP2lo6MjzM3NhZubm5gzZ454/Phxhnk+vFI1ODhYtG/fXtjZ2QmlUilKlSol3NzcxO7du1XmO3TokHB2dhZKpVIAEF5eXirLe//KyKzWJcT/blC8bds2Ub16daGjoyPs7e3FTz/9lGH+O3fuiBYtWggjIyNhZmYmRo4cKfbu3Zvhqtjnz5+LTp06CRMTE6FQKFTWiUyu5r127Zpo27atMDY2Fjo6OsLR0THD1X1ZXc2YflVlTq4GPHnypGjSpIkwMDAQenp6okGDBuLPP//MdHn5cVVsz549pb7fffedcHR0FMbGxkJLS0tYWlqK9u3bi3/++eej6xEiZ1fFpm9j/fr1hVKpFJaWlmL8+PFi7ty5AoB0BaUQ764mdHV1Ffr6+sLMzEwMGDBAXLp0SWVf/vfff6JPnz6iSpUqwsDAQJQoUULUqlVL/PzzzyIlJUVlvbt27RIeHh7CyMhIKJVKYWdnJzp16iQOHTqUo32Y2f7Oyc8rJ1dyZubQoUOiRYsWwsTERGhpaQkrKyvx7bffirCwsAx9AYjhw4dnaLezs5O+d+/XktlVsR+T3Y3Cc/L9EEKIzZs3iypVqghtbe2P3sA8u6tic/P7K6fLzs4vv/wiKlWqJHR0dETZsmXFtGnTRFJSUoZ+MTExonfv3sLU1FTo6uqKBg0aiIMHD6r0CQsLE61btxY2NjZCqVQKXV1dUbNmTTF79uwMNxzevXu3aNasmbCwsBBaWlqiRIkSol69emLRokUiOTlZpe+nfn+pYCiEyMXlPEREMtGiRQs8ePAAd+7cUXcpRET5hkOxRCR7Y8eOhbOzM2xtbfH8+XNs3LgRBw8elC6AICKSCwY7IpK91NRUTJ06FTExMVAoFKhWrRrWr1+Pb7/9Vt2lERHlKw7FEhEREckEb3dCREREJBMMdkREREQywWBHREREJBO8eCITaWlpePToEQwNDT/php9EREREn0oIgdevX8Pa2vqjj4BjsMvEo0ePMjyYmYiIiEidHj58iDJlymTbh8EuE4aGhgDe7UAjIyM1V0NERETFWWxsLGxtbaV8kh0Gu0ykD78aGRkx2BEREVGRkJPTw3jxBBEREZFMMNgRERERyQSDHREREZFM8Bw7IiL6qLS0NCQlJam7DCJZ0tbWhqamZr4si8GOiIiylZSUhPDwcKSlpam7FCLZMjExgaWl5SffP5fBjoiIsiSEQHR0NDQ1NWFra/vRm6MSUe4IIRAfH4/Hjx8DAKysrD5peQx2RESUpZSUFMTHx8Pa2hr6+vrqLodIlvT09AAAjx8/hrm5+ScNy/K/XkRElKXU1FQAgI6OjporIZK39P84JScnf9JyGOyIiOij+NxsooKVX98xBjsiIiIimWCwIyKiIiUwMBAmJiaFsq5evXphzpw5hbIuKr7q1q2LHTt2FMq6GOyIiOiTnD59GpqammjVqlWu57W3t4e/v79KW9euXXHnzp18qi5rV69exd69ezFy5Eipzd3dHQqFAgqFAkqlEjY2Nmjbtm2h/VHOq2vXrsHNzQ16enqwsbHBzJkzIYT46Hx79+5F/fr1oaenh9KlS6NDhw75Xtv06dOlfaqlpYXSpUujcePG8Pf3R2JiYob+d+/eRd++fVGmTBkolUo4ODige/fuuHDhgtTH3t5eWmb6a9KkSSrLiYyMRNu2bWFgYIDSpUtj1KhROboXY3BwMJo0aQIDAwOYmJjA3d0db9++zXaepUuXwsHBAbq6unBxccHJkydVpvv6+mLSpEmFcssgBjsiIvoka9aswciRI3Hq1ClERkZ+8vL09PRgbm6eD5Vl79dff0Xnzp1haGio0j5w4EBER0fj7t272L59O6pVq4Zu3bph0KBBBV5TXsTGxqJ58+awtrbG+fPnsXjxYixYsAA//fRTtvNt374dvXr1Qt++fXHlyhX8888/6NGjR4HUWL16dURHRyMyMhJHjx5F586d4efnh4YNG+L169dSvwsXLsDFxQV37tzBb7/9hps3b2Lnzp2oUqUKvvvuO5Vlzpw5E9HR0dJrypQp0rTU1FS0adMGcXFxOHXqFH7//Xds3749wzI+FBwcjFatWqFFixY4d+4czp8/jxEjRmR7m5+goCB4e3tj8uTJuHz5Mho1agRPT0+V70KbNm3w6tUr/P3337nddbknKINXr14JAOLVq1fqLoWISK3evn0rbt68Kd6+fZvp9Ddv3ghDQ0Nx+/Zt0bVrVzFjxowMff744w/h4uIilEqlKFWqlGjfvr0QQgg3NzcBQOUlhBABAQHC2NhYCCHE7du3BQBx69YtlWUuXLhQ2NnZibS0NCGEEDdu3BCenp7CwMBAmJubi2+//VY8efIky+1KTU0VJiYmYs+ePSrtbm5uYvTo0Rn6r1mzRgAQBw8eFEIIER4eLgCIoKAg8eWXXwpdXV1Rp04dERoaKs6dOydcXFyEgYGBaNmypXj8+LG0nHPnzolmzZqJUqVKCSMjI9G4cWNx8eJFafrRo0eFtra2OHHihNS2YMECUapUKfHo0aNMt2Xp0qXC2NhYJCQkSG1+fn7C2tpa2j8fSk5OFjY2NmLVqlVZ7qOcmDZtmnB0dBTLly8XZcqUEXp6eqJTp07ixYsXGfp86NatW0JHR0dMnjxZCCFEWlqaqF69unBxcRGpqakZ+r+/TDs7O/Hzzz9nWde+ffuEhoaGiIqKkto2b94slEpltn/b69evL6ZMmZL1BmeiXr16YsiQISptVapUEZMmTVJp69Onj+jVq1eWy8nuu5abXML72FGORc6sqe4SCkzZqdfUXQLRZykoKAiVK1dG5cqV8e2332LkyJHw9fWVrvDbu3cvOnTogMmTJ2P9+vVISkrC3r17AQA7duyAo6MjBg0ahIEDB2a6/MqVK8PFxQUbN27EDz/8ILVv2rQJPXr0gEKhQHR0NNzc3DBw4ED89NNPePv2LSZOnIguXbrgyJEjmS736tWrePnyJerUqZOj7fTy8sJ3332HHTt2oFmzZlL7tGnT4O/vj7Jly6Jfv37o3r07jIyM8Msvv0BfXx9dunTB1KlTsWzZMgDA69ev4eXlhUWLFgEAFi5ciNatWyMsLAyGhoZwd3eHt7c3evXqhStXruDBgweYPHkyNm/enOWNa4ODg+Hm5galUim1tWzZEj4+Pnjw4AEcHBwyzHPp0iVERUVBQ0MDzs7OiImJgZOTExYsWIDq1avnaJ+ku3v3LrZs2YI///wTsbGx6N+/P4YPH46NGzdmO1+VKlXg6emJHTt2YNasWQgJCcGNGzewadOmTI+QfXje5dy5c/HDDz/A1tYWnTt3xvjx46Xb8gQHB6NGjRqwtrZW2SeJiYm4ePEiPDw8Miz/8ePHOHv2LHr27ImGDRvi3r17qFKlCmbPno0vv/wy021ISkrCxYsXMwwDt2jRAqdPn1Zpq1evHubNm5ftPskPDHZERJRnq1evxrfffgsAaNWqFd68eYPDhw9L4Wf27Nno1q0bZsyYIc3j6OgIADA1NYWmpiYMDQ1haWmZ5Tp69uyJX3/9VQp2d+7cwcWLF7Fu3ToAwLJly1C7dm2ViyDWrFkDW1tb3LlzB5UqVcqwzAcPHkBTUzPHQ74aGhqoVKkSHjx4oNI+btw4tGzZEgAwevRodO/eHYcPH8YXX3wBAOjfvz8CAwOl/k2aNFGZ/7fffkPJkiVx/PhxfPXVVwCAWbNm4dChQxg0aBBu3LiBXr16oX379lnWFhMTA3t7e5U2CwsLaVpmwe7+/fsA3p3/9tNPP8He3h4LFy6Em5sb7ty5A1NT04/vlP+XkJCAtWvXokyZMgCAxYsXo02bNli4cGG2P1fgXbg7cOAAACAsLExq+5jRo0ejdu3aKFmyJM6dOwcfHx+Eh4dj1apV0nan74N0JUuWhI6ODmJiYjJd5vv7ZMGCBXBycsK6devQtGlTXL9+HRUrVswwz9OnT5GampphXRYWFhnWY2Njg8jISKSlpRXoE1x4jh0REeVJaGgozp07h27dugEAtLS00LVrV6xZs0bqExISgqZNm37Serp164aIiAicOXMGALBx40Y4OTmhWrVqAICLFy/i6NGjKFGihPRKDwf37t3LdJlv376FUqnM1b3DhBAZ+teqVUv6d/of95o1a6q0pT8qCnh3VGjIkCGoVKkSjI2NYWxsjDdv3qicj6Wjo4MNGzZg+/btePv2bYaLSzLzYV3i/y+cyGr70k/inzx5Mjp27AgXFxcEBARAoVBg69atH13f+8qWLSuFOgBwdXVFWloaQkNDPzrv+/v0YzW/b8yYMXBzc0OtWrUwYMAALF++HKtXr8azZ8+kPpktJ7OfYbr0fTJ48GD07dsXzs7O+Pnnn1G5cmWVz3RmMtv/H7bp6ekhLS0t0wtG8hOP2BERUZ6sXr0aKSkpsLGxkdqEENDW1saLFy9QsmRJ6VFJn8LKygoeHh7YtGkTGjRogM2bN2Pw4MHS9LS0NLRt2xZz587NdN7MlC5dGvHx8UhKSsrRUzVSU1MRFhaGunXrqrRra2tL/07/Q/5h2/tXQvbp0wdPnjyBv78/7OzsoFQq4erqmuFqzfRhvOfPn+P58+cwMDDIsjZLS8sMR4fSw+SHR5LSpe+X9HAMAEqlEuXKlfvkC2DS90NOAtqtW7ekI4rpR1Zv3boFJyenXK2zQYMGAN4NC5cqVQqWlpY4e/asSp8XL14gOTk5V/sEAKpWrZrlPildujQ0NTUz3f8fruf58+fQ19fPl+9EdnjEjoiIci0lJQXr1q3DwoULERISIr2uXLkCOzs76fyqWrVq4fDhw1kuR0dHR3psWXZ69uyJoKAgBAcH4969e9JRQgCoXbs2bty4AXt7e1SoUEHllVUgSg8ON2/ezNH2rl27Fi9evEDHjh1z1D8rJ0+exKhRo9C6dWtUr14dSqUST58+Velz7949jBkzBitXrkSDBg3Qu3fvbG+T4erqihMnTqiEwwMHDsDa2jrDEG06FxcXKJVKlaNqycnJePDgAezs7HK1TZGRkXj06JH0Pjg4WBq6zs7t27exf/9+aZ+mH4VduHBhptv78uXLLJd1+fJlAP8LZ66urrh+/Tqio6OlPgcOHIBSqYSLi0umy7C3t4e1tXWGI4137tzJcp/o6OjAxcUFBw8eVGk/ePAgGjZsqNJ2/fp11K5dO8ttyC9qDXYnTpxA27ZtYW1tDYVCgV27dqlM//AeNemv+fPnZ7nMwMDATOdJSEgo4K0hIio+9uzZgxcvXqB///6oUaOGyqtTp05YvXo1gHcXF2zevBnTpk3DrVu3cO3aNZUTyO3t7XHixAlERUVlCDjv69ChA2JjYzF06FB4eHioHCUcPnw4nj9/ju7du+PcuXO4f/8+Dhw4gH79+mUZGs3MzFC7dm2cOnUqw7T4+HjExMTg33//xdmzZzFx4kQMGTJEWvenqFChAtavX49bt25JJ+q/fwQnNTUVvXr1QosWLdC3b18EBATg+vXrWLhwYZbL7NGjB5RKJfr06YPr169j586dmDNnDsaOHSsdNTt37hyqVKmCqKgoAICRkRGGDBmCadOm4cCBAwgNDcXQoUMBAJ07d87VNunq6sLLywtXrlyRgmuXLl1Uzq9LSUlBTEwMHj16hGvXrmHx4sVwc3ODk5MTxo8fD+Dd3/yAgADcuXMHjRs3xr59+3D//n1cvXoVs2fPxjfffAPgXXD8+eefERISgvDwcGzZsgWDBw/G119/jbJlywJ4d/FCtWrV0KtXL1y+fBmHDx/GuHHjMHDgQBgZGWW6HQqFAuPHj8eiRYuwbds23L17F76+vrh9+zb69+8v9WvatCl+/fVX6f3YsWOxatUqrFmzBrdu3cKYMWMQGRmJIUOGqCz/5MmTaNGiRa72bV6oNdjFxcXB0dFRZQe97/3700RHR2PNmjVQKBQf/R+TkZFRhnl1dXULYhOIiIql1atXo1mzZjA2Ns4wrWPHjggJCcGlS5fg7u6OrVu3Yvfu3XByckKTJk1UhshmzpyJBw8eoHz58jAzM8tyfUZGRmjbti2uXLmCnj17qkyztrbGP//8g9TUVLRs2RI1atTA6NGjYWxsnO1J6oMGDcr0ys2VK1fCysoK5cuXR/v27XHz5k0EBQVh6dKlOdk12VqzZg1evHgBZ2dn9OrVC6NGjVK5gGP27Nl48OABVqxYAeDdMOuqVaswZcoUhISEZLpMY2NjHDx4EP/++y/q1KmDYcOGYezYsRg7dqzUJz4+HqGhoSoPmJ8/fz66deuGXr16oW7duoiIiMCRI0dQsmRJqY+9vT2mT5+e7TZVqFABHTp0QOvWrdGiRQvUqFEjw766ceMGrKysULZsWbi7u2PLli3w8fHByZMnUaJECalfvXr1cOHCBZQvXx4DBw5E1apV8fXXX+PGjRvSuYZKpRJBQUFwd3dHtWrVMHXqVAwcOBCbN2+WlqOpqYm9e/dCV1cXX3zxBbp06YJ27dphwYIF2W6Lt7c3fHx8MGbMGDg6OuLw4cM4ePAgypcvL/W5d++eyn9CunbtCn9/f8ycORNOTk44ceIE9u3bp3KULyoqCqdPn0bfvn2zXX9+UAiRg1tTFwKFQoGdO3eiXbt2WfZp164dXr9+ne1h/cDAQHh7e2d7yPZjYmNjYWxsjFevXmWZ7Isj3u6EqPhJSEhAeHi4dFd9OUlISEDlypXx+++/w9XVVd3lFDlv376Fqakp9u3bl+WRyunTp2PXrl1Zhk56Z/z48Xj16pUU2DOT3XctN7nksznH7r///sPevXtVDodm5c2bN7Czs0OZMmXw1VdfSWPvRERE6XR1dbFu3bpsh4CLs+PHj6NJkyafPPxMgLm5ucp9GAvSZ3NV7Nq1a2FoaPjR59hVqVIFgYGBqFmzJmJjY/HLL7/giy++wJUrVzK9Bw0AJCYmqlx+HBsbm6+1ExFR0eTm5qbuEoqsVq1a5en5v5RR+nmEheGzOWK3Zs0a9OzZ86NDAQ0aNMC3334LR0dHNGrUCFu2bEGlSpWwePHiLOfx8/OT7idkbGwMW1vb/C6fiIhIdqZPn85h2CLmswh2J0+eRGhoKAYMGJDreTU0NFC3bl3pjtaZ8fHxwatXr6TXw4cPP6VcIiIiIrX4LIZiV69eDRcXF+kxNLkhhEBISIjKncA/pFQqVZ6xR0RERPQ5Umuwe/PmDe7evSu9Dw8PR0hICExNTaV70cTGxmLr1q1Z3sOnd+/esLGxgZ+fHwBgxowZaNCgASpWrIjY2FgsWrQIISEhWLJkScFvEBEREZEaqTXYXbhwQeVqm/R77nh5eUkPTf79998hhED37t0zXUZkZKTKfYpevnyJQYMGISYmBsbGxnB2dsaJEydQr169gtsQIiIioiKgyNzHrijhfewyx/vYERU/cr6PHVFRUuzuY0dERERE2WOwIyIiokwFBgbCxMRE3WVQLnwWV8USEREVVS7j1xXq+i7O753refr06YO1a9dmaA8LC0OFChXyoywqIhjsiIiIioFWrVohICBApc3MzExN1VBB4VAsERFRMaBUKmFpaany+uWXX1CzZk0YGBjA1tYWw4YNw5s3b7JcxpUrV+Dh4QFDQ0MYGRnBxcUFFy5ckKafPn0ajRs3hp6eHmxtbTFq1CjExcUVxubR/2OwIyIiKqY0NDSwaNEiXL9+HWvXrsWRI0cwYcKELPv37NkTZcqUwfnz53Hx4kVMmjQJ2traAIBr166hZcuW6NChA65evYqgoCCcOnUKI0aMKKzNIXAoloiIqFjYs2cPSpQoIb339PTE1q1bpfcODg744YcfMHToUCxdujTTZURGRmL8+PGoUqUKAKBixYrStPnz56NHjx7w9vaWpi1atAhubm5YtmwZb5dTSBjsiIiIigEPDw8sW7ZMem9gYICjR49izpw5uHnzJmJjY5GSkoKEhATExcXBwMAgwzLGjh2LAQMGYP369WjWrBk6d+6M8uXLAwAuXryIu3fvYuPGjVJ/IQTS0tIQHh6OqlWrFvxGEodiiYiIigMDAwNUqFBBeiUlJaF169aoUaMGtm/fjosXL0qP30xOTs50GdOnT8eNGzfQpk0bHDlyBNWqVcPOnTsBAGlpaRg8eDBCQkKk15UrVxAWFiaFPyp4PGJHRERUDF24cAEpKSlYuHCh9GjOLVu2fHS+SpUqoVKlShgzZgy6d++OgIAAtG/fHrVr18aNGzd4+xQ14xE7IiKiYqh8+fJISUnB4sWLcf/+faxfvx7Lly/Psv/bt28xYsQIHDt2DBEREfjnn39w/vx5aYh14sSJCA4OxvDhwxESEoKwsDDs3r0bI0eOLKxNIjDYERERFUtOTk746aefMHfuXNSoUQMbN26En59flv01NTXx7Nkz9O7dG5UqVUKXLl3g6emJGTNmAABq1aqF48ePIywsDI0aNYKzszN8fX1hZWVVWJtEABRCCKHuIoqa3DxstziJnFlT3SUUmLJTr6m7BKIiKbsHkxNR/snuu5abXMIjdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBNa6i6AiIjoc1bYj1vMzSMQFQpFttO9vLwQGBj4iRVRUcJgR0REJFPR0dHSv4OCgjB16lSEhoZKbXp6eir9k5OToa2tXWj1Uf7jUCwREZFMWVpaSi9jY2MoFArpfUJCAkxMTLBlyxa4u7tDV1cXGzZswPTp0+Hk5KSyHH9/f9jb26u0BQQEoGrVqtDV1UWVKlWwdOnSwtswyhKDHRERUTE2ceJEjBo1Crdu3ULLli1zNM/KlSsxefJkzJ49G7du3cKcOXPg6+uLtWvXFnC19DEciiUiIirGvL290aFDh1zN88MPP2DhwoXSfA4ODrh58yZ+++03eHl5FUSZlEMMdkRERMVYnTp1ctX/yZMnePjwIfr374+BAwdK7SkpKTA2Ns7v8iiXGOyIiIiKMQMDA5X3GhoaEEKotCUnJ0v/TktLA/BuOLZ+/foq/TQ1NQuoSsopBjsiIiKSmJmZISYmBkII6XYpISEh0nQLCwvY2Njg/v376Nmzp5qqpKww2BEREZHE3d0dT548wbx589CpUyfs378ff/31F4yMjKQ+06dPx6hRo2BkZARPT08kJibiwoULePHiBcaOHavG6olXxRIREZGkatWqWLp0KZYsWQJHR0ecO3cO48aNU+kzYMAArFq1CoGBgahZsybc3NwQGBgIBwcHNVVN6RTiw4F0QmxsLIyNjfHq1SuV/6EUd4V9d/XClJs7uRMVJwkJCQgPD4eDgwN0dXXVXQ6RbGX3XctNLuEROyIiIiKZYLAjIiIikgkGOyIiIiKZUGuwO3HiBNq2bQtra2soFArs2rVLZXqfPn2gUChUXg0aNPjocrdv345q1apBqVSiWrVq2LlzZwFtAREREVHRodZgFxcXB0dHR/z6669Z9mnVqhWio6Ol1759+7JdZnBwMLp27YpevXrhypUr6NWrF7p06YKzZ8/md/lERMUGr7MjKlj59R1T633sPD094enpmW0fpVIJS0vLHC/T398fzZs3h4+PDwDAx8cHx48fh7+/PzZv3vxJ9RIRFTfpTxJISkqCnp6emqshkq/4+HgAgLa29ictp8jfoPjYsWMwNzeHiYkJ3NzcMHv2bJibm2fZPzg4GGPGjFFpa9myJfz9/Qu4UiIi+dHS0oK+vj6ePHkCbW1taGjw1Gyi/CSEQHx8PB4/fgwTE5NPfixbkQ52np6e6Ny5M+zs7BAeHg5fX180adIEFy9ehFKpzHSemJgYWFhYqLRZWFggJiYmy/UkJiYiMTFReh8bG5s/G0BE9JlTKBSwsrJCeHg4IiIi1F0OkWyZmJjkaoQyK0U62HXt2lX6d40aNVCnTh3Y2dlh79696NChQ5bzpT/bLt37z7vLjJ+fH2bMmPHpBRMRyZCOjg4qVqyIpKQkdZdCJEva2tqffKQuXZEOdh+ysrKCnZ0dwsLCsuxjaWmZ4ejc48ePMxzFe5+Pj4/Ks+1iY2Nha2v76QUTEcmEhoYGnzxB9Bn4rE6WePbsGR4+fAgrK6ss+7i6uuLgwYMqbQcOHEDDhg2znEepVMLIyEjlRURERPS5UesRuzdv3uDu3bvS+/DwcISEhMDU1BSmpqaYPn06OnbsCCsrKzx48ADff/89Spcujfbt20vz9O7dGzY2NvDz8wMAjB49Go0bN8bcuXPxzTff4I8//sChQ4dw6tSpQt8+IiIiosKk1mB34cIFeHh4SO/Th0O9vLywbNkyXLt2DevWrcPLly9hZWUFDw8PBAUFwdDQUJonMjJS5Sqthg0b4vfff8eUKVPg6+uL8uXLIygoCPXr1y+8DSMiIiJSA4XgXScziI2NhbGxMV69esVh2fdEzqyp7hIKTNmp19RdAhERUaZyk0s+q3PsiIiIiChrDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTag12J06cQNu2bWFtbQ2FQoFdu3ZJ05KTkzFx4kTUrFkTBgYGsLa2Ru/evfHo0aNslxkYGAiFQpHhlZCQUMBbQ0RERKReag12cXFxcHR0xK+//pphWnx8PC5dugRfX19cunQJO3bswJ07d/D1119/dLlGRkaIjo5Weenq6hbEJhAREREVGVrqXLmnpyc8PT0znWZsbIyDBw+qtC1evBj16tVDZGQkypYtm+VyFQoFLC0t87VWIiIioqLuszrH7tWrV1AoFDAxMcm235s3b2BnZ4cyZcrgq6++wuXLl7Ptn5iYiNjYWJUXERER0efmswl2CQkJmDRpEnr06AEjI6Ms+1WpUgWBgYHYvXs3Nm/eDF1dXXzxxRcICwvLch4/Pz8YGxtLL1tb24LYBCIiIqICpRBCCHUXAbwbPt25cyfatWuXYVpycjI6d+6MyMhIHDt2LNtg96G0tDTUrl0bjRs3xqJFizLtk5iYiMTEROl9bGwsbG1t8erVq1ytS+4iZ9ZUdwkFpuzUa+ougYiIKFOxsbEwNjbOUS5R6zl2OZGcnIwuXbogPDwcR44cyXXQ0tDQQN26dbM9YqdUKqFUKj+1VCIiIiK1KtJDsemhLiwsDIcOHUKpUqVyvQwhBEJCQmBlZVUAFRIREREVHWo9YvfmzRvcvXtXeh8eHo6QkBCYmprC2toanTp1wqVLl7Bnzx6kpqYiJiYGAGBqagodHR0AQO/evWFjYwM/Pz8AwIwZM9CgQQNUrFgRsbGxWLRoEUJCQrBkyZLC30AiIiKiQqTWYHfhwgV4eHhI78eOHQsA8PLywvTp07F7924AgJOTk8p8R48ehbu7OwAgMjISGhr/O/D48uVLDBo0CDExMTA2NoazszNOnDiBevXqFezGEBEREalZkbl4oijJzUmKxQkvniAiIip8ucklRfocOyIiIiLKOQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIpnIU7Br0qQJXr58maE9NjYWTZo0+dSaiIiIiCgP8hTsjh07hqSkpAztCQkJOHny5CcXRURERES5l6tgd/XqVVy9ehUAcPPmTen91atXcfnyZaxevRo2NjY5Xt6JEyfQtm1bWFtbQ6FQYNeuXSrThRCYPn06rK2toaenB3d3d9y4ceOjy92+fTuqVasGpVKJatWqYefOnbnZTCIiIqLPklZuOjs5OUGhUEChUGQ65Kqnp4fFixfneHlxcXFwdHRE37590bFjxwzT582bh59++gmBgYGoVKkSZs2ahebNmyM0NBSGhoaZLjM4OBhdu3bFDz/8gPbt22Pnzp3o0qULTp06hfr16+d8Y4mIiIg+MwohhMhp54iICAghUK5cOZw7dw5mZmbSNB0dHZibm0NTUzNvhSgU2LlzJ9q1awfg3dE6a2treHt7Y+LEiQCAxMREWFhYYO7cuRg8eHCmy+natStiY2Px119/SW2tWrVCyZIlsXnz5hzVEhsbC2NjY7x69QpGRkZ52h45ipxZU90lFJiyU6+puwQiIqJM5SaX5OqInZ2dHQAgLS0t79XlUHh4OGJiYtCiRQupTalUws3NDadPn84y2AUHB2PMmDEqbS1btoS/v39BlktERESkdrkKdu+7c+cOjh07hsePH2cIelOnTv3kwmJiYgAAFhYWKu0WFhaIiIjIdr7M5klfXmYSExORmJgovY+Njc1LyURERERqladgt3LlSgwdOhSlS5eGpaUlFAqFNE2hUORLsHt/ee8TQmRo+9R5/Pz8MGPGjLwX+R6X8evyZTlF0c7MT2skIiKiIiJPwW7WrFmYPXu2dO5bQbC0tATw7giclZWV1P748eMMR+Q+nO/Do3Mfm8fHxwdjx46V3sfGxsLW1javpRMRERGpRZ7uY/fixQt07tw5v2tR4eDgAEtLSxw8eFBqS0pKwvHjx9GwYcMs53N1dVWZBwAOHDiQ7TxKpRJGRkYqLyIiIqLPTZ6CXefOnXHgwIFPXvmbN28QEhKCkJAQAO8umAgJCUFkZCQUCgW8vb0xZ84c7Ny5E9evX0efPn2gr6+PHj16SMvo3bs3fHx8pPejR4/GgQMHMHfuXNy+fRtz587FoUOH4O3t/cn1EhERERVleRqKrVChAnx9fXHmzBnUrFkT2traKtNHjRqVo+VcuHABHh4e0vv04VAvLy8EBgZiwoQJePv2LYYNG4YXL16gfv36OHDggMo97CIjI6Gh8b982rBhQ/z++++YMmUKfH19Ub58eQQFBfEedkRERCR7ubqPXToHB4esF6hQ4P79+59UlLp9yn3s5H3xxHx1l1BgeB87IiIqqgrsPnbpwsPD81QYERERERWcPJ1jR0RERERFT56O2PXr1y/b6WvWrMlTMURERESUd3kKdi9evFB5n5ycjOvXr+Ply5do0qRJvhRGRERERLmTp2C3c+fODG1paWkYNmwYypUr98lFEREREVHu5ds5dhoaGhgzZgx+/vnn/FokEREREeVCvl48ce/ePaSkpOTnIomIiIgoh/I0FPv+c1UBQAiB6Oho7N27F15eXvlSGBERERHlTp6C3eXLl1Xea2howMzMDAsXLvzoFbNEREREVDDyFOyOHj2a33UQERER0SfKU7BL9+TJE4SGhkKhUKBSpUowMzPLr7qIiIiIKJfydPFEXFwc+vXrBysrKzRu3BiNGjWCtbU1+vfvj/j4+PyukYiIiIhyIE/BbuzYsTh+/Dj+/PNPvHz5Ei9fvsQff/yB48eP47vvvsvvGomIiIgoB/I0FLt9+3Zs27YN7u7uUlvr1q2hp6eHLl26YNmyZflVHxERERHlUJ6O2MXHx8PCwiJDu7m5OYdiiYiIiNQkT8HO1dUV06ZNQ0JCgtT29u1bzJgxA66urvlWHBERERHlXJ6GYv39/eHp6YkyZcrA0dERCoUCISEhUCqVOHDgQH7XSEREREQ5kKdgV7NmTYSFhWHDhg24ffs2hBDo1q0bevbsCT09vfyukYiIiIhyIE/Bzs/PDxYWFhg4cKBK+5o1a/DkyRNMnDgxX4ojIiIiopzL0zl2v/32G6pUqZKhvXr16li+fPknF0VEREREuZenYBcTEwMrK6sM7WZmZoiOjv7kooiIiIgo9/IU7GxtbfHPP/9kaP/nn39gbW39yUURERERUe7l6Ry7AQMGwNvbG8nJyWjSpAkA4PDhw5gwYQKfPEFERESkJnkKdhMmTMDz588xbNgwJCUlAQB0dXUxceJE+Pj45GuBRERERJQzeQp2CoUCc+fOha+vL27dugU9PT1UrFgRSqUyv+sjIiIiohzKU7BLV6JECdStWze/aiEiIiKiT5CniyeIiIiIqOhhsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSiU+63QkRERGph8v4deouocBcnN9b3SV8tnjEjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZKLIBzt7e3soFIoMr+HDh2fa/9ixY5n2v337diFXTkRERFS4ivxVsefPn0dqaqr0/vr162jevDk6d+6c7XyhoaEwMjKS3puZmRVYjURERERFQZEPdh8Gsh9//BHly5eHm5tbtvOZm5vDxMSkACsjIiIiKlqK/FDs+5KSkrBhwwb069cPCoUi277Ozs6wsrJC06ZNcfTo0Wz7JiYmIjY2VuVFRERE9Ln5rILdrl278PLlS/Tp0yfLPlZWVlixYgW2b9+OHTt2oHLlymjatClOnDiR5Tx+fn4wNjaWXra2tgVQPREREVHBKvJDse9bvXo1PD09YW1tnWWfypUro3LlytJ7V1dXPHz4EAsWLEDjxo0zncfHxwdjx46V3sfGxjLcERER0Wfnswl2EREROHToEHbs2JHreRs0aIANGzZkOV2pVEKpVH5KeURERERq99kMxQYEBMDc3Bxt2rTJ9byXL1+GlZVVAVRFREREVHR8Fkfs0tLSEBAQAC8vL2hpqZbs4+ODqKgorFv37mHI/v7+sLe3R/Xq1aWLLbZv347t27ero3QiIiKiQvNZBLtDhw4hMjIS/fr1yzAtOjoakZGR0vukpCSMGzcOUVFR0NPTQ/Xq1bF37160bt26MEsmIiIiKnSfRbBr0aIFhBCZTgsMDFR5P2HCBEyYMKEQqiIiIiIqWj6bc+yIiIiIKHsMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQyUaSD3fTp06FQKFRelpaW2c5z/PhxuLi4QFdXF+XKlcPy5csLqVoiIiIi9dJSdwEfU716dRw6dEh6r6mpmWXf8PBwtG7dGgMHDsSGDRvwzz//YNiwYTAzM0PHjh0Lo1wiIiIitSnywU5LS+ujR+nSLV++HGXLloW/vz8AoGrVqrhw4QIWLFjAYEdERESyV6SHYgEgLCwM1tbWcHBwQLdu3XD//v0s+wYHB6NFixYqbS1btsSFCxeQnJxc0KUSERERqVWRDnb169fHunXr8Pfff2PlypWIiYlBw4YN8ezZs0z7x8TEwMLCQqXNwsICKSkpePr0aZbrSUxMRGxsrMqLiIiI6HNTpIOdp6cnOnbsiJo1a6JZs2bYu3cvAGDt2rVZzqNQKFTeCyEybX+fn58fjI2NpZetrW0+VE9ERERUuIp0sPuQgYEBatasibCwsEynW1paIiYmRqXt8ePH0NLSQqlSpbJcro+PD169eiW9Hj58mK91ExERERWGIn/xxPsSExNx69YtNGrUKNPprq6u+PPPP1XaDhw4gDp16kBbWzvL5SqVSiiVynytlYiIiKiwFekjduPGjcPx48cRHh6Os2fPolOnToiNjYWXlxeAd0faevfuLfUfMmQIIiIiMHbsWNy6dQtr1qzB6tWrMW7cOHVtAhEREVGhKdJH7P799190794dT58+hZmZGRo0aIAzZ87Azs4OABAdHY3IyEipv4ODA/bt24cxY8ZgyZIlsLa2xqJFi3irEyIiIioWinSw+/3337OdHhgYmKHNzc0Nly5dKqCKiIiIiIquIj0US0REREQ5x2BHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQyoaXuAohIPiJn1lR3CQWm7NRr6i6BiOijeMSOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkQkvdBRAVNy7j16m7hAKz01DdFRARFW88YkdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDJRpIOdn58f6tatC0NDQ5ibm6Ndu3YIDQ3Ndp5jx45BoVBkeN2+fbuQqiYiIiJSjyId7I4fP47hw4fjzJkzOHjwIFJSUtCiRQvExcV9dN7Q0FBER0dLr4oVKxZCxURERETqU6Rvd7J//36V9wEBATA3N8fFixfRuHHjbOc1NzeHiYlJAVZHREREVLQU6SN2H3r16hUAwNTU9KN9nZ2dYWVlhaZNm+Lo0aPZ9k1MTERsbKzKi4iIiOhz89kEOyEExo4diy+//BI1atTIsp+VlRVWrFiB7du3Y8eOHahcuTKaNm2KEydOZDmPn58fjI2NpZetrW1BbAIRERFRgSrSQ7HvGzFiBK5evYpTp05l269y5cqoXLmy9N7V1RUPHz7EggULshy+9fHxwdixY6X3sbGxDHdERET02fksjtiNHDkSu3fvxtGjR1GmTJlcz9+gQQOEhYVlOV2pVMLIyEjlRURERPS5KdJH7IQQGDlyJHbu3Iljx47BwcEhT8u5fPkyrKys8rk6IiIioqKlSAe74cOHY9OmTfjjjz9gaGiImJgYAICxsTH09PQAvBtGjYqKwrp17x6s7u/vD3t7e1SvXh1JSUnYsGEDtm/fju3bt6ttO4iIiIgKQ5EOdsuWLQMAuLu7q7QHBASgT58+AIDo6GhERkZK05KSkjBu3DhERUVBT08P1atXx969e9G6devCKpuIiIhILYp0sBNCfLRPYGCgyvsJEyZgwoQJBVQRERERUdH1WVw8QUREREQfx2BHREREJBMMdkREREQyUaTPsSMiKq5cxq9TdwkF5uL83uougUi2eMSOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhk4rMIdkuXLoWDgwN0dXXh4uKCkydPZtv/+PHjcHFxga6uLsqVK4fly5cXUqVERERE6lPkg11QUBC8vb0xefJkXL58GY0aNYKnpyciIyMz7R8eHo7WrVujUaNGuHz5Mr7//nuMGjUK27dvL+TKiYiIiApXkQ92P/30E/r3748BAwagatWq8Pf3h62tLZYtW5Zp/+XLl6Ns2bLw9/dH1apVMWDAAPTr1w8LFiwo5MqJiIiICleRDnZJSUm4ePEiWrRoodLeokULnD59OtN5goODM/Rv2bIlLly4gOTk5AKrlYiIiEjdtNRdQHaePn2K1NRUWFhYqLRbWFggJiYm03liYmIy7Z+SkoKnT5/CysoqwzyJiYlITEyU3r969QoAEBsbm+uaUxPf5nqez8Vr7VR1l1Bg8vKzzit+Rj5PhfkZAeT9OSnsfSlX/IwUH+n7Qwjx0b5FOtilUygUKu+FEBnaPtY/s/Z0fn5+mDFjRoZ2W1vb3JYqazXUXUBB8jNWdwWywM8I5YTx4iHqLoGKOH5GMvf69WsYG2f/u6hIB7vSpUtDU1Mzw9G5x48fZzgql87S0jLT/lpaWihVqlSm8/j4+GDs2LHS+7S0NDx//hylSpXKNkAWJ7GxsbC1tcXDhw9hZGSk7nKoCOJnhHKCnxP6GH5GMhJC4PXr17C2tv5o3yId7HR0dODi4oKDBw+iffv2UvvBgwfxzTffZDqPq6sr/vzzT5W2AwcOoE6dOtDW1s50HqVSCaVSqdJmYmLyacXLlJGREb9olC1+Rign+Dmhj+FnRNXHjtSlK9IXTwDA2LFjsWrVKqxZswa3bt3CmDFjEBkZiSFD3h2m9fHxQe/evaX+Q4YMQUREBMaOHYtbt25hzZo1WL16NcaNG6euTSAiIiIqFEX6iB0AdO3aFc+ePcPMmTMRHR2NGjVqYN++fbCzswMAREdHq9zTzsHBAfv27cOYMWOwZMkSWFtbY9GiRejYsaO6NoGIiIioUBT5YAcAw4YNw7BhwzKdFhgYmKHNzc0Nly5dKuCqihelUolp06ZlGLImSsfPCOUEPyf0MfyMfBqFyMm1s0RERERU5BX5c+yIiIiIKGcY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiApNSkqKuksgIpI1BjsiKhQPHz5EgwYNEBYWpu5SiIhki8GOco13yKG8UCqVSE5OxldffYX79++ruxwqwlJTU9VdAhVxiYmJAID4+HgA757xTu8w2FGOpX+BFAoFwx3lihAC5ubm+Pvvv2FpaYnmzZsz3JGKW7duYc6cOQAATU1NhjvK0u3bt9G/f380bdoUrVu3xpUrV6ChocFw9/8Y7ChHHj58iP79+2PXrl0AGO4oZ96+fQvg3ecFACwtLfH777/D2tqa4Y4kd+/ehbu7O6ZMmYIxY8YAYLijzN24cQNffPEFjI2NUa9ePZQqVQpNmjRBZGQkNDQYaQAGO8qhx48f49atWwgICMC+ffsAfDzcMfgVb3fu3IGnpyf69++PI0eOIDQ0FABgZWWFXbt2oUyZMvDw8GC4K+ZevXqFmTNn4ssvv8S8efOwceNGjBw5EgDDHal6/PgxBg4ciP79+2PJkiXw8/ODv78/7OzscPz4cQD8uwMw2NFHvHjxAvHx8XBxccGKFSvw6tUrLF26VCXcvX/4OzU1VfoDnn6UhoqfpKQk+Pv748SJEwgICMCPP/4IFxcX9O7dGz/++CMSExOxbt06ODo6onXr1ggPD1d3yaRGFhYW6NWrFwYPHgw/Pz8EBQUx3FEGt2/fhhAC3bp1k9psbW1hYmKC27dvq7GyooXBjrL033//oWvXrliwYAHi4uJQr149zJ07F3FxcViyZAn27t0LANDQ0IAQAklJSRg1ahR8fHzw+vVrNVdP6qSjo4M+ffpgyJAhqF27Nr7++mvs2bMHBgYGWLx4MZo2bYq2bduicuXKuHPnDlq3bo2IiAh1l01qYGxsjEmTJqFdu3YwNDREx44dMXv27AzhLjExES9fvlRvsaQWSUlJAIA6dergu+++Q+3atQEAycnJAICSJUtKBxh4QIHBjrJRsmRJlCpVCn///TeWLVuGuLg41K9fHz/++CPi4+NVjtwBwHfffYcVK1ZgypQpMDQ0VGPlVBTUq1cPvXr1gqOjI5YsWQKFQoFly5bh7t278Pf3R5s2bXDx4kUolUqEhoZyCKUYiYqKwpYtW/Dbb78hNDQUpUqVghACqampMDExQdeuXTOEuzFjxmDatGm8F2Ixc/v2bYwePRrnz5+Hvr4+OnXqBODdVbDa2toAAAMDA8TFxUnz+Pn54ciRI2qptyjQUncBVDSlpqZCR0cHq1evhre3N7Zt2waFQoEhQ4ZI4W7SpElYsmQJUlJScPToUaxevRrnzp2Ds7OzussnNXjw4AH++OMPpKWlwdHREU2aNIGrqyt0dHSQkpKCoUOH4ocffkDHjh3RsmVLtGzZErGxsXj58iWEELCzs1P3JlAhuHr1Kjp37gwA+Pfff6GpqYk///wTbm5u0tEWIyMjabht2rRp2L9/P8LDw3HmzBloafHPVnHx5s0beHp6IiIiAqmpqdDS0pL+vrx/oURaWpo0XO/r64vZs2fj0qVLaqm5SBBEWUhMTJT+Xbt2bVGlShUxf/588ebNGyGEEGfOnBHNmjUTpUuXFnp6euLixYvqKpXULCQkRFhZWYkmTZoICwsL0aRJE3H8+HFp+vnz54WXl5eoVq2a2LVrl9SenJysjnJJTUJCQoS+vr6YMGGCiIyMFMeOHROtWrUSFhYWIioqKkP/J0+eCFdXV2FqaiquXbumhopJ3SZNmiQsLCyEqamp6NChg7hy5Yo0LSkpSQghRKdOncS0adPEokWLhFKpLPZ/ixjsSBIaGiq2bt0qhBAiLS1Navf39xcmJiaiZcuWol69eirhLjg4WHz11Vfi+vXraqmZ1O/KlStCT09P+Pj4iJSUFHHr1i1RpkwZsX79epV+Z8+eFV5eXqJWrVpiy5YtaqqW1CUyMlIYGBiIIUOGqLQHBgYKY2NjcfXqVZX2lJQUMWXKFKGpqanyx5yKh5SUFCHEu78xgwcPFkFBQcLW1la0adMmw+ehf//+QqFQCENDQ3Hu3Dl1lFuk8Bw7AgDExsZi//796NKlCzZu3CgNicydOxczZszA3r17sX//fjg6OmLr1q347bff8ObNGzRo0ADbtm1D9erV1bwFpA6hoaFwdnbG2LFjMWfOHGhqaqJKlSpwdnbG33//jd69e2PcuHEA3p1zN3z4cFSoUAE//fQT3rx5w/PqipErV66gQoUKiIyMRFRUlNRepkwZaGlpZTjp/e3bt0hISMClS5dQq1atwi6X1CT9HEpNTU0AgJOTEy5evIg7d+7g3LlzuHLlCnx9fXH16lVpHlNTU2hrayM4OBh169ZVS91FirqTJanfixcvRKlSpcSuXbvEwoULhZaWlti/f7+YN2+eMDU1FQcOHJD6JiQkiCFDhoiKFSuKxYsXi7S0NJWje1S8/P7770KhUIjFixdLbX5+fkKhUIihQ4eKDh06CH19fdGiRQtpekhISKbDbiR/O3bsEO7u7sLd3V0kJyeL169fi9KlSwsfH59M+6cftaHi4ebNm2LQoEFixYoV4u3bt1L76dOnhbOzs4iKihLXrl0T1tbW4ptvvhEhISFCCCGioqL4O+U9DHYkUlJSRPv27UW7du3E69evxbhx44RCoRBaWlri0KFDKv2EeBfuRo8eLe7fv6+ukqkIWbJkiVAoFGLlypXixx9/FKampmLfvn1CCCFSU1PF0qVLM3yWqHh5/1zK7du3C3d3d+Hq6irMzc3FmDFjpGmpqanqKI+KgNevXwtbW1uhUChEhQoVRLVq1cTq1avFhQsXREpKimjVqpUIDAwUQrz7z6GdnZ1wd3cXN2/eVHPlRQ+HYgmamppo1qwZTpw4gZiYGMyfPx8zZ85EamoqXrx4odIvJSUFSqUS/v7+cHBwUGPVVFQMGzYMixYtwqBBg+Dj44PNmzfD09MTaWlp0NDQQKVKlWBjYwMzMzN1l0qF6MWLF3jy5AkAQEtLS7rPWIcOHTBy5Ejo6OhAQ0MD3t7eAN4NwfGRUMVXiRIlMGvWLFhbW6Ndu3Zo0KABzpw5g2+++QbLly+HkZERfH19ERUVBUdHR+zatQv//fcfSpQooe7Sixx+i4o58f/nOA0bNgx2dnb4/vvvAQBTpkzB+PHj0aNHD2zevFnqz1sNFG///vsvNmzYgHXr1uHcuXNS+4gRIxAQEADg3bMc00MdABw6dAilS5eGpaWlWmqmwhcREYHKlStj6NChmDJlCpKSklSeHpEe7qpUqYK+ffsiKipKJfxR8ZJ+Xl3v3r3h6+uLbdu2wcbGBkOHDsXGjRuxZ88ePHr0CP/++y9evHiBtLQ0ODk5ISQkBLa2tmquvghS9yFDKnwJCQkq79OHSRYsWCCcnJzErVu3pGkTJ04UBgYGYs2aNYVaIxU9V65cEfb29qJevXpCqVSK2rVri99//12lz6+//ioUCoWYN2+eEEKIqVOnCj09PXH58mU1VEzq8ueffwp9fX2xZcsW4eTkJFq1aiUGDx4sIiMjVYZlt27dKpo2bSpq167Nc6SKofTTex49eqTSvnTpUmFjYyO8vb3FmzdvRHx8vLh7967Yv3+/Sj+e3505Brti5v79++Krr74SK1euFK9fv1aZ9vDhQ2Fqaip8fX1V2ocPHy7Mzc3Fq1evCrNUKkKuXLki9PX1hY+Pj4iNjRVHjhwRZmZmokuXLiI5OVnlF+yvv/4qlEqlqFOnjihRooS4cOGCGisndfHw8BA//PCDSEtLE6tWrRLdu3eX/lj/+eefUr9du3YJT09P8eDBAzVWS4Xt/v37wsfHR9SpU0eULl1aNG/eXPj7+0vTf/vtN2FlZSW8vb3FvXv3pHaGuY9jsCtmbt68Kb766iuhpaUlvvzySzFhwgQRGxsrXYH0448/iqpVq4obN26ozPfff/+po1wqAsLCwkSJEiXEwIEDVdrr1q0rKlSoIJ4+fZphnp9//lmULFlSXLp0qbDKpCIi/aaxQUFBol27duLly5fStEqVKgl7e3uhq6srunfvLhYtWiSEECIuLk4ttZJ6XL16VZQrV0706tVLjBs3TqxatUo4OTkJS0tL4eXlJfVbsWKFsLa2FuPHjxd37txRX8GfGQa7Yurq1ati0KBBwsHBQZQtW1Z899134urVq+LChQuiTJky0tMBeLsB+uuvv4RCoRDjxo0TYWFhQoj/3dLE0dFRtGnTRgwdOlT8/PPP4uXLl9LNq9//g07y9t9//2X4z19ERISwsbERq1atEkII4eXlJSwtLcXly5fFuXPnRLNmzYSTk5P4999/1VEyqUlISIgwMDCQDiqke/LkiRg9erSwtLQUo0aNktoDAgKErq6umDx5Mp9Uk0MKIXiH0OIqMTERb9++xezZsxEcHIyzZ8/i+++/x9KlS2FjY4NTp07xiqNi7MmTJ4iIiICNjQ2uXbuGfv36wcvLC4mJiQgICMBvv/2GKlWq4O7duzh58iR+//13CCFQr149bN++HRoaGhluOkvyEx8fD3t7e7Ro0QILFy6EhYWFNG3VqlXYtm0bhBC4cuUK/vrrL+lZn69evUJaWhpKliyprtKpkN27dw+1atXC8OHDMW/ePKSmpkJTUxPJycnQ1tbG06dPMWrUKJw5cwabN29G/fr1AQAbN25EvXr1ULFiRTVvwWdCvbmSioonT56IgIAA4ebmJvT19YWxsbF4/PixussiNblx44b44osvRPPmzUX79u2FEEKsXbtWmJubC21t7UwvpomNjRUrV64Ud+/eLexySc127doldHV1xaBBg0R0dLTUfu7cOWFvby/Kly+vct9LnidVPP3888/C3Nxc+Pr6Ss8iTx8VSv9M3LlzR+jp6Ynly5errc7PHe9dUcwJIaBQKFC6dGn06dMHrVu3xoMHD1C6dGned6yYunHjBr788ksMGzYMgwcPhrW1NYB3tyIwMDDAiBEjcP36dYSFhUn/g05OToahoSEGDBigztKpkKXf1uabb77BgQMH4OHhAYVCgWnTpsHKygp169ZFx44dsWvXLtjY2AD43+8cKj4ePHiAe/fuYdSoUYiPj8fOnTvx9u1bzJo1C0qlUuX2SA4ODjAzM8Pz58/VXPXni/exK+Y+/AVrbm6OevXqoVy5cmqqiNTp+fPnGDJkCHr16oXZs2ejbNmy0NLSku4z1bFjR8yfPx9BQUH49ddfcffuXQCAtra2OssmNRBCQENDAwcOHIC3tzeqVauGgwcPYuXKlZg5c6b0PNi+ffuiZMmS0v0wGeqKl0ePHqFu3boYOnQo9uzZg0mTJuHrr7/GsWPHpHscamhoSPc5vHr1KszNzfHll1+qufLPF4MdEUliYmIQHR2Njh07qtwsVktLC+LdxVb49ttvMXfuXOzatQtz5szB/fv31VgxqYtCocCOHTvQrl07lCpVCnfv3oWHhwf27t2LFStWYNasWXj69CmqVKkChUKBrVu3Sv9BoOIjNDQUz549g4mJCVauXIldu3Zh8uTJUribPHkyEhMToampCQDYtGkTDAwMUKVKFTVX/vniUCwRSUJCQhAREYHGjRtDoVCoDJGkH2mJj4+Hu7s7fvnlF3z//fcwMDBQZ8mkJqGhoRg3bhwWLlyIoUOHSu2tWrXC3r170aZNGwgh8PPPP2Pt2rVQKBR8ck0x5OHhgb59++LixYtQKpVYtGgRNDU1MXnyZADA7t27MWXKFMyfPx9+fn5YvXo1Tpw4wVOBPgG/ZUQksbe3h5aWFnbs2IGOHTtm+uzOVatWYc+ePdI5VcbGxmqolNQtMjISWlpaaN26tdSWfpVjq1atcOTIEXh4eEjPluYQbPGTmJgIpVIpjQB0794dv/32G+bPnw+FQiGFu7/++gs1atTA3bt38c8//6BmzZpqrvzzxqFYIpLY2dnByMgI69atQ0REhNQu3rsrUmRkJJycnCCEgJGRkTrKpCIgLi4OCQkJ0vu0tDRpOO3w4cOoVasWTp06hSFDhjDUFSMPHz7Erl27AABKpRIAULduXZw5cwZhYWFYvnw5LCwsMH/+fOzZsweTJ0+Gh4cHhBA4e/YsXFxc1Fi9PDDYEZHExsYGy5Ytw99//w1fX1/cvHkTwLth2Pj4eHz//ffYtm0bBgwYAIVCwT/YxZijoyOePn2KFStWAIDK0d3du3dj4cKFaNiwIapWraquEqmQPXz4EM7OzujQoQPatGmDLVu24M6dOzAzM8O8efMQFBQEAJg1axbMzc3h7++P7du3Y9asWThx4gQcHR3VvAXywBsUE5GKtLQ0rFy5EiNGjED58uXRsGFD6OrqIioqCmfOnMH+/fulm8xS8bZmzRoMGTIE3t7e6N27NzQ1NREYGIgVK1YgODiYJ8AXMxEREejUqRO0tbWRlJQEZ2dnHDx4ED4+PihZsiTWr1+PYcOGwdPTEzdv3sTo0aOho6ODoKAg3gw/HzHYEVGmzp07h/nz5+PevXswMDDAF198gf79+/Pu7yRJS0vD9u3bMXjwYBgYGEBXVxeamprYvHkzw38xFRYWhkmTJiEtLQ29e/eGhoYG/P39YWJigj/++AN169bFyZMnoaOjg9DQUBgYGKBMmTLqLltWGOyIKEvvXxVLlJVHjx4hIiICCoUCDg4OKo8Vo+InNDQUY8aMQWpqKhYvXiw9lnD27Nno0qULevXqxRtVFyAGOyLK0vu/fPmLmIhyKiwsDCNGjAAATJ06FV988YWaKyo+GOyIiIgo34WFhWHUqFEQQmDKlCl8mkQh4RgLERER5buKFSti0aJF0NbWxvjx43HmzBl1l1QsMNgRERFRgahYsSLmz5+PMmXKwNraWt3lFAsciiUiIqIClZSUBB0dHXWXUSww2BERERHJBIdiiYiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIgKgEKhwK5du9RdBhEVMwx2RCRrffr0gUKhyPBq1aqV1Gfw4MEoX7489PT0YGZmhm+++Qa3b9/+6HLbtWuX5fTo6Gh4enrm12YQEeWIlroLICIqaK1atUJAQIBKm1KplP7t4uKCnj17omzZsnj+/DmmT5+OFi1aIDw8HJqamnlap6Wl5SfVTESUFzxiR0Syp1QqYWlpqfIqWbKkNH3QoEFo3Lgx7O3tUbt2bcyaNQsPHz7EgwcP8rzOD4diT58+DScnJ+jq6qJOnTrYtWsXFAoFQkJCAACpqano378/HBwcoKenh8qVK+OXX35RWeaxY8dQr149GBgYwMTEBF988QUiIiKk6X/++SdcXFygq6uLcuXKYcaMGUhJScnzNhDR54dH7IiI3hMXF4eAgAA4ODjA1tY2X5b5+vVrtG3bFq1bt8amTZsQEREBb29vlT5paWkoU6YMtmzZgtKlS+P06dMYNGgQrKys0KVLF6SkpKBdu3YYOHAgNm/ejKSkJJw7dw4KhQIA8Pfff+Pbb7/FokWL0KhRI9y7dw+DBg0CAEybNi1ftoOIij4GOyKSvT179qBEiRIqbRMnToSvr6/0funSpZgwYQLi4uJQpUoVHDx4MN8eWr5x40YoFAqsXLkSurq6qFatGqKiojBw4ECpj7a2NmbMmCG9d3BwwOnTp7FlyxZ06dIFsbGxePXqFb766iuUL18eAFC1alWp/+zZszFp0iR4eXkBAMqVK4cffvgBEyZMYLAjKkYY7IhI9jw8PLBs2TKVNlNTU5X3PXv2RPPmzREdHY0FCxagS5cu+Oeff6Crq/vJ6w8NDUWtWrVUllWvXr0M/ZYvX45Vq1YhIiICb9++RVJSEpycnKR6+/Tpg5YtW6J58+Zo1qwZunTpAisrKwDAxYsXcf78ecyePVtaXmpqKhISEhAfHw99ff1P3g4iKvoY7IhI9gwMDFChQoVs+xgbG8PY2BgVK1ZEgwYNULJkSezcuRPdu3f/5PULIaQh0/fb3rdlyxaMGTMGCxcuhKurKwwNDTF//nycPXtW6hMQEIBRo0Zh//79CAoKwpQpU3Dw4EE0aNAAaWlpmDFjBjp06JBh/fkRTono88BgR0SUCSEEEhMT82VZVapUwcaNG5GYmChdjXvhwgWVPidPnkTDhg0xbNgwqe3evXsZluXs7AxnZ2f4+PjA1dUVmzZtQoMGDVC7dm2EhoZ+NMASkbwx2BGR7CUmJiImJkalTUtLC6VLl8b9+/cRFBSEFi1awMzMDFFRUZg7dy709PTQunXrbJf76tUr6arWdKampihbtqxKW48ePTB58mQMGjQIkyZNQmRkJBYsWAAA0pG8ChUqYN26dfj777/h4OCA9evX4/z583BwcAAAhIeHY8WKFfj6669hbW2N0NBQ3LlzB7179wYATJ06FV999RVsbW3RuXNnaGho4OrVq7h27RpmzZqV531HRJ8ZQUQkY15eXgJAhlflypWFEEJERUUJT09PYW5uLrS1tUWZMmVEjx49xO3bt/O0XC8vLyGEEADEzp07pf7//POPqFWrltDR0REuLi5i06ZNAoC0noSEBNGnTx9hbGwsTExMxNChQ8WkSZOEo6OjEEKImJgY0a5dO2FlZSV0dHSEnZ2dmDp1qkhNTZXWsX//ftGwYUOhp6cnjIyMRL169cSKFSvyb2cSUZGnEOKDEz2IiKjAbdy4EX379sWrV6+gp6en7nKISCY4FEtEVAjWrVuHcuXKwcbGBleuXMHEiRPRpUsXhjoiylcMdkREhSAmJgZTp05FTEwMrKys0LlzZ5VbkxAR5QcOxRIRERHJBJ8VS0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQT/wdrxEe4Ed7b6AAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:19: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES'] = active_df[active_df['Smiles'].isin(smiles)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:19: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES'] = active_df[active_df['Smiles'].isin(smiles)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:20: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES and not Uniprot'] = active_df[active_df['Smiles'].isin(smiles) & (active_df['Uniprot'] != uniprot_id)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:20: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES and not Uniprot'] = active_df[active_df['Smiles'].isin(smiles) & (active_df['Uniprot'] != uniprot_id)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:22: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of active entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == True)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:22: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of active entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == True)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:23: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of inactive entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == False)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:23: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of inactive entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == False)].shape[0]\n"
]
},
{
"data": {
"text/plain": [
"Uniprot P10275\n",
"Number of entries 107\n",
"Number of entries per E3 ligase 3\n",
"Number of entries with same SMILES 107\n",
"Number of entries with same SMILES and not Uniprot 0\n",
"Number of active entries 66\n",
"Number of inactive entries 41\n",
"Name: 0, dtype: object"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABa3ElEQVR4nO3dd1QU1/8+8GelLEXAgjQliAWxomKDRCnGgsYk9i4k9hol9oomij0ajS0qdsX+0WhQLFhRUYMFFVFBjEKwgtLL/f3hj/m6UqTpwvi8ztlz3Dt3Z94z7MLjvTOzCiGEABERERGVeKXUXQARERERFQ0GOyIiIiKZYLAjIiIikgkGOyIiIiKZYLAjIiIikgkGOyIiIiKZYLAjIiIikgkGOyIiIiKZYLAjIiIikgkGOyoyGzZsgEKhkB46OjowMzODi4sLvL29ERMTk+U1Xl5eUCgU+dpOQkICvLy8EBAQkK/XZbetypUr45tvvsnXej5k27ZtWLJkSbbLFAoFvLy8inR7Re348eNo1KgR9PX1oVAosH///mz7RUREqPy833+8u5/bt29HixYtYGpqCqVSCQsLC3To0AHnz5/PU03Ozs5wdnZWaSsJxzIv8nq8i0JAQAAUCgV2796d7fIRI0bk+/OYKfPzHxERIbV5eHiovCeUSiVq1KiBGTNmICkpqUDbyc6TJ0/g5eWF4ODgPPXP7jgU5PdXbuvOfGhoaMDU1BRdu3bF7du3VfouWbIEnTp1grW1NRQKRZb3+LtiYmLg4eEBY2Nj6OnpwcHBAcePH1fpExcXh9mzZ8PZ2RlmZmYoXbo06tati3nz5mU53pm/D3N67Nix44N9dXR08nRM6NPSVHcBJD8+Pj6wtbVFamoqYmJicPbsWcybNw8LFy6Er68vvv76a6nvgAED0LZt23ytPyEhATNnzgSAXH8Rvq8g2yqIbdu24ebNmxg9enSWZYGBgahUqdJHr6GghBDo1q0bbGxscODAAejr66NGjRq5vmbkyJHo1atXlvZ39/P58+f48ssv8dNPP8HY2BhRUVFYvHgxWrRogePHj8PJySnftRb3Y5kXBTnexVX79u0RGBgIc3NzlXZdXV2cOHECAPDy5Uts374ds2bNwp07d+Dr61sk237y5AlmzpyJypUro379+oVaV35+f+Vmzpw5cHFxQUpKCi5fvoxZs2bh+PHjuHHjBipWrAgAWLVqFfT19eHq6oqDBw/muK7k5GS0bNkSr169wtKlS2FiYoI//vgDbdu2xbFjx6TPT2RkJJYsWYK+ffvC09MTpUuXxpkzZ+Dl5QV/f3/4+/tLwT2n34cDBw7E/fv3s13m5+cHIyMj6XmpUhwbKpYEURHx8fERAERQUFCWZQ8fPhSWlpbCwMBAREdHF2o7T58+FQDEjBkz8tQ/Pj4+x2VWVlaiffv2harnfe3btxdWVlZFus5P5d9//xUAxLx58z7YNzw8XAAQCxYsKNC2Xr16JbS0tETfvn0/2NfJyUk4OTkVaDvFWX6Od14lJCSIjIyMbJedPHlSABC7du3Kdvnw4cNFUf5ZcHd3F/r6+lnamzdvLgCIf//9N8fXJiQk5Hk7QUFBAoDw8fHJU//sjkNR/f7K6RivW7dOABC//vqr1Jaeni79u3bt2jm+x//44w8BQJw/f15qS01NFbVq1RJNmjSR2t68eSPevHmT5fULFiwQAMSZM2dyrT08PFwoFArRp08flfYZM2YIAOLp06e5vp6KB8Zt+iS++OILLFq0CK9fv8bq1aul9uymR0+cOAFnZ2eUL18eurq6+OKLL9C5c2ckJCQgIiICFSpUAADMnDlTmhLw8PBQWd/Vq1fRpUsXlC1bFlWrVs1xW5n27duHevXqQUdHB1WqVMHvv/+usjy7aSbg/6ZdMqeFnZ2dcejQITx8+FBlyiJTdtOHN2/exHfffYeyZctCR0cH9evXx8aNG7Pdzvbt2zFlyhRYWFjA0NAQX3/9NUJDQ3M+8O84e/YsWrZsCQMDA+jp6cHR0RGHDh2Slnt5eUkjYBMmTIBCoUDlypXztO6CMDAwgI6ODjQ1CzZxkN2xPHv2LBwcHKCjo4OKFSti2rRpWLt2bZafna+vL1q3bg1zc3Po6uqiZs2amDhxIuLj41XW9+DBA/To0QMWFhZQKpUwNTVFy5Yts0z5+fr6wsHBAfr6+ihdujTatGmDf/75J9f6P3S8P/TzAv7vfXn06FH8+OOPqFChAvT09JCcnJy3g5gHCoUCI0aMwObNm1GzZk3o6enBzs4Of/31V7a1vP8ZyU6zZs0AAA8fPgTwf6dE7N27Fw0aNICOjo40Kv+hz0dAQAAaN24MAPjhhx+yPRWgsHL6/ZUf7+8zkPcRr3379qFGjRpwcHCQ2jQ1NdGnTx9cunQJjx8/BgDo6+tDX18/y+ubNGkCAHj06FGu21m/fj2EEBgwYECe6qLiicGOPpl27dpBQ0MDp0+fzrFPREQE2rdvD21tbaxfvx5+fn6YO3cu9PX1kZKSAnNzc/j5+QEA+vfvj8DAQAQGBmLatGkq6+nUqROqVauGXbt2YdWqVbnWFRwcjNGjR2PMmDHYt28fHB0d8dNPP2HhwoX53scVK1bgyy+/hJmZmVRbYGBgjv1DQ0Ph6OiIkJAQ/P7779i7dy9q1aoFDw8PzJ8/P0v/yZMn4+HDh1i7di3WrFmDsLAwdOjQAenp6bnWderUKbi6uiI2Nhbr1q3D9u3bYWBggA4dOkjTYQMGDMDevXsBvJ1eDQwMxL59+z64zxkZGUhLS8vyyE56ejpSU1MRERGBoUOHQgiB4cOHf3AbeXH9+nW0atUKCQkJ2LhxI1atWoWrV69i9uzZWfqGhYWhXbt2WLduHfz8/DB69Gjs3LkTHTp0UOnXrl07XLlyBfPnz4e/vz9WrlyJBg0a4NWrV1KfOXPmoGfPnqhVqxZ27tyJzZs34/Xr12jevDlu3bqVY725He+8/Lze9eOPP0JLSwubN2/G7t27oaWlVZBDmKNDhw5h+fLlmDVrFvbs2YNy5cqhY8eOePDgQYHWd+/ePQCQ/pMGAFevXsW4ceMwatQo+Pn5oXPnznn6fDRs2BA+Pj4AgKlTp0qfuaIOJ3n5/ZWb7PY5r27evIl69eplac9sCwkJyfX1mVPhtWvXzrFPRkYGNmzYgGrVquV4akTdunWlcwb79euHyMjIvO4CfUrqHjIk+chtKiOTqampqFmzpvQ8c4g/0+7duwUAERwcnOM6cpuKzVzf9OnTc1z2LisrK6FQKLJsr1WrVsLQ0FCaxs3ct/DwcJV+mdMuJ0+elNpym4p9v+4ePXoIpVIpIiMjVfq5ubkJPT098erVK5XttGvXTqXfzp07BQARGBiY7fYyNWvWTJiYmIjXr19LbWlpaaJOnTqiUqVK0tRdfqZXM/vm9Mhu2qdGjRrScnNzc3H27NkPbkeI7Kdi3z+WXbt2Ffr6+irTRenp6aJWrVrZ/uwyZWRkiNTUVHHq1CkBQFy7dk0IIcSzZ88EALFkyZIc64qMjBSamppi5MiRKu2vX78WZmZmolu3brnuV07HO68/r8z3Zb9+/XLdTqaCTMUCEKampiIuLk5qi46OFqVKlRLe3t5SW3afkcyp2NTUVJGamiqePn0qli5dKhQKhWjcuLHUz8rKSmhoaIjQ0FCVbef18/Gxp2Izvf/7K7d1+/r6itTUVJGQkCBOnz4tqlWrJjQ0NKT31/tym4rV0tISgwcPztJ+/vx5AUBs27Ytx3quXbsmdHV1RceOHXOt+++//xYAVH6mmTZt2iRmz54tDh8+LE6cOCHmzp0rypUrJ0xNTXOdTif14IgdfVJCiFyX169fH9ra2hg0aBA2btxY4BGBzp0757lv7dq1YWdnp9LWq1cvxMXF4erVqwXafl6dOHECLVu2hKWlpUq7h4cHEhISsoz2ffvttyrPM//H/u70zvvi4+Nx8eJFdOnSBaVLl5baNTQ00LdvX/z77795ns7Nzk8//YSgoKAsj+xOYt+zZw8uXryIXbt2oVatWnBzc8v31c05yRzlMjY2ltpKlSqFbt26Zen74MED9OrVC2ZmZtDQ0ICWlpY0SpF55WK5cuVQtWpVLFiwAIsXL8Y///yDjIwMlfUcOXIEaWlp6Nevn8popY6ODpycnAq0bwX5eeXn/V4QLi4uMDAwkJ6bmprCxMQk1/ddpvj4eGhpaUFLSwsVKlTA6NGj4ebmlmU0uF69erCxsVFpy+/n42P70O+vd3Xv3h1aWlrQ09NDixYtkJ6ejt27d2c78pYXuV2tnNOyiIgIfPPNN7C0tMTatWtzXf+6deugqakpndbyrr59+2Ly5Mlwc3ODi4sLJkyYgL///htPnz7NdmaB1ItXxdInEx8fj+fPn6Nu3bo59qlatSqOHTuG+fPnY/jw4YiPj0eVKlUwatQo/PTTT3ne1vtX5uXGzMwsx7bnz5/neT0F8fz582xrtbCwyHb75cuXV3muVCoBAImJiTlu4+XLlxBC5Gs7+VGpUiU0atQoT30zp4KaNGmC77//Hg0aNMBPP/2Ea9euFXj7mZ4/fw5TU9Ms7e+3vXnzBs2bN4eOjg5+/fVX2NjYQE9PD48ePUKnTp2kY6lQKHD8+HHMmjUL8+fPx88//4xy5cqhd+/emD17NgwMDPDff/8BgHSO1/sKctVgQX5eeX2/Z57PmNPUfVpaWrbnPL7/vgPevvdye99l0tXVlaYvlUolrKysYGhomKVfdvuQ38/Hx5SX31/vmjdvHlxdXaGhoQFjY+Ms4TQ/ypcvn+2+vnjxAsDb/4S87+HDh3BxcYGmpiaOHz+ebZ9Mz549w4EDB9C+fftsfx9mp0mTJrCxscGFCxfyuBf0qTDY0Sdz6NAhpKenf/AWJc2bN0fz5s2Rnp6Oy5cvY9myZRg9ejRMTU3Ro0ePPG0rP/fiio6OzrEt8w9a5v2a3j8p/dmzZ3neTnbKly+PqKioLO1PnjwBAJXRp4IqW7YsSpUq9dG3k1+amppo2LAhdu7cWSTrK1++vBS03vX+z/fEiRN48uQJAgICVM4leve8uUxWVlZYt24dAODu3bvYuXMnvLy8kJKSglWrVknHbffu3bCysiqS/SjIzyuv7/fMkJt5sv37Hj9+nG04LoxSpUrlKfhntw+f4vORV3n9/ZWpSpUqef4Pz4fUrVsXN27cyNKe2VanTh2V9ocPH8LZ2RlCCAQEBHzwtkCbN29GSkpKvs9LFELwlifFEH8i9ElERkZi7NixMDIywuDBg/P0Gg0NDTRt2hR//PEHAEjTonkZpcqPkJCQLCNG27Ztg4GBARo2bAgA0tWK169fV+l34MCBLOvL60gGALRs2VIKGu/atGkT9PT0pCvpCkNfXx9NmzbF3r17VerKyMjAli1bUKlSpSxTYJ9CUlISLly4gGrVqhXJ+pycnHDixAmVsJ2RkYFdu3ap9MsMEJnvo0wfutrRxsYGU6dORd26daX3Yps2baCpqYn79++jUaNG2T7y62P+vKpXrw4rKyvs2rUry7Ti06dPcfLkyTzfp+1TyOvno6h/J7yvIL+/ilLHjh1x584dXLx4UWpLS0vDli1b0LRpU2kEM7NWZ2dnpKen48SJE3n6D8e6detgYWEBNze3PNd04cIFhIWFFcnvKCpaHLGjInfz5k3pXKOYmBicOXMGPj4+0NDQwL59+3K9KmzVqlU4ceIE2rdvjy+++AJJSUlYv349AEh/cAwMDGBlZYX//e9/aNmyJcqVKwdjY+MC35rDwsIC3377Lby8vGBubo4tW7bA398f8+bNg56eHoC3U201atTA2LFjkZaWhrJly2Lfvn04e/ZslvXVrVsXe/fuxcqVK2Fvb5/riMWMGTPw119/wcXFBdOnT0e5cuWwdetWHDp0CPPnz1e5GWhheHt7o1WrVnBxccHYsWOhra2NFStW4ObNm9i+fXuBv20AePuHJLvpmAoVKki3mnF0dMS3336LmjVrwsjICBEREVi5ciXu37+fpytv82LKlCk4ePAgWrZsiSlTpkBXVxerVq2SbmGSObLg6OiIsmXLYsiQIZgxYwa0tLSwdevWLOH++vXrGDFiBLp27Yrq1atDW1sbJ06cwPXr1zFx4kQAbwP/rFmzMGXKFDx48ABt27ZF2bJl8d9//+HSpUvQ19eXbtuRHx/z57Vw4UJ069YNLVu2xMCBA2FmZoawsDDMnTsX2traWa4wV6e8fj6qVq0KXV1dbN26FTVr1kTp0qVhYWGhEnjyqjC/v/Lr8uXL0u1h4uLiIISQvg2jcePGUij78ccf8ccff6Br166YO3cuTExMsGLFCoSGhuLYsWPS+mJiYuDi4oKoqCisW7cOMTExKt+YUalSpSyjdxcvXkRISAgmT54MDQ2NbOu0s7NDnz59ULNmTejo6ODSpUtYsGABzMzMMH78+CI7HlRE1HfdBslN5lVlmQ9tbW1hYmIinJycxJw5c0RMTEyW17x/pWpgYKDo2LGjsLKyEkqlUpQvX144OTmJAwcOqLzu2LFjokGDBkKpVAoAwt3dXWV92d1IM6erYtu3by92794tateuLbS1tUXlypXF4sWLs7z+7t27onXr1sLQ0FBUqFBBjBw5Uhw6dCjLVbEvXrwQXbp0EWXKlBEKhUJlm8jmat4bN26IDh06CCMjI6GtrS3s7OyyXN2X09WMmVdV5uVqwDNnzghXV1ehr68vdHV1RbNmzcTBgwezXV9RXBXbu3dvqe/PP/8s7OzshJGRkdDU1BRmZmaiY8eO4ty5cx/cjhB5uyo2cx+bNm0qlEqlMDMzE+PGjRPz5s0TAKQrKIV4ezWhg4OD0NPTExUqVBADBgwQV69eVTmW//33n/Dw8BC2trZCX19flC5dWtSrV0/89ttvIi0tTWW7+/fvFy4uLsLQ0FAolUphZWUlunTpIo4dO5anY5jd8c7LzysvV3Jm59ixY6J169aiTJkyQlNTU5ibm4s+ffqIsLCwLH0BiOHDh2dpt7Kykj5379aS3VWxH5LbjcLz8vkQQojt27cLW1tboaWl9cEbmOd2VWx+fn/ldd05cXd3z/Hz8/4+RkdHi379+oly5coJHR0d0axZM+Hv75/ttnN6ZHdMBg4cKBQKhbh//36Odfbo0UNUq1ZN6OvrCy0tLWFlZSWGDBkinjx5kqdjQp+WQoh8XOZDRFTCtG7dGhEREbh79666SyEi+ug4FUtEsuHp6YkGDRrA0tISL168wNatW+Hv7y9dAEFEJHcMdkQkG+np6Zg+fTqio6OhUChQq1YtbN68GX369FF3aUREnwSnYomIiIhkgrc7ISIiIpIJBjsiIiIimWCwIyIiIpIJ2V88kZGRgSdPnsDAwKBQN/UkIiIiUgchBF6/fg0LC4sPfo2b7IPdkydPCvXly0RERETFwaNHjz743b+yD3YGBgYA3h4MQ0NDNVdDRERElD9xcXGwtLSUMk1uZB/sMqdfDQ0NGeyIiIioxMrLKWW8eIKIiIhIJhjsiIiIiGSCwY6IiIhIJmR/jh0RERVeRkYGUlJS1F0GkSxpaWlBQ0OjSNbFYEdERLlKSUlBeHg4MjIy1F0KkWyVKVMGZmZmhb7nLoMdERHlSAiBqKgoaGhowNLS8oM3RyWi/BFCICEhATExMQAAc3PzQq2PwY6IiHKUlpaGhIQEWFhYQE9PT93lEMmSrq4uACAmJgYmJiaFmpblf72IiChH6enpAABtbW01V0Ikb5n/cUpNTS3UehjsiIjog/hd20QfV1F9xhjsiIiIiGRCrcFu5cqVqFevnvR1Xw4ODvj777+l5R4eHlAoFCqPZs2aqbFiIiL62DZs2IAyZcp8km317dsXc+bM+STbos9X48aNsXfv3k+yLbUGu0qVKmHu3Lm4fPkyLl++DFdXV3z33XcICQmR+rRt2xZRUVHS4/Dhw2qsmIiI3nf+/HloaGigbdu2+X5t5cqVsWTJEpW27t274+7du0VUXc6uX7+OQ4cOYeTIkVKbs7OzNJCgVCpRsWJFdOjQ4ZP9US6oGzduwMnJCbq6uqhYsSJmzZoFIcQHX3fo0CE0bdoUurq6MDY2RqdOnYq8Ni8vL+mYampqwtjYGC1atMCSJUuQnJycpf+9e/fwww8/oFKlSlAqlbC2tkbPnj1x+fJlqU/lypWzDPxMnDhRZT2RkZHo0KED9PX1YWxsjFGjRuXpXoyBgYFwdXWFvr4+ypQpA2dnZyQmJub6mhUrVsDa2ho6Ojqwt7fHmTNnVJZPmzYNEydO/CS3DFJrsOvQoQPatWsHGxsb2NjYYPbs2ShdujQuXLgg9VEqlTAzM5Me5cqVU2PFRET0vvXr12PkyJE4e/YsIiMjC70+XV1dmJiYFEFluVu+fDm6du0KAwMDlfaBAwciKioK9+7dw549e1CrVi306NEDgwYN+ug1FURcXBxatWoFCwsLBAUFYdmyZVi4cCEWL16c6+v27NmDvn374ocffsC1a9dw7tw59OrV66PUWLt2bURFRSEyMhInT55E165d4e3tDUdHR7x+/Vrqd/nyZdjb2+Pu3btYvXo1bt26hX379sHW1hY///yzyjpnzZqlMvAzdepUaVl6ejrat2+P+Ph4nD17Fjt27MCePXuyrON9gYGBaNu2LVq3bo1Lly4hKCgII0aMyPU2P76+vhg9ejSmTJmCf/75B82bN4ebm5vKZ6F9+/aIjY3FkSNH8nvo8k8UE2lpaWL79u1CW1tbhISECCGEcHd3F0ZGRqJChQqievXqYsCAAeK///7L13pjY2MFABEbG/sxyiYikrXExERx69YtkZiYmO3yN2/eCAMDA3Hnzh3RvXt3MXPmzCx9/ve//wl7e3uhVCpF+fLlRceOHYUQQjg5OQkAKg8hhPDx8RFGRkZCCCHu3LkjAIjbt2+rrHPRokXCyspKZGRkCCGECAkJEW5ubkJfX1+YmJiIPn36iKdPn+a4X+np6aJMmTLir7/+Uml3cnISP/30U5b+69evFwCEv7+/EEKI8PBwAUD4+vqKr776Sujo6IhGjRqJ0NBQcenSJWFvby/09fVFmzZtRExMjLSeS5cuia+//lqUL19eGBoaihYtWogrV65Iy0+ePCm0tLTE6dOnpbaFCxeK8uXLiydPnmS7LytWrBBGRkYiKSlJavP29hYWFhbS8XlfamqqqFixoli7dm2OxygvZsyYIezs7MSqVatEpUqVhK6urujSpYt4+fJllj7vu337ttDW1hZTpkwRQgiRkZEhateuLezt7UV6enqW/u+u08rKSvz222851nX48GFRqlQp8fjxY6lt+/btQqlU5poHmjZtKqZOnZrzDmejSZMmYsiQISpttra2YuLEiSptHh4eom/fvjmuJ7fPWn6yjNovnrhx4wZKly4NpVKJIUOGYN++fahVqxYAwM3NDVu3bsWJEyewaNEiBAUFwdXVNduh20zJycmIi4tTeRAR0cfh6+uLGjVqoEaNGujTpw98fHxUpgAPHTqETp06oX379vjnn39w/PhxNGrUCACwd+9eVKpUSWXk5X01atSAvb09tm7dqtK+bds29OrVCwqFAlFRUXByckL9+vVx+fJl+Pn54b///kO3bt1yrPv69et49eqVVMuHuLu7o2zZslmmZGfMmIGpU6fi6tWr0NTURM+ePTF+/HgsXboUZ86cwf379zF9+nSp/+vXr+Hu7o4zZ87gwoULqF69Otq1ayeNWjk7O2P06NHo27cvYmNjce3aNUyZMgV//vlnjjeuDQwMhJOTE5RKpdTWpk0bPHnyBBEREdm+5urVq3j8+DFKlSqFBg0awNzcHG5ubiqnQuXVvXv3sHPnThw8eBB+fn4IDg7G8OHDP/g6W1tbuLm5Scc0ODgYISEh+Pnnn7MdIXv/vMt58+ahfPnyqF+/PmbPnq0yzRoYGIg6derAwsJCamvTpg2Sk5Nx5cqVbOuJiYnBxYsXYWJiAkdHR5iamsLJyQlnz57NcR9SUlJw5coVtG7dWqW9devWOH/+vEpbkyZNskzRfgxqv0FxjRo1EBwcjFevXmHPnj1wd3fHqVOnUKtWLXTv3l3qV6dOHTRq1AhWVlbSL4rseHt7Y+bMmZ+qfCIiAEDkrLrqLuGjSNM3R5rjBKTEpEGhmfWP7Z8rl6FHhzZIfhICl3qWeBMXi79916FlCwcAwK8zpqDrd20xeXA3ABkANGE3eTIAoFy5ctDQ0ICBgQHMzMxyrKF3795Yvnw5fvnlFwDA3bt3ceXKFWzatAnA2wvxGjZsqHIRxPr162FpaYm7d+/CxsYmyzojIiKgoaGR5ynfUqVKwcbGJktQGjt2LNq0aQMA+Omnn9CzZ08cP34cX375JQCgf//+2LBhg9Tf1dVV5fWrV69G2bJlcerUKXzzzTcAgF9//RXHjh3DoEGDEBISgr59+6Jjx4451hYdHY3KlSurtJmamkrLrK2ts7zmwYMHAN6e/7Z48WJUrlwZixYtgpOTE+7evZuv056SkpKwceNGVKpUCQCwbNkytG/fHosWLcr15wq8DXdHjx4FAISFhUltH/LTTz+hYcOGKFu2LC5duoRJkyYhPDwca9eulfY78xhkKlu2LLS1tREdHZ3tOt89JgsXLkT9+vWxadMmtGzZEjdv3kT16tWzvObZs2dIT0/Psi1TU9Ms26lYsSIiIyORkZHxUb/BRe0jdtra2qhWrRoaNWoEb29v2NnZYenSpdn2NTc3h5WVlfTDz86kSZMQGxsrPR49evSxSici+qzdvReOy8E30fU7NwCApqYmunzbFht990l9roWEwuWrwt3NoEePHnj48KF0/vXWrVtRv359aXbnypUrOHnyJEqXLi09MsPB/fv3s11nYmIilEplvu4dJoTI0r9evXrSvzP/uNetW1elLfOrooC3o0JDhgyBjY0NjIyMYGRkhDdv3qicj6WtrY0tW7Zgz549SExMzHJxSXberytz1DSn/cs8iX/KlCno3Lkz7O3t4ePjA4VCgV27dn1we+/64osvpFAHAA4ODsjIyEBoaOgHX/vuMf1Qze8aM2YMnJycUK9ePQwYMACrVq3CunXr8Pz5c6lPduvJ7meYKfOYDB48GD/88AMaNGiA3377DTVq1MD69etzrSe74/9+m66uLjIyMnKddSwKah+xe58QIsedfv78OR49epTr96gplUqV4WgiIvo4NuzYi7S0NFSxbym1CSGgpaWJl69iUbaMEXR1Cv/72NzcHC4uLti2bRuaNWuG7du3Y/DgwdLyjIwMdOjQAfPmzcv2tdkxNjZGQkICUlJS8vStGunp6QgLC0Pjxo1V2rW0tKR/Z/4hf7/t3SshPTw88PTpUyxZsgRWVlZQKpVwcHDIcrVm5jTeixcv8OLFC+jr6+dYm5mZWZbRocww+f5IUqbM45IZjoG3fz+rVKlS6AtgMo9DXgLa7du3pRHFzJHV27dvo379+vnaZuat0O7du4fy5cvDzMwMFy9eVOnz8uVLpKam5uuYAEDNmjVzPCbGxsbQ0NDI9vi/v50XL15AT09P+vqwj0WtI3aTJ0/GmTNnEBERgRs3bmDKlCkICAhA79698ebNG4wdOxaBgYGIiIhAQEAAOnToAGNj41yHpImI6ONLS0vD1t0HMG/6OFw6ult6BPnvwRcVLbBj3yEAQJ2aNjh59kKO69HW1pa+tiw3vXv3hq+vLwIDA3H//n306NFDWtawYUOEhISgcuXKqFatmsojp0CUGRxu3bqVp/3duHEjXr58ic6dO+epf07OnDmDUaNGoV27dqhduzaUSiWePXum0uf+/fsYM2YM/vzzTzRr1gz9+vXL9TYZDg4OOH36tEo4PHr0KCwsLLJM0Wayt7eHUqlUGVVLTU1FREQErKys8rVPkZGRePLkifQ8MDBQmrrOzZ07d+Dn5ycd08xR2EWLFmW7v69evcpxXf/88w+A/wtnDg4OuHnzpsp5m0ePHoVSqYS9vX2266hcuTIsLCyyjDTevXs3x2Oira0Ne3t7+Pv7q7T7+/vD0dFRpe3mzZto2LBhjvtQVNQa7P777z/07dsXNWrUQMuWLXHx4kX4+fmhVatW0NDQwI0bN/Ddd9/BxsYG7u7usLGxQWBgYJZL04mI6NM6fOwUXsbGwaNnJ9S2ra7y6Ni+FTZsf3tC/BTPodi5/2/MWrgcd8Lu4+btu5g/f760nsqVK+P06dN4/PhxloDzrk6dOiEuLg5Dhw6Fi4sLKlasKC0bPnw4Xrx4gZ49e+LSpUt48OABjh49ih9//DHH0FihQgU0bNgw2xPjExISEB0djX///RcXL17EhAkTMGTIEGnbhVGtWjVs3rwZt2/fxsWLF9G7d2+VEZz09HT07dsXrVu3xg8//AAfHx/cvHkTixYtynGdvXr1glKphIeHB27evIl9+/Zhzpw58PT0lEbNLl26BFtbWzx+/BgAYGhoiCFDhmDGjBk4evQoQkNDMXToUABA165d87VPOjo6cHd3x7Vr16Tg2q1bN5Xz69LS0hAdHY0nT57gxo0bWLZsmXTBy7hx4wC8HeHz8fHB3bt30aJFCxw+fBgPHjzA9evXMXv2bHz33XcA3gbH3377DcHBwQgPD8fOnTsxePBgfPvtt/jiiy8AvL14oVatWujbt6900c7YsWMxcOBAGBoaZrsfCoUC48aNw++//47du3fj3r17mDZtGu7cuYP+/ftL/Vq2bInly5dLzz09PbF27VqsX78et2/fxpgxYxAZGYkhQ4aorP/MmTNZLrL4GNQ6Fbtu3bocl+nq6n6a+70QEVG+bdi+F65fNYORYdb/aHds3wrzl/2Jf27cgpNjE2xbvQjeS1Zj4R/rYFi6NFo4/184mjVrFgYPHoyqVasiOTk5x5vqGhoaokOHDti1a1eW850sLCxw7tw5TJgwQbry0crKCm3bts31JPVBgwZhw4YNGDFihEr7n3/+iT///BPa2tooX7487O3t4evrWySzRevXr8egQYPQoEEDfPHFF5gzZw7Gjh0rLZ89ezYiIiJw8OBBAG+nWdeuXYtu3bqhVatW2U5RGhkZwd/fH8OHD0ejRo1QtmxZeHp6wtPTU+qTkJCA0NBQlS+YX7BgATQ1NdG3b18kJiaiadOmOHHiBMqWLSv1qVy5Mjw8PODl5ZXjPlWrVg2dOnVCu3bt8OLFC7Rr1w4rVqxQ6RMSEgJzc3NoaGjAyMgItWrVwqRJkzB06FCV06eaNGmCy5cvY/bs2Rg4cCCePXsGc3NzODo6SucaKpVK+Pr6YubMmdLPeuDAgRg/fry0Hg0NDRw6dAjDhg3Dl19+CV1dXfTq1QsLFy7M9eczevRoJCUlYcyYMXjx4gXs7Ozg7++PqlWrSn3u37+v8p+Q7t274/nz59LV3XXq1MHhw4dVRvkeP36M8+fPY8uWLbluvygoRE6fIpmIi4uDkZERYmNjc0zpRESFJeerYuMdJ8CqogmU2VwVWxBKi9pFsp7CSkpKQo0aNbBjxw44ODiou5xiJzExEeXKlcPhw4dzHKn08vLC/v37ERwc/GmLK2HGjRuH2NhYrFmzJsc+SUlJCA8Pl77B4l35yTLF7uIJIiKiT0FHRwebNm3KdQr4c3bq1Cm4uroWevqZABMTE5WR2Y+JwY6IiD5bTk5O6i6h2Grbtm2Bvv+Xsso8j/BTUPt97IiIiKhk8vLy4jRsMcNgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERNnasGEDypQpo+4yKB94g2IiIqJCsB+36ZNu78qCfvl+jYeHBzZu3JilPSwsDNWqVSuKsqiYYLAjIiL6DLRt2xY+Pj4qbRUqVFBTNfSxcCqWiIjoM6BUKmFmZqbyWLp0KerWrQt9fX1YWlpi2LBhePPmTY7ruHbtGlxcXGBgYABDQ0PY29vj8uXL0vLz58+jRYsW0NXVhaWlJUaNGoX4+PhPsXv0/zHYERERfaZKlSqF33//HTdv3sTGjRtx4sQJjB8/Psf+vXv3RqVKlRAUFIQrV65g4sSJ0NLSAgDcuHEDbdq0QadOnXD9+nX4+vri7NmzGDFixKfaHQKnYomIiD4Lf/31F0qXLi09d3Nzw65du6Tn1tbW+OWXXzB06FCsWLEi23VERkZi3LhxsLW1BQBUr15dWrZgwQL06tULo0ePlpb9/vvvcHJywsqVK6Gjo/MR9orex2BHRET0GXBxccHKlSul5/r6+jh58iTmzJmDW7duIS4uDmlpaUhKSkJ8fDz09fWzrMPT0xMDBgzA5s2b8fXXX6Nr166oWrUqAODKlSu4d+8etm7dKvUXQiAjIwPh4eGoWbPmx99J4lQsERHR50BfXx/VqlWTHikpKWjXrh3q1KmDPXv24MqVK/jjjz8AAKmpqdmuw8vLCyEhIWjfvj1OnDiBWrVqYd++fQCAjIwMDB48GMHBwdLj2rVrCAsLk8IffXwcsSMiIvoMXb58GWlpaVi0aBFKlXo7zrNz584Pvs7GxgY2NjYYM2YMevbsCR8fH3Ts2BENGzZESEgIb5+iZhyxIyIi+gxVrVoVaWlpWLZsGR48eIDNmzdj1apVOfZPTEzEiBEjEBAQgIcPH+LcuXMICgqSplgnTJiAwMBADB8+HMHBwQgLC8OBAwcwcuTIT7VLBAY7IiKiz1L9+vWxePFizJs3D3Xq1MHWrVvh7e2dY38NDQ08f/4c/fr1g42NDbp16wY3NzfMnDkTAFCvXj2cOnUKYWFhaN68ORo0aIBp06bB3Nz8U+0SAVAIIYS6i/iY4uLiYGRkhNjYWBgaGqq7HCKSqchZddVdwkeRpm+OeMcJsKpoAqVm0YwFKC1qF8l6iOQkKSkJ4eHhsLa2znIFcX6yDEfsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJjTVXQAREVFJ9qm/Tu6L6Tfy3FehUOS63N3dHRs2bChkRVScMNjRRyPX7878GPLzi5qIKK+ioqKkf/v6+mL69OkIDQ2V2nR1dVX6p6amQktL65PVR0WPU7FEREQyZWZmJj2MjIygUCik50lJSShTpgx27twJZ2dn6OjoYMuWLfDy8kL9+vVV1rNkyRJUrlxZpc3Hxwc1a9aEjo4ObG1tsWLFik+3Y5QjBjsiIqLP2IQJEzBq1Cjcvn0bbdq0ydNr/vzzT0yZMgWzZ8/G7du3MWfOHEybNg0bN278yNXSh3AqloiI6DM2evRodOrUKV+v+eWXX7Bo0SLpddbW1rh16xZWr14Nd3f3j1Em5RGDHRER0WesUaNG+er/9OlTPHr0CP3798fAgQOl9rS0NBgZGRV1eZRPap2KXblyJerVqwdDQ0MYGhrCwcEBf//9t7RcCAEvLy9YWFhAV1cXzs7OCAkJUWPFRERE8qKvr6/yvFSpUhBCqLSlpqZK/87IyADwdjo2ODhYety8eRMXLlz4+AVTrtQa7CpVqoS5c+fi8uXLuHz5MlxdXfHdd99J4W3+/PlYvHgxli9fjqCgIJiZmaFVq1Z4/fq1OssmIiKSrQoVKiA6Olol3AUHB0v/NjU1RcWKFfHgwQNUq1ZN5WFtba2Giuldap2K7dChg8rz2bNnY+XKlbhw4QJq1aqFJUuWYMqUKdIc/saNG2Fqaopt27Zh8ODB6iiZiIhI1pydnfH06VPMnz8fXbp0gZ+fH/7++28YGhpKfby8vDBq1CgYGhrCzc0NycnJuHz5Ml6+fAlPT081Vk/F5qrY9PR07NixA/Hx8XBwcEB4eDiio6PRunVrqY9SqYSTkxPOnz+vxkqJiIjkq2bNmlixYgX++OMP2NnZ4dKlSxg7dqxKnwEDBmDt2rXYsGED6tatCycnJ2zYsIEjdsWA2i+euHHjBhwcHJCUlITSpUtj3759qFWrlhTeTE1NVfqbmpri4cOHOa4vOTkZycnJ0vO4uLiPUzgRERFKzg3GPTw84OHhIT2vXLlylnPpMg0ZMgRDhgxRaZs8ebLK8169eqFXr15FXicVjtpH7GrUqIHg4GBcuHABQ4cOhbu7O27duiUtf//rUIQQuX5Fire3N4yMjKSHpaXlR6udiIiIqDhRe7DT1tZGtWrV0KhRI3h7e8POzg5Lly6FmZkZACA6Olqlf0xMTJZRvHdNmjQJsbGx0uPRo0cftX4iIiKi4kLtwe59QggkJyfD2toaZmZm8Pf3l5alpKTg1KlTcHR0zPH1SqVSun1K5oOIiIjoc6DWc+wmT54MNzc3WFpa4vXr19ixYwcCAgLg5+cHhUKB0aNHY86cOahevTqqV6+OOXPmQE9Pj3P6RERERNlQa7D777//0LdvX0RFRcHIyAj16tWDn58fWrVqBQAYP348EhMTMWzYMLx8+RJNmzbF0aNHYWBgoM6yiYg+I29vRpvDOfZEVERyupAlv9Qa7NatW5frcoVCAS8vL3h5eX2agoiISEWp1AQgIw2pGQI66i6GSMYSEhIAAFpaWoVaj9pvd0JERMWXIuUNSj29jef6RtAsq49SOd+UIM9EUlLhV0IkE0IIJCQkICYmBmXKlIGGhkah1sdgR0REOVJAQC90D14bWuJRohGAwic7zXj+6SF6X5kyZaQ7ghQGP11ERJQrjeRXMDr3CzJ0y0MoCjeaAAAWww8UQVVE8qGlpVXokbpMDHZERPRBCpEOjYSYIlmXjg7P1iP6WIrdfeyIiIiIqGAY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCbUGuy8vb3RuHFjGBgYwMTEBN9//z1CQ0NV+nh4eEChUKg8mjVrpqaKiYiIiIovtQa7U6dOYfjw4bhw4QL8/f2RlpaG1q1bIz4+XqVf27ZtERUVJT0OHz6spoqJiIiIii9NdW7cz89P5bmPjw9MTExw5coVtGjRQmpXKpUwMzP71OURERERlSjF6hy72NhYAEC5cuVU2gMCAmBiYgIbGxsMHDgQMTExOa4jOTkZcXFxKg8iIiKiz0GxCXZCCHh6euKrr75CnTp1pHY3Nzds3boVJ06cwKJFixAUFARXV1ckJydnux5vb28YGRlJD0tLy0+1C0RERERqpdap2HeNGDEC169fx9mzZ1Xau3fvLv27Tp06aNSoEaysrHDo0CF06tQpy3omTZoET09P6XlcXBzDHREREX0WikWwGzlyJA4cOIDTp0+jUqVKufY1NzeHlZUVwsLCsl2uVCqhVCo/RplERERExZpag50QAiNHjsS+ffsQEBAAa2vrD77m+fPnePToEczNzT9BhUREREQlh1rPsRs+fDi2bNmCbdu2wcDAANHR0YiOjkZiYiIA4M2bNxg7diwCAwMRERGBgIAAdOjQAcbGxujYsaM6SyciIiIqdtQ6Yrdy5UoAgLOzs0q7j48PPDw8oKGhgRs3bmDTpk149eoVzM3N4eLiAl9fXxgYGKihYiIiIqLiS+1TsbnR1dXFkSNHPlE1RERERCVbsbndCREREREVDoMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJhKa6Cyhp7MdtUncJJcY+A3VXQERE9HnhiB0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREcmEWoOdt7c3GjduDAMDA5iYmOD7779HaGioSh8hBLy8vGBhYQFdXV04OzsjJCRETRUTERERFV9qDXanTp3C8OHDceHCBfj7+yMtLQ2tW7dGfHy81Gf+/PlYvHgxli9fjqCgIJiZmaFVq1Z4/fq1GisnIiIiKn401blxPz8/lec+Pj4wMTHBlStX0KJFCwghsGTJEkyZMgWdOnUCAGzcuBGmpqbYtm0bBg8erI6yiYiIiIqlAo3Yubq64tWrV1na4+Li4OrqWuBiYmNjAQDlypUDAISHhyM6OhqtW7eW+iiVSjg5OeH8+fMF3g4RERGRHBVoxC4gIAApKSlZ2pOSknDmzJkCFSKEgKenJ7766ivUqVMHABAdHQ0AMDU1VelramqKhw8fZrue5ORkJCcnS8/j4uIKVA8RERFRSZOvYHf9+nXp37du3ZKCFwCkp6fDz88PFStWLFAhI0aMwPXr13H27NksyxQKhcpzIUSWtkze3t6YOXNmgWogIiIiKsnyFezq168PhUIBhUKR7ZSrrq4uli1blu8iRo4ciQMHDuD06dOoVKmS1G5mZgbg7cidubm51B4TE5NlFC/TpEmT4OnpKT2Pi4uDpaVlvmsiIiIiKmnyFezCw8MhhECVKlVw6dIlVKhQQVqmra0NExMTaGho5Hl9QgiMHDkS+/btQ0BAAKytrVWWW1tbw8zMDP7+/mjQoAEAICUlBadOncK8efOyXadSqYRSqczPbhERERHJQr6CnZWVFQAgIyOjSDY+fPhwbNu2Df/73/9gYGAgTe0aGRlBV1cXCoUCo0ePxpw5c1C9enVUr14dc+bMgZ6eHnr16lUkNRARERHJRYFvd3L37l0EBAQgJiYmS9CbPn16ntaxcuVKAICzs7NKu4+PDzw8PAAA48ePR2JiIoYNG4aXL1+iadOmOHr0KAwMDApaOhEREZEsFSjY/fnnnxg6dCiMjY1hZmamciGDQqHIc7ATQnywj0KhgJeXF7y8vApSKhEREdFno0DB7tdff8Xs2bMxYcKEoq6HiIiIiAqoQDcofvnyJbp27VrUtRARERFRIRQo2HXt2hVHjx4t6lqIiIiIqBAKNBVbrVo1TJs2DRcuXEDdunWhpaWlsnzUqFFFUhwRERER5V2Bgt2aNWtQunRpnDp1CqdOnVJZplAoGOyIiIiI1KBAwS48PLyo6yAiIiKiQirQOXZEREREVPwUaMTuxx9/zHX5+vXrC1QMERERERVcgYLdy5cvVZ6npqbi5s2bePXqFVxdXYukMCIiIiLKnwIFu3379mVpy8jIwLBhw1ClSpVCF0VERERE+Vdk59iVKlUKY8aMwW+//VZUqyQiIiKifCjSiyfu37+PtLS0olwlEREREeVRgaZiPT09VZ4LIRAVFYVDhw7B3d29SAojIiIiovwpULD7559/VJ6XKlUKFSpUwKJFiz54xSwRERERfRwFCnYnT54s6jqIiIiIqJAKFOwyPX36FKGhoVAoFLCxsUGFChWKqi4iIiIiyqcCXTwRHx+PH3/8Eebm5mjRogWaN28OCwsL9O/fHwkJCUVdIxERERHlQYGCnaenJ06dOoWDBw/i1atXePXqFf73v//h1KlT+Pnnn4u6RiIiIiLKgwJNxe7Zswe7d++Gs7Oz1NauXTvo6uqiW7duWLlyZVHVR0RERER5VKARu4SEBJiammZpNzEx4VQsERERkZoUKNg5ODhgxowZSEpKktoSExMxc+ZMODg4FFlxRERERJR3BZqKXbJkCdzc3FCpUiXY2dlBoVAgODgYSqUSR48eLeoaiYiIiCgPChTs6tati7CwMGzZsgV37tyBEAI9evRA7969oaurW9Q1EhEREVEeFCjYeXt7w9TUFAMHDlRpX79+PZ4+fYoJEyYUSXFERERElHcFOsdu9erVsLW1zdJeu3ZtrFq1qtBFEREREVH+FSjYRUdHw9zcPEt7hQoVEBUVVeiiiIiIiCj/ChTsLC0tce7cuSzt586dg4WFRaGLIiIiIqL8K9A5dgMGDMDo0aORmpoKV1dXAMDx48cxfvx4fvMEERERkZoUKNiNHz8eL168wLBhw5CSkgIA0NHRwYQJEzBp0qQiLZCIiIiI8qZAwU6hUGDevHmYNm0abt++DV1dXVSvXh1KpbKo6yMiIiKiPCpQsMtUunRpNG7cuKhqISIiIqJCKNDFE0RERERU/DDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTKg12J0+fRodOnSAhYUFFAoF9u/fr7Lcw8MDCoVC5dGsWTP1FEtERERUzKk12MXHx8POzg7Lly/PsU/btm0RFRUlPQ4fPvwJKyQiIiIqOQr1zROF5ebmBjc3t1z7KJVKmJmZfaKKiIiIiEquYn+OXUBAAExMTGBjY4OBAwciJiZG3SURERERFUtqHbH7EDc3N3Tt2hVWVlYIDw/HtGnT4OrqiitXrkCpVGb7muTkZCQnJ0vP4+LiPlW5RERERGpVrINd9+7dpX/XqVMHjRo1gpWVFQ4dOoROnTpl+xpvb2/MnDnzU5VIREREVGwU+6nYd5mbm8PKygphYWE59pk0aRJiY2Olx6NHjz5hhURERETqU6xH7N73/PlzPHr0CObm5jn2USqVOU7TEhEREcmZWoPdmzdvcO/ePel5eHg4goODUa5cOZQrVw5eXl7o3LkzzM3NERERgcmTJ8PY2BgdO3ZUY9VERERExZNag93ly5fh4uIiPff09AQAuLu7Y+XKlbhx4wY2bdqEV69ewdzcHC4uLvD19YWBgYG6SiYiIiIqttQa7JydnSGEyHH5kSNHPmE1RERERCVbibp4goiIiIhyxmBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBOa6i6AiIon+3Gb1F1CibLPQN0VEBFxxI6IiIhINhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGRCrcHu9OnT6NChAywsLKBQKLB//36V5UIIeHl5wcLCArq6unB2dkZISIh6iiUiIiIq5tQa7OLj42FnZ4fly5dnu3z+/PlYvHgxli9fjqCgIJiZmaFVq1Z4/fr1J66UiIiIqPjTVOfG3dzc4Obmlu0yIQSWLFmCKVOmoFOnTgCAjRs3wtTUFNu2bcPgwYM/ZalERERExV6xPccuPDwc0dHRaN26tdSmVCrh5OSE8+fP5/i65ORkxMXFqTyIiIiIPgfFNthFR0cDAExNTVXaTU1NpWXZ8fb2hpGRkfSwtLT8qHUSERERFRfFNthlUigUKs+FEFna3jVp0iTExsZKj0ePHn3sEomIiIiKBbWeY5cbMzMzAG9H7szNzaX2mJiYLKN471IqlVAqlR+9PiIiIqLiptiO2FlbW8PMzAz+/v5SW0pKCk6dOgVHR0c1VkZERERUPKl1xO7Nmze4d++e9Dw8PBzBwcEoV64cvvjiC4wePRpz5sxB9erVUb16dcyZMwd6enro1auXGqsmIiIiKp7UGuwuX74MFxcX6bmnpycAwN3dHRs2bMD48eORmJiIYcOG4eXLl2jatCmOHj0KAwMDdZVMREREVGypNdg5OztDCJHjcoVCAS8vL3h5eX26ooiIiIhKqGJ7jh0RERER5Q+DHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMMNgRERERyQSDHREREZFMFOtg5+XlBYVCofIwMzNTd1lERERExZKmugv4kNq1a+PYsWPScw0NDTVWQ0RERFR8Fftgp6mpyVE6IiIiojwo1lOxABAWFgYLCwtYW1ujR48eePDggbpLIiIiIiqWivWIXdOmTbFp0ybY2Njgv//+w6+//gpHR0eEhISgfPny2b4mOTkZycnJ0vO4uLhPVS4RERGRWhXrYOfm5ib9u27dunBwcEDVqlWxceNGeHp6Zvsab29vzJw581OVSEREMmA/bpO6Sygxrizop+4SKBfFfir2Xfr6+qhbty7CwsJy7DNp0iTExsZKj0ePHn3CComIiIjUp1iP2L0vOTkZt2/fRvPmzXPso1QqoVQqP2FVRERERMVDsR6xGzt2LE6dOoXw8HBcvHgRXbp0QVxcHNzd3dVdGhEREVGxU6xH7P7991/07NkTz549Q4UKFdCsWTNcuHABVlZW6i6NiIiIqNgp1sFux44d6i6BiIiIqMQo1lOxRERERJR3DHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMlEigt2KFStgbW0NHR0d2Nvb48yZM+ouiYiIiKjYKfbBztfXF6NHj8aUKVPwzz//oHnz5nBzc0NkZKS6SyMiIiIqVop9sFu8eDH69++PAQMGoGbNmliyZAksLS2xcuVKdZdGREREVKwU62CXkpKCK1euoHXr1irtrVu3xvnz59VUFREREVHxpKnuAnLz7NkzpKenw9TUVKXd1NQU0dHR2b4mOTkZycnJ0vPY2FgAQFxcXJHUlJ6cWCTr+Ry81kpXdwklRlG9P4sS3+v5w/d73vH9XrIVx5+f3GUecyHEB/sW62CXSaFQqDwXQmRpy+Tt7Y2ZM2dmabe0tPwotVHO6qi7gJLE20jdFVAh8f2eD3y/l2hGy4aou4TP1uvXr2FklPvnp1gHO2NjY2hoaGQZnYuJickyipdp0qRJ8PT0lJ5nZGTgxYsXKF++fI5hkIpeXFwcLC0t8ejRIxgaGqq7HKKPiu93+lzwva4eQgi8fv0aFhYWH+xbrIOdtrY27O3t4e/vj44dO0rt/v7++O6777J9jVKphFKpVGkrU6bMxyyTcmFoaMgPP302+H6nzwXf65/eh0bqMhXrYAcAnp6e6Nu3Lxo1agQHBwesWbMGkZGRGDKEQ8FERERE7yr2wa579+54/vw5Zs2ahaioKNSpUweHDx+GlZWVuksjIiIiKlaKfbADgGHDhmHYsGHqLoPyQalUYsaMGVmmxYnkiO93+lzwvV78KURerp0lIiIiomKvWN+gmIiIiIjyjsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIPrK0tDR1l0BEnwkGOyKij+jRo0do1qwZwsLC1F0KEX0GGOzoo+MddehzplQqkZqaim+++QYPHjxQdzlEH116erq6S/isMdjRR5OQkAAAUCgUDHf0WRJCwMTEBEeOHIGZmRlatWrFcEeydPv2bcyZMwcAoKGhwXCnRgx29FE8evQI/fv3x/79+wEw3NHnJTExEcDb9z0AmJmZYceOHbCwsGC4I9m5d+8enJ2dMXXqVIwZMwYAw506MdjRRxETE4Pbt2/Dx8cHhw8fBvDhcMfgR3Jw9+5duLm5oX///jhx4gRCQ0MBAObm5ti/fz8qVaoEFxcXhjuShdjYWMyaNQtfffUV5s+fj61bt2LkyJEAGO7UhcGOitTLly+RkJAAe3t7rFmzBrGxsVixYoVKuMvIyJD6p6enS3/4Mkc3iEqqlJQULFmyBKdPn4aPjw/mzp0Le3t79OvXD3PnzkVycjI2bdoEOzs7tGvXDuHh4eoumajQTE1N0bdvXwwePBje3t7w9fVluFMjflcsFZn//vsPffv2xVdffYWff/4Z+vr6uHjxIiZOnAg9PT0MGzYM7du3B/B2dC41NRVjxoxBVFQUNm7cCAMDAzXvAVHhXbp0CRs2bMClS5fg4eGBOnXqwNfXFwcOHIChoSG0tLTQpk0bLFq0CDVq1ICfnx+srKzUXTZRgT1//hzly5cHALx69Qq7du3ClClT0L17dyxbtgwAkJycjMTERJQpU0aNlX4eNNVdAMlH2bJlUb58eRw5cgR6enoYOnQomjZtirlz52LixIlYsWIFFAoF2rVrBwD4+eefsWbNGly8eJGhjmSjSZMmSE9PR3JyMv744w+sWrUKK1euxOLFi3H69GkEBATg4sWLUCqVCA0N5SkIVOI8fvwY586dw8uXL+Hs7IwaNWpACIGMjAyUKVMG3bt3BwBMmTIFALBs2TKMGTMGWlpaWLRoETQ1GT0+Jo7YUZFIT0+HhoYGEhISMHr0aFy/fh1du3bFkCFDsozcDR48GCdPnsTq1atx7tw5NGjQQN3lExVYREQE/ve//yEjIwN2dnZwdXUFAFy5cgW///47goKC8Msvv6Bz587Sa+Li4vDq1SsIIThaRyVK5u92APj333+hoaGBgwcPwsnJCRkZGShV6u0ZXq9fv8aOHTswY8YM6OvrIzw8HBcuXECjRo3UWf7nQRAVkeTkZOnfDRs2FLa2tmLBggXizZs3QgghLly4IL7++mthbGwsdHV1xZUrV9RVKlGRCA4OFubm5sLV1VWYmpoKV1dXcerUKWl5UFCQcHd3F7Vq1RL79++X2lNTU9VRLlGhBAcHCz09PTF+/HgRGRkpAgICRNu2bYWpqal4/Phxlv5Pnz4VDg4Ooly5cuLGjRtqqPjzxIsnqMDu3r2L3bt3A3h7zpy2tjYAYOnSpXjw4AGsrKywa9curFy5EvHx8WjatCl++eUXNGvWDEFBQWjYsKE6yycqlOvXr8PBwQEeHh44evQoAgICcPfuXURGRkp9GjVqhGHDhqFx48aYPn06du3aBQCciqIS59GjR/jyyy/Rr18/zJs3D5aWlnByckKPHj2QlJSE58+fq/RPT0/H0qVLcenSJZw8eRJ16tRRU+WfHwY7KpC4uDj4+fmhW7du2Lp1q3RF67x58zBz5kwcOnQIfn5+sLOzw65du7B69Wq8efMGzZo1w+7du1G7dm017wFRwYWGhqJBgwbw9PTEnDlzoKGhAVtbWzRo0ABHjhxBv379MHbsWABvz7kbPnw4qlWrhsWLF+PNmzc8r45KnGvXrqFatWqIjIzE48ePpfZKlSpBU1Mzy10NEhMTkZSUhKtXr6JevXqfutzPGoMd5durV69QpUoVWFlZYeHChfDw8MCRI0ewYMECzJ8/H76+vnB0dATw9qTZhg0bYtWqVdiwYYPKyB5RSRUcHAwhBMzMzKS2uXPn4q+//oKBgQHi4+OxcuVKtGnTBgCkEbs9e/agdOnSvLUPlTjffPMNZsyYgYSEBPTp0wdpaWl48+YNevTogUGDBmUZkStdujTmzp3LUKcGnA+gfDMwMECLFi2wYcMGbN68GVFRUXBzc4OGhgb8/PzQsmVLAG+H4pVKJZYsWYIJEyagffv2/INGstC9e3c8f/4cI0aMgI6ODp4/f44FCxbg0KFDcHNzQ0ZGBlavXo1Ro0bh+PHjaNmyJezs7NRdNlGBpKWlQVNTEx07doQQAsuWLUOLFi1w//599O3bV/oqsXcvngDe3sOOPj0GO8o3DQ0NfP3115g2bRqio6OxYMECGBkZYfr06Xj58qVKv7S0NCncEcnJsGHDkJGRgUGDBgEA/Pz80Lp1a+mPm42NDSpWrIgKFSqouVKi/Hv58iXS0tJQoUIFaGpqSu/rTp06AQB+//13lCpVCqNHjwbwf+GP1I9TsZQvmecGDRs2DFZWVpg8eTIAYOrUqRg3bhx69eqF7du3S/35QSc5+Pfff7FlyxZs2rQJly5dktpHjBgBHx8fAEBISIjKiMWxY8dgbGysMl1LVBI8fPgQNWrUwNChQzF16lSkpKSofHtEp06dMHLkSNja2uKHH37A48ePpfBH6se/uvRBycnJUCqVAN5+7Vfm/8x69+6NLVu24M6dO7C1tcW8efOgUCgwcOBAJCUl4YcfflBz5USFd/36dXz33XcwMTHBtWvXULt2bYwfP166Cau7uzvevHmDkSNHIi0tDePGjcOMGTOwdOlSnD9/HiYmJmreA6L8uXHjBuLj49G9e3fMmTMHV65cgZWVFaZMmQJzc3Noamqic+fOEEJg1apV+Pbbb3Hw4EFYWFiou3QCR+zoA8LDw9GlSxesXbsWb968AfB/o3Ddu3dHZGQktm3bJvWfO3cuPDw8MHHiRMTFxamlZqKiknlLk549e+LYsWP4+++/8ejRI+zduxdpaWnSCPbw4cOxbNkyTJs2DY0bN8bixYtx5swZ1K9fX707QFQA33zzDZo2bYrQ0FBcvXoVXbp0QVxcHBwcHDBu3Dj89ddfAIAuXbpg5MiRMDU1RWpqqpqrpkz85gnK1e3btzF+/Hj4+fmhWbNmcHR0xNSpU6GlpQUdHR3MmzcPGzduxO7du1GrVi3pdTExMRypoBLt3r17aNCgAXr27Ik1a9ZI7U2aNMHLly9x4cIF6fsxMy1ZsgSzZs3C8ePH+Y0qVCKlpqZCS0sLO3fuxPbt27FhwwYYGRkBAGrUqIGUlBRER0ejY8eOcHBwwMiRI5GQkAA9PT01V06ZOGJHuapZsyYOHjyIq1evolatWti1axfq1KmDqVOn4saNG/j666/x+vVrhIWFAYB0HgZDHZV09+7dQ3x8PIyMjHDv3j0Ab0ekL1++DH19fbi7u2PYsGFYsmQJYmNjER8fj9GjRyM8PJyhjkqUmJgYxMTEAAC0tLQAQLqRfOZN6D08PBAXF4d9+/bh9OnTePr0KdavX4/Hjx8z1BUzHLGjPEtOTkZiYiJmz56NwMBAXLx4EZMnT8aKFStQsWJFnD17FqVLl1Z3mUSF8vTpUzx8+BAVK1bEjRs38OOPP8Ld3R3Jycnw8fHB6tWrYWtri3v37uHMmTPYsWMHhBBo0qQJ9uzZg1KlSvG2PlRiJCQkoHLlymjdujUWLVoEU1NTadnatWuxe/duCCFw7do1/P3339J/WmJjY5GRkYGyZcuqq3TKAYMdFcizZ8/w119/YcOGDQgKCoKWlhbCwsJ4awcq0W7duoVBgwZBT08PpUuXxt69e7Fp0yaMGzcOL1++xOrVq7NcFPT69Wv4+vrCxcUFVatWVVPlRAX3v//9Dz169EC/fv0wc+ZM6UruoKAgdOvWDRoaGvD394e1tTWAt3dH4H9eii8GO8qX9z/QMTExiIiIgLGxMapUqaLGyogKJyQkBF999RWGDRuGwYMHw8LCQrpQaM+ePRgxYgR69eqFIUOGoHr16gD+73wkopLo3dvznDlzBi4uLhgwYABmzJgBc3NzAMDYsWOxf/9+3Lp1C9ra2gx1JQBvd0L58v4H2sTEhOfTUYn34sULDBkyBH379sXs2bOl9sxb+3Tu3BmJiYmYOHEi0tLSMHLkSFSrVo2hjkosIQRKlSqFo0eP4vDhw5g2bRr8/f3x9ddfQ6FQYOrUqahYsSJ++OEHnDp1Ctu3b4e7uztDXQnAiyeI6LMXHR2NqKgodO7cWeUmq5qamhBCQAiBPn36YN68edi/fz/mzJmDBw8eqLFiosJRKBTYu3cvvv/+e5QvXx737t2Di4sLDh06hDVr1uDXX3/Fs2fPYGtrC4VCgV27diEtLU3dZVMecCqWiD5727Ztg7u7O1JSUqBQKLJ85yXw9iTzly9fIigoCJMnT8bJkydVTjQnKklCQ0Ph5uaGcePGYejQoSrL/Pz80L59ewwcOBC//fYbIiIioFAoYGtrq6ZqKT84FUtEn73KlStDU1MTe/fuRefOnbOEOuDtFYJ//fUXjh49ChcXF+neXkQlUWRkJDQ1NdGuXTupLT09HRoaGmjbti1OnDgBFxcX6bu+OQVbcjDYEdFnz8rKCoaGhti0aRMaNWoEKysrAKoXC0VGRqJ+/foQQsDQ0FCd5RIVWnx8PJKSkqTnGRkZ0NDQAAAcP34cDRs2xNmzZ1G2bFmGuhKG59gR0WevYsWKWLlyJY4cOYJp06bh1q1bAN6eh5SQkIDJkydj9+7dGDBgABQKBf/QUYlnZ2eHZ8+eSd+q8u4o9YEDB7Bo0SI4OjqiZs2a6iqRCogjdkREAL7//nssXboUI0aMwKVLl+Do6AgdHR08fvwYFy5cgJ+fH2xsbNRdJlGRsLa2xvLlyzFkyBCkpqaiX79+0NDQwIYNG7Bp0yYEBgaqu0QqIF48QUT0jkuXLmHBggW4f/8+9PX18eWXX6J///7SveuI5CIjIwN79uzB4MGDoa+vDx0dHWhoaGD79u38WrwSjMGOiOg92V0VSyRXT548wcOHD6FQKGBtbc2rvUs4Bjsiove8e9EE77RPRCUJgx0RERGRTHCugYiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiApIoVBg//796i6DiEjCYEdEJZ6HhwcUCkWWR9u2baU+gwcPRtWqVaGrq4sKFSrgu+++w507dz643u+//z7H5VFRUXBzcyuq3SAiKjRNdRdARFQU2rZtCx8fH5U2pVIp/dve3h69e/fGF198gRcvXsDLywutW7dGeHg4NDQ0CrRNMzOzQtVMRFTUOGJHRLKgVCphZmam8ihbtqy0fNCgQWjRogUqV66Mhg0b4tdff8WjR48QERFR4G2+PxV7/vx51K9fHzo6OmjUqBH2798PhUKB4OBgAEB6ejr69+8Pa2tr6OrqokaNGli6dKnKOgMCAtCkSRPo6+ujTJky+PLLL/Hw4UNp+cGDB2Fvbw8dHR1UqVIFM2fORFpaWoH3gYjkhSN2RPTZiY+Ph4+PD6ytrWFpaVkk63z9+jU6dOiAdu3aYdu2bXj48CFGjx6t0icjIwOVKlXCzp07YWxsjPPnz2PQoEEwNzdHt27dkJaWhu+//x4DBw7E9u3bkZKSgkuXLkGhUAAAjhw5gj59+uD3339H8+bNcf/+fQwaNAgAMGPGjCLZDyIq2RjsiEgW/vrrL5QuXVqlbcKECZg2bZr0fMWKFRg/fjzi4+Nha2sLf39/aGtrF8n2t27dCoVCgT///BM6OjqoVasWHj9+jIEDB0p9tLS0MHPmTOm5tbU1zp8/j507d6Jbt26Ii4tDbGwsvvnmG1StWhUAULNmTan/7NmzMXHiRLi7uwMAqlSpgl9++QXjx49nsCMiAAx2RCQTLi4uWLlypUpbuXLlVJ737t0brVq1QlRUFBYuXIhu3brh3Llz0NHRKfT2Q0NDUa9ePZV1NWnSJEu/VatWYe3atXj48CESExORkpKC+vXrS/V6eHigTZs2aNWqFb7++mt069YN5ubmAIArV64gKCgIs2fPltaXnp6OpKQkJCQkQE9Pr9D7QUQlG4MdEcmCvr4+qlWrlmsfIyMjGBkZoXr16mjWrBnKli2Lffv2oWfPnoXevhBCmjJ9t+1dO3fuxJgxY7Bo0SI4ODjAwMAACxYswMWLF6U+Pj4+GDVqFPz8/ODr64upU6fC398fzZo1Q0ZGBmbOnIlOnTpl2X5RhFMiKvkY7IjosyWEQHJycpGsy9bWFlu3bkVycrJ0Ne7ly5dV+pw5cwaOjo4YNmyY1Hb//v0s62rQoAEaNGiASZMmwcHBAdu2bUOzZs3QsGFDhIaGfjDAEtHni8GOiGQhOTkZ0dHRKm2ampowNjbGgwcP4Ovri9atW6NChQp4/Pgx5s2bB11dXbRr1y7X9cbGxkpXtWYqV64cvvjiC5W2Xr16YcqUKRg0aBAmTpyIyMhILFy4EACkkbxq1aph06ZNOHLkCKytrbF582YEBQXB2toaABAeHo41a9bg22+/hYWFBUJDQ3H37l3069cPADB9+nR88803sLS0RNeuXVGqVClcv34dN27cwK+//lrgY0dEMiKIiEo4d3d3ASDLo0aNGkIIIR4/fizc3NyEiYmJ0NLSEpUqVRK9evUSd+7cKdB63d3dhRBCABD79u2T+p87d07Uq1dPaGtrC3t7e7Ft2zYBQNpOUlKS8PDwEEZGRqJMmTJi6NChYuLEicLOzk4IIUR0dLT4/vvvhbm5udDW1hZWVlZi+vTpIj09XdqGn5+fcHR0FLq6usLQ0FA0adJErFmzpugOJhGVaAoh3jsJhIiIisTWrVvxww8/IDY2Frq6uuouh4g+A5yKJSIqIps2bUKVKlVQsWJFXLt2DRMmTEC3bt0Y6ojok2GwIyIqItHR0Zg+fTqio6Nhbm6Orl27qtyahIjoY+NULBEREZFM8LtiiYiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGTi/wHmBug1zbN+awAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:19: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES'] = active_df[active_df['Smiles'].isin(smiles)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:19: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES'] = active_df[active_df['Smiles'].isin(smiles)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:20: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES and not Uniprot'] = active_df[active_df['Smiles'].isin(smiles) & (active_df['Uniprot'] != uniprot_id)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:20: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES and not Uniprot'] = active_df[active_df['Smiles'].isin(smiles) & (active_df['Uniprot'] != uniprot_id)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:22: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of active entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == True)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:22: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of active entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == True)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:23: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of inactive entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == False)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:23: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of inactive entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == False)].shape[0]\n"
]
},
{
"data": {
"text/plain": [
"Uniprot O43353\n",
"Number of entries 5\n",
"Number of entries per E3 ligase 3\n",
"Number of entries with same SMILES 5\n",
"Number of entries with same SMILES and not Uniprot 0\n",
"Number of active entries 5\n",
"Number of inactive entries 0\n",
"Name: 36, dtype: object"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfOklEQVR4nO3deVxN+eM/8NdtuyV1RdqU7GVNQoshBlGYwRCDMGMZMwZpbH3sZmjMWLIMxlgagyZkGcsYmbFrGBRjD5FJTdaitL9/f/h1vq5bqVRXZ17Px+M8Hu77vM/7vM9xb716v885VyGEECAiIiKiCk9H2x0gIiIiotLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdlKiQkBAqFQloMDQ1hZWWFDh06ICgoCElJSRrbzJo1CwqFolj7SUtLw6xZs3D48OFibZffvmrVqoXu3bsXq53X2bx5M4KDg/Ndp1AoMGvWrFLdX2n7/fff0bJlSxgbG0OhUGDnzp351rt9+7ba//ery8vHGRoainbt2sHS0hJKpRI2Njbo0aMHTp48WaQ+tW/fHu3bt1crqwjnsiiKer5Lw+HDh6FQKLBt27Z813/++efF/jzmyfv83759WyobOnSo2ntCqVTCwcEBM2fORHp6eon2k5979+5h1qxZiI6OLlL9/M5DSX5+FebKlSsYOnQoatasCQMDA5ibm8PHxwe//vrra7c9ePCg1I8HDx6orSvOZ2n48OFo0qQJqlSpAiMjIzRo0AATJ07UaDPvfOS3/Pnnn2p1ly5dCjc3N5ibm0OpVKJmzZro378/Ll26VKzzQ6VDT9sdoP+G9evXw9HREVlZWUhKSsLx48cxf/58LFiwAGFhYejUqZNUd/jw4ejatWux2k9LS8Ps2bMBQOOXfWFKsq+S2Lx5My5evAh/f3+NdZGRkbC1tS3zPpSUEAK+vr5o0KABfvnlFxgbG8PBwaHQbcaMGYMBAwZolL98nA8fPkSbNm0wbtw4mJubIyEhAYsWLUK7du3w+++/w9PTs9h9fdvPZVGU5Hy/rbp164bIyEhYW1urlRsZGeGPP/4AADx+/BihoaGYM2cOrl69irCwsFLZ97179zB79mzUqlULzZs3f6O2ivPzqyDbt2/HgAEDUKdOHUyfPh0ODg74999/sX79evj4+GDixIn45ptv8t322bNnGDFiBGxsbHDv3j2N9cX5LKWmpmLkyJGoV68eDA0NcebMGcydOxf79u1DVFQUDAwM1NqeN28eOnTooFbWpEkTjf17e3vDyckJZmZmuHXrFr7++mu4urri7NmzFfb9W2EJojK0fv16AUD89ddfGuvu3Lkj7OzshImJiUhMTHyj/dy/f18AEDNnzixS/dTU1ALX2dvbi27dur1Rf17VrVs3YW9vX6ptlpd//vlHABDz589/bd3Y2FgBQHz77bcl2teTJ0+Evr6+8PPze21dT09P4enpWaL9vM2Kc76LKi0tTeTm5ua77tChQwKA2Lp1a77rR48eLUrzV8WQIUOEsbGxRnnbtm0FAPHPP/8UuG1aWlqR9/PXX38JAGL9+vVFqp/feSitn183btwQlSpVEi1bthTPnj3TWD9q1CgBQISGhua7/ejRo4Wzs7OYNm2aACDu37//2uMpzmdpxYoVAoD4/fffpbLXvS9e5/LlywKAmD59eom2p5LjVCxpTc2aNbFw4UI8ffoU33//vVSe3/ToH3/8gfbt26NatWowMjJCzZo18cEHHyAtLQ23b99G9erVAQCzZ8+WpguGDh2q1t65c+fQp08fmJmZoW7dugXuK8+OHTvQrFkzGBoaok6dOli6dKna+vymmYD/m8LImxZu37499u7dizt37qhNZ+TJb/rw4sWLeP/992FmZgZDQ0M0b94cP/74Y777CQ0NxdSpU2FjYwNTU1N06tQJ165dK/jEv+T48ePo2LEjTExMUKlSJXh4eGDv3r3S+lmzZkkjYJMnT4ZCoUCtWrWK1HZJmJiYwNDQEHp6JZtMyO9cHj9+HO7u7jA0NESNGjUwffp0rFmzRuP/LiwsDF5eXrC2toaRkREaNmyIKVOmIDU1Va29W7duoX///rCxsYFSqYSlpSU6duyoMeUXFhYGd3d3GBsbo3LlyujSpQuioqIK7f/rzvfr/r+A/3tfHjhwAB9//DGqV6+OSpUqISMjo2gnsQgUCgU+//xz/PTTT2jYsCEqVaoEJycn7NmzJ9++vPoZyY+bmxsA4M6dOwD+75KI7du3w9nZGYaGhtKo/Os+H4cPH0arVq0AAB999FG+lwK8qYJ+fuVn8eLFSEtLw7Jly2BsbKyxfuHChahSpQrmzp2rse7YsWNYvXo11qxZA11d3SL3rzifpbyfnyX93JVXm1Q0DHakVT4+PtDV1cXRo0cLrHP79m1069YNBgYGWLduHfbv34+vv/4axsbGyMzMhLW1Nfbv3w8AGDZsGCIjIxEZGYnp06ertdO7d2/Uq1cPW7duxapVqwrtV3R0NPz9/TF+/Hjs2LEDHh4eGDduHBYsWFDsY1yxYgXatGkDKysrqW+RkZEF1r927Ro8PDxw6dIlLF26FNu3b0ejRo0wdOjQfKdq/ve//+HOnTtYs2YNVq9ejZiYGPTo0QM5OTmF9uvIkSN49913kZycjLVr1yI0NBQmJibo0aOHNB02fPhwbN++HcCL6dXIyEjs2LHjtcecm5uL7OxsjSU/OTk5yMrKwu3bt/Hpp59CCIHRo0e/dh9FceHCBXTu3BlpaWn48ccfsWrVKpw7dy7fX6AxMTHw8fHB2rVrsX//fvj7+2PLli3o0aOHWj0fHx+cPXsW33zzDSIiIrBy5Uo4OzvjyZMnUp158+bhww8/RKNGjbBlyxb89NNPePr0Kdq2bYvLly8X2N/CzndR/r9e9vHHH0NfXx8//fQTtm3bBn19/ZKcwgLt3bsXy5cvx5w5cxAeHo6qVauiV69euHXrVonau3HjBoD/CwQAcO7cOUycOBFjx47F/v378cEHHxTp89GiRQusX78eADBt2jTpMzd8+PA3PGp1Rfn5BQARERGwtLSUwuurKlWqBC8vL1y8eBGJiYlS+fPnzzFs2DD4+/ujRYsWr+1PcT5L2dnZSE1NxYkTJzB9+nS88847aNOmjUa90aNHQ09PD6ampujSpQuOHz9e6P4zMjJw9epVDB8+HBYWFvjoo49e228qZdoeMiR5K2wqI4+lpaVo2LCh9HrmzJlqUz/btm0TAER0dHSBbRQ2FZvX3owZMwpc9zJ7e3uhUCg09te5c2dhamoqTePmHVtsbKxavbwpjEOHDkllhU3Fvtrv/v37C6VSKeLi4tTqeXt7i0qVKoknT56o7cfHx0et3pYtWwQAERkZme/+8ri5uQkLCwvx9OlTqSw7O1s0adJE2NraSlN3xZlezatb0HLs2DGNbRwcHKT11tbW4vjx46/djxD5T8W+ei779u0rjI2N1aaucnJyRKNGjfL9v8uTm5srsrKyxJEjRwQAcf78eSGEEA8ePBAARHBwcIH9iouLE3p6emLMmDFq5U+fPhVWVlbC19e30OMq6HwX9f8r7305ePDgQveTpyRTsQCEpaWlSElJkcoSExOFjo6OCAoKksry+4zkTcVmZWWJrKwscf/+fbFkyRKhUChEq1atpHr29vZCV1dXXLt2TW3fRf18lPVUbJ5Xf37lx9DQULi5uRVaZ/LkyQKAOHXqlFT2xRdfiDp16khT0Hk/rwqaii3qZykyMlLtc+nj46P2fymEEOfOnRPjxo0TO3bsEEePHhXr1q0TDRs2FLq6umL//v35tqtUKqU2GzRoIC5fvlzoMVPZ4IgdaZ0QotD1zZs3h4GBAUaOHIkff/yxxCMCH3zwQZHrNm7cGE5OTmplAwYMQEpKCs6dO1ei/RfVH3/8gY4dO8LOzk6tfOjQoUhLS9MY7XvvvffUXjdr1gzA/01p5Sc1NRWnTp1Cnz59ULlyZalcV1cXfn5++Oeff4o8nZufcePG4a+//tJY8ruIPTw8HKdOncLWrVvRqFEjeHt7F/vu5oLkjXKZm5tLZTo6OvD19dWoe+vWLQwYMABWVlbQ1dWFvr6+dNH5lStXAABVq1ZF3bp18e2332LRokWIiopCbm6uWju//fYbsrOzMXjwYLXRSkNDQ3h6epbo2Ery/1Wc93tJdOjQASYmJtJrS0tLWFhYFPq+y5Oamgp9fX3o6+ujevXq8Pf3h7e3t8ZocLNmzdCgQQO1suJ+Psra635+FbedvMs0Tp8+jeDgYHz//fcwMjIqUhtF/Sw1bdoUf/31F44cOYIlS5YgKipKGtnO4+zsjODgYPTs2RNt27bFRx99hJMnT8La2hqTJk3Kd/8nT55EZGQkNm7cCBMTE3To0IF3xmoBJ79Jq1JTU/Hw4UM0bdq0wDp169bFwYMH8c0332D06NFITU1FnTp1MHbsWIwbN67I+3r1zrzCWFlZFVj28OHDIrdTEg8fPsy3rzY2Nvnuv1q1amqvlUolgBfTOAV5/PgxhBDF2k9x2NraomXLlkWq27hxYwBA69at0bNnTzg7O2PcuHE4f/58ifef5+HDh7C0tNQof7Xs2bNnaNu2LQwNDfHVV1+hQYMGqFSpEu7evYvevXtL51KhUOD333/HnDlz8M033+CLL75A1apVMXDgQMydOxcmJib4999/AUC6xutVOjrF/3u6JP9fRX2/510DVdDUfXZ2dr7XSb36vgNevPcKe9/lMTIykqYvlUol7O3tYWpqqlEvv2Mo7uejLBXl5xfw4nq82NjYQuvkXYeYF1g//vhj9O7dGy1btpSm+fMeB5OSkgKlUqkWrIGif5aMjY2lz2e7du3g6uoKNzc3fP/99xg/fnyBfaxSpQq6d++OVatW4fnz5xqBM2+62M3NDe+99x7q1auH//3vf9i1a1ehx06li8GOtGrv3r3Iycl57SNK2rZti7Zt2yInJwdnzpzBsmXL4O/vD0tLS/Tv379I+yrOs7hevs7l1bK8X2iGhoYAoHFR+qvPgyquatWqISEhQaM87zEHL48+lZSZmRl0dHTKfD/FpaenhxYtWmDLli2l0l61atWkoPWyV/9///jjD9y7dw+HDx9WezTEy9fN5bG3t8fatWsBANevX8eWLVswa9YsZGZmYtWqVdJ527ZtG+zt7UvlOEry/1XU93teyI2Pj893fXx8fL7h+E3o6OgUKfjndwzl8fkoqqL+/OrcuTO+++47/Pnnn/leZ5eWloaIiAg0adJE+gPy0qVLuHTpErZu3apRv27dunBycir0GX3F+Sy1bNkSOjo6uH79+mvrvjqyWBATExM4OjoWqU0qXZyKJa2Ji4vDhAkToFKp8MknnxRpG11dXbi6uuK7774DAGlatCijVMVx6dIljb9yN2/eDBMTE+mv0ry7FS9cuKBW75dfftFor6gjGQDQsWNHKWi8bMOGDahUqVKBF2AXh7GxMVxdXbF9+3a1fuXm5mLjxo2wtbXVmAIrD+np6fjzzz9Rr169UmnP09MTf/zxh1rYzs3N1fhlmfdLKu99lOd1dzs2aNAA06ZNQ9OmTaX3YpcuXaCnp4ebN2+iZcuW+S7FVZb/X/Xr14e9vT22bt2qMa14//59HDp0qEjPaSsvRf18lPbPhFcV5+fX+PHjYWRkhDFjxmjcZQ0AEyZMwOPHjzFt2jSp7NChQxrLkCFDAAA7d+7EmjVrCt1ncT5LR44cQW5u7mvrPn78GHv27EHz5s2lP2wL8uDBA/z999+l9lmmouOIHZWLixcvStcaJSUl4dixY1i/fj10dXWxY8cOtTvhXrVq1Sr88ccf6NatG2rWrIn09HSsW7cOAKRfOCYmJrC3t8euXbvQsWNHVK1aFebm5iV+NIeNjQ3ee+89zJo1C9bW1ti4cSMiIiIwf/58VKpUCcCLqTYHBwdMmDAB2dnZMDMzw44dO/K9a6xp06bYvn07Vq5cCRcXl0JHLGbOnIk9e/agQ4cOmDFjBqpWrYpNmzZh7969+Oabb6BSqUp0TK8KCgpC586d0aFDB0yYMAEGBgZYsWIFLl68iNDQ0BJ/2wDw4pfeq0+nB17c8Zj3qBkPDw+89957aNiwIVQqFW7fvo2VK1fi5s2bRbrztiimTp2K3bt3o2PHjpg6dSqMjIywatUq6Zdr3rSoh4cHzMzMMGrUKMycORP6+vrYtGmTRri/cOECPv/8c/Tt2xf169eHgYEB/vjjD1y4cAFTpkwB8CLwz5kzB1OnTsWtW7fQtWtXmJmZ4d9//8Xp06dhbGwsPbajOMry/2vBggXw9fVFx44dMWLECFhZWSEmJgZff/01DAwMNO4w16aifj7q1q0LIyMjbNq0CQ0bNkTlypVhY2MjTdkWx5v8/Mrry08//YSBAweiVatWCAgIkB5QvG7dOvz666+YMGEC+vXrJ22T3yhg3vVybdq0URuZLOpnac+ePfjhhx/w3nvvwd7eHllZWThz5gyCg4NRr149tbuGBwwYgJo1a6Jly5YwNzdHTEwMFi5ciH///RchISFSveTkZHTu3BkDBgxA/fr1YWRkhOvXr2PJkiXIyMjAzJkzi3m26Y1p8cYN+g/Iu6ssbzEwMBAWFhbC09NTzJs3TyQlJWls8+qdqpGRkaJXr17C3t5eKJVKUa1aNeHp6Sl++eUXte0OHjwonJ2dpTuzhgwZotZefneSFXRXbLdu3cS2bdtE48aNhYGBgahVq5ZYtGiRxvbXr18XXl5ewtTUVFSvXl2MGTNG7N27V+Ou2EePHok+ffqIKlWqCIVCobZP5HM3799//y169OghVCqVMDAwEE5OThp39xV0N2PeXZVFuRvw2LFj4t133xXGxsbCyMhIuLm5id27d+fbXmncFTtw4ECp7hdffCGcnJyESqUSenp6wsrKSvTq1UucOHHitfsRomh3xeYdo6urq1AqlcLKykpMnDhRzJ8/XwCQ7qAUQoiTJ08Kd3d3UalSJVG9enUxfPhwce7cObVz+e+//4qhQ4cKR0dHYWxsLCpXriyaNWsmFi9eLLKzs9X2u3PnTtGhQwdhamoqlEqlsLe3F3369BEHDx4s0jnM73wX5f+rKHdy5ufgwYPCy8tLVKlSRejp6Qlra2sxaNAgERMTo1EXgBg9erRGub29vfS5e7kv+d0V+zqFPSi8KJ8PIYQIDQ0Vjo6OQl9f/7UPMC/srtji/PwqzKVLl8SQIUOEra2t0NfXF1WrVhVdu3YVe/fuLdL2Bf0sK+pn6cqVK6JPnz7C3t5eGBoaCkNDQ+Ho6CgmTpwoHj58qFY3KChING/eXKhUKqGrqyuqV68uevXqJU6fPq1WLz09XQwfPlw0bNhQVK5cWejp6QlbW1sxaNAgcenSpWKdHyodCiFK6ZYeIqIKwsvLC7dv3+b1P0QkO5yKJSJZCwgIgLOzM+zs7PDo0SNs2rQJERER0g0QRERywmBHRLKWk5ODGTNmIDExEQqFAo0aNcJPP/2EQYMGabtrRESljlOxRERERDLBx50QERERyQSDHREREZFMMNgRERERyQRvnshHbm4u7t27BxMTkzd66CcRERHRmxJC4OnTp7CxsXnt900z2OXj3r170hcxExEREb0N7t69C1tb20LrMNjlw8TEBMCLE2hqaqrl3hAREdF/WUpKCuzs7KR8UhgGu3zkTb+ampoy2BEREdFboSiXh/HmCSIiIiKZYLAjIiIikgkGOyIiIiKZ4DV2RET0Wrm5ucjMzNR2N4hkSV9fH7q6uqXSFoMdEREVKjMzE7GxscjNzdV2V4hkq0qVKrCysnrj5+cy2BERUYGEEEhISICuri7s7Oxe+3BUIioeIQTS0tKQlJQEALC2tn6j9hjsiIioQNnZ2UhLS4ONjQ0qVaqk7e4QyZKRkREAICkpCRYWFm80Lcs/vYiIqEA5OTkAAAMDAy33hEje8v5wysrKeqN2GOyIiOi1+L3ZRGWrtD5jDHZEREREMqHVYBcUFIRWrVrBxMQEFhYW6NmzJ65du/ba7Y4cOQIXFxcYGhqiTp06WLVqlUad8PBwNGrUCEqlEo0aNcKOHTvK4hCIiKiUhYSEoEqVKuWyLz8/P8ybN69c9kX/Xa1atcL27dvLZV9aDXZHjhzB6NGj8eeffyIiIgLZ2dnw8vJCampqgdvExsbCx8cHbdu2RVRUFP73v/9h7NixCA8Pl+pERkaiX79+8PPzw/nz5+Hn5wdfX1+cOnWqPA6LiOg/5eTJk9DV1UXXrl2LvW2tWrUQHBysVtavXz9cv369lHpXsAsXLmDv3r0YM2aMVNa+fXsoFAooFAoolUrUqFEDPXr0KLdfyiX1999/w9PTE0ZGRqhRowbmzJkDIcRrt9u7dy9cXV1hZGQEc3Nz9O7du9T7NmvWLOmc6unpwdzcHO3atUNwcDAyMjI06t+4cQMfffQRbG1toVQqUbt2bXz44Yc4c+aMVKdWrVpSm3nLlClT1NqJi4tDjx49YGxsDHNzc4wdO7ZIz2KMjIzEu+++C2NjY1SpUgXt27fH8+fPC91mxYoVqF27NgwNDeHi4oJjx46prZ8+fTqmTJlSPo8MEm+RpKQkAUAcOXKkwDqTJk0Sjo6OamWffPKJcHNzk177+vqKrl27qtXp0qWL6N+/f5H6kZycLACI5OTkYvSeiEh+nj9/Li5fviyeP39eYJ1hw4aJcePGCWNjY3Hnzp1itW9vby8WL178hr0smREjRoiRI0eqlXl6eooRI0aIhIQEERcXJyIjI8WkSZOEvr6+GDFihFb6+TrJycnC0tJS9O/fX/z9998iPDxcmJiYiAULFhS63bZt24SZmZlYuXKluHbtmrh69arYunVrqfdv5syZonHjxiIhIUHEx8eLCxcuiKVLlwoLCwvRokULkZKSItX966+/hKmpqfDw8BB79uwRN27cEFFRUWLWrFmiXbt2Uj17e3sxZ84ckZCQIC1Pnz6V1mdnZ4smTZqIDh06iHPnzomIiAhhY2MjPv/880L7evLkSWFqaiqCgoLExYsXxfXr18XWrVtFenp6gdv8/PPPQl9fX/zwww/i8uXL+X4WsrOzhYWFhdi3b1+B7RT2WStOLnmrgl1MTIwAIP7+++8C67Rt21aMHTtWrWz79u1CT09PZGZmCiGEsLOzE4sWLVKrs2jRIlGzZs0i9YPBjojohdcFu2fPngkTExNx9epV0a9fPzF79myNOrt27RIuLi5CqVSKatWqiV69egkhXoQoAGqLEEKsX79eqFQqIYQQV69eFQDElStX1NpcuHChsLe3F7m5uUIIIS5duiS8vb2FsbGxsLCwEIMGDRL3798v8LhycnJElSpVxJ49e9TKPT09xbhx4zTqr1u3TgAQERERQgghYmNjBQARFhYm3nnnHWFoaChatmwprl27Jk6fPi1cXFyEsbGx6NKli0hKSpLaOX36tOjUqZOoVq2aMDU1Fe3atRNnz56V1h86dEjo6+uLo0ePSmULFiwQ1apVE/fu3cv3WFasWCFUKpVa+AgKChI2NjbS+XlVVlaWqFGjhlizZk2B56goZs6cKZycnMSqVauEra2tMDIyEn369BGPHz/WqPOqK1euCAMDAzF16lQhhBC5ubmicePGwsXFReTk5GjUf7nN1/1BsG/fPqGjoyPi4+OlstDQUKFUKgv93e7q6iqmTZtW8AHno3Xr1mLUqFFqZY6OjmLKlClqZUOHDhV+fn4FtlNawe6tuXlCCIGAgAC88847aNKkSYH1EhMTYWlpqVZmaWmJ7OxsPHjwoNA6iYmJ+baZkZGBlJQUtYWIiF4vLCwMDg4OcHBwwKBBg7B+/Xq1KcC9e/eid+/e6NatG6KiovD777+jZcuWAIDt27fD1tYWc+bMQUJCAhISEjTad3BwgIuLCzZt2qRWvnnzZgwYMAAKhQIJCQnw9PRE8+bNcebMGezfvx///vsvfH19C+z3hQsX8OTJE6kvrzNkyBCYmZlpTMnOnDkT06ZNw7lz56Cnp4cPP/wQkyZNwpIlS3Ds2DHcvHkTM2bMkOo/ffoUQ4YMwbFjx/Dnn3+ifv368PHxwdOnTwG8mAr29/eHn58fkpOTcf78eUydOhU//PBDgQ+ujYyMhKenJ5RKpVTWpUsX3Lt3D7dv3853m3PnziE+Ph46OjpwdnaGtbU1vL29cenSpSKdj5fduHEDW7Zswe7du7F//35ER0dj9OjRr93O0dER3t7e0jmNjo7GpUuX8MUXX+T7IOxXr7ucP38+qlWrhubNm2Pu3Llq06yRkZFo0qQJbGxspLIuXbogIyMDZ8+ezbc/SUlJOHXqFCwsLODh4QFLS0t4enri+PHjBR5DZmYmzp49Cy8vL7VyLy8vnDx5Uq2sdevWGlO0ZeGteUDx559/jgsXLhR6AvO8ektw3g+Rl8vzq1PQrcRBQUGYPXt2cbtcZC4TN5RZ2/Tfcfbbwdrugga+t+XPysQAX3SqixzDx9DR09dYv2zFKnTt3hOX7z5AzcYtkZzyFOtCt8O9rScAYNrM2fB+rxf6DR8DAUAfQE+/kbh898Uf4rlQwMTEBFZWVgX2YeDAgVi+fDm+/PJLAMD169dx9uxZbNjw4v23cuVKtGjRQu0miHXr1sHOzg7Xr19HgwYNNNq8ffs2dHV1YWFhUaTzoKOjgwYNGmgEpQkTJqBLly4AgHHjxuHDDz/E77//jjZt2gAAhg0bhpCQEKn+u+++q7b9999/DzMzMxw5cgTdu3cHAHz11Vc4ePAgRo4ciUuXLsHPzw+9evUqsG+JiYmoVauWWlne4EZiYiJq166tsc2tW7cAvLj+bdGiRahVqxYWLlwIT09PXL9+HVWrVn39Sfn/0tPT8eOPP8LW1hYAsGzZMnTr1g0LFy4s9P8VeBHuDhw4AACIiYmRyl5n3LhxaNGiBczMzHD69GkEBgYiNjYWa9askY771QEeMzMzGBgYFDjI8/I5WbBgAZo3b44NGzagY8eOuHjxIurXr6+xzYMHD5CTk1OkwaQaNWogLi4Oubm5ZfoNLm/FiN2YMWPwyy+/4NChQ9IboyBWVlYaJyspKQl6enqoVq1aoXVePfF5AgMDkZycLC137959g6MhIvpviL15AxfPR8H7vRehQ09PD117vI/tWzZLda5eugi3Nm3faD/9+/fHnTt38OeffwIANm3ahObNm6NRo0YAgLNnz+LQoUOoXLmytOSFg5s3b+bb5vPnz6FUKov17LD8BgiaNWsm/Tvvd0zTpk3VyvK+Kgp48bto1KhRaNCgAVQqFVQqFZ49e4a4uDipjoGBATZu3Ijw8HA8f/5c4+aS/BRlwONleRfxT506FR988AFcXFywfv16KBQKbN269bX7e1nNmjXVfne7u7sjNze3SE+5ePmcvq7PLxs/fjw8PT3RrFkzDB8+HKtWrcLatWvx8OFDqU5+7RQ2yJN3Tj755BN89NFHcHZ2xuLFi+Hg4IB169YV2p+iDCYZGRkhNzc33xtGSpNWR+yEEBgzZgx27NiBw4cP5/tXxavc3d2xe/dutbIDBw6gZcuW0NfXl+pERERg/PjxanU8PDzybVOpVKoNYRMR0euF/7wJ2dnZeLf1/4UbIQT09PWR/OQJVFWqQGlo+Mb7sba2RocOHbB582a4ubkhNDQUn3zyibQ+NzcXPXr0wPz58/PdNj/m5uZIS0tDZmZmkb5VIycnBzExMWjVqpVaed7vHeD/frm/WvbynZBDhw7F/fv3ERwcDHt7eyiVSri7u2vcrZk3jffo0SM8evQIxsbGBfatoMEMAAUOaOSdl7xwDLz4XVinTh21kFkSeeehKAHtypUr0u/+vJHVK1euoHnz5sXap5ubG4AX08LVqlWDlZWVxpMwHj9+jKysrGKdEwBo2LBhgefE3Nwcurq6RRpMevToESpVqiR9fVhZ0eqI3ejRo7Fx40Zs3rwZJiYmSExMRGJiotptxYGBgRg8+P+moEaNGoU7d+4gICAAV65cwbp167B27VpMmDBBqjNu3DgcOHAA8+fPx9WrVzF//nwcPHgQ/v7+5Xl4RESylZ2djV+2h2Hi9DkI339IWrb/dhg2NWyxZ+c2AECDho3w54mCryvS19eXvrasMAMHDkRYWBgiIyNx8+ZN9O/fX1rXokULXLp0CbVq1UK9evXUloICUV5wuHz5cpGO98cff8Tjx4/xwQcfFKl+QY4dO4axY8fCx8cHjRs3hlKplK4Pz3Pz5k2MHz8eP/zwA9zc3DB48OBCH5Ph7u6Oo0ePqoXDAwcOwMbGRmOKNo+LiwuUSqXaqFpWVhZu374Ne3v7Yh1TXFwc7t27J72OjIyUpq4Lc/XqVezfv186p3mjsAsXLsz3eJ88eVJgW1FRUQD+L5y5u7vj4sWLatdtHjhwAEqlEi4uLvm2UatWLdjY2GiMNF6/fr3Ac2JgYAAXFxdERESolUdERGgMJl28eBEtWrQo8BhKi1aD3cqVK5GcnIz27dvD2tpaWsLCwqQ6CQkJakm5du3a2LdvHw4fPozmzZvjyy+/xNKlS9U+bB4eHvj555+xfv16NGvWDCEhIQgLC4Orq2u5Hh8RkVwd+f0AUpKT8UG/gajv0FBt8fLpge1hL252+Mx/Ivbt2o7lC+fjZsx1XL96GWtXLpPaqWFbE0ePHkV8fLxGwHlZ7969kZKSgk8//RQdOnRAjRo1pHWjR4/Go0eP8OGHH+L06dO4desWDhw4gI8//rjA0Fi9enW0aNEi3+u609LSkJiYiH/++QenTp3C5MmTMWrUKGnfb6JevXr46aefcOXKFZw6dQoDBw5UG8HJycmBn58fvLy88NFHH2H9+vW4ePEiFi5cWGCbAwYMgFKpxNChQ3Hx4kXs2LED8+bNQ0BAgDRqdvr0aTg6OiI+Ph4AYGpqilGjRmHmzJk4cOAArl27hk8//RQA0Ldv32Idk6GhIYYMGYLz589LwdXX11ft+rrs7GwkJibi3r17+Pvvv7Fs2TLphpeJEycCeDHCt379ely/fh3t2rXDvn37cOvWLVy4cAFz587F+++/D+BFcFy8eDGio6MRGxuLLVu24JNPPsF7772HmjVrAnhx80KjRo3g5+cn3bQzYcIEjBgxAqampvkeh0KhwMSJE7F06VJs27YNN27cwPTp03H16lUMGzZMqtexY0csX75ceh0QEIA1a9Zg3bp1uHLlCsaPH4+4uDiMGjVKrf1jx45p3GRRFrQ+Ffs6L190msfT0xPnzp0rdLs+ffqgT58+Je0aEREVIvznTXB/px1M8vkl2dm7O1YvD8blv8+jtXsbLFq5FquWLsSalUtRubIJXFzdpLqffzEZX8+YjLp16yIjI6PA3wumpqbo0aMHtm7dqnG9k42NDU6cOIHJkydLdz7a29uja9euhV6kPnLkSISEhODzzz9XK//hhx/www8/wMDAANWqVYOLiwvCwsIKvYGhqNatW4eRI0fC2dkZNWvWxLx589RmnObOnYvbt29LlxxZWVlhzZo18PX1RefOnfOdolSpVIiIiMDo0aPRsmVLmJmZISAgAAEBAVKdtLQ0XLt2Te0L5r/99lvo6enBz88Pz58/h6urK/744w+YmZlJdWrVqoWhQ4di1qxZBR5TvXr10Lt3b/j4+ODRo0fw8fHBihUr1OpcunQJ1tbW0NXVhUqlQqNGjRAYGIhPP/1U7VKo1q1b48yZM5g7dy5GjBiBBw8ewNraGh4eHtK1hkqlEmFhYZg9e7b0fz1ixAhMmjRJakdXVxd79+7FZ599hjZt2sDIyAgDBgzAggULCv3/8ff3R3p6OsaPH49Hjx7ByckJERERqFu3rlTn5s2ban+E9OvXDw8fPpTu7m7SpAn27dunNsoXHx+PkydPYuPGjYXuvzQoRFHS1X9MSkoKVCoVkpOTC0z2xcE7B6k08K5Y0oa8u2ItrG3zvSu2NDSyMy+Tdl8nPT0dDg4O+Pnnn+Hu7q6VPrzNnj9/jqpVq2Lfvn0FjlTOmjULO3fuRHR0dPl2roKZOHEikpOTsXr16gLrpKenIzY2VvoGi5cVJ5e8NY87ISIiKk+GhobYsGFDoVPA/2VHjhzBu++++8bTzwRYWFiojcyWJQY7IiL6z/L09NR2F95aXbt2LdH3/5KmvOsIy8Nb8Rw7IiIiqnhmzZrFadi3DIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUzwAcVERESlpLy/Zq84XzWoUCgKXT9kyJB8v5+dKhYGOyIiov+AhIQE6d9hYWGYMWMGrl27JpUZGRmp1c/KyoK+ftl8PzCVHU7FEhER/QdYWVlJi0qlgkKhkF6np6ejSpUq2LJlC9q3bw9DQ0Ns3LgRs2bNQvPmzdXaCQ4ORq1atdTK1q9fj4YNG8LQ0BCOjo5YsWJF+R0YqWGwIyIiIgDA5MmTMXbsWFy5cgVdunQp0jY//PADpk6dirlz5+LKlSuYN28epk+fjh9//LGMe0v54VQsERERAQD8/f3Ru3fvYm3z5ZdfYuHChdJ2tWvXxuXLl/H9999jyJAhZdFNKgSDHREREQEAWrZsWaz69+/fx927dzFs2DCMGDFCKs/OzoZKpSrt7lERMNgRERERAMDY2FjttY6ODoQQamVZWVnSv3NzcwG8mI51dXVVq6erq1tGvaTCMNgRERFRvqpXr47ExEQIIaTHpURHR0vrLS0tUaNGDdy6dQsDBw7UUi/pZQx2RERElK/27dvj/v37+Oabb9CnTx/s378fv/76K0xNTaU6s2bNwtixY2Fqagpvb29kZGTgzJkzePz4MQICArTY+/8m3hVLRERE+WrYsCFWrFiB7777Dk5OTjh9+jQmTJigVmf48OFYs2YNQkJC0LRpU3h6eiIkJAS1a9fWUq//2xTi1clzQkpKClQqFZKTk9X+Kimp8n4SOclTcZ4wX1743pY/KxMDfNGpLiysbaGjVzYPq21kZ14m7RJVJOnp6YiNjUXt2rVhaGiotq44uYQjdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREQFygXw4tkJfIACUVnK+xaPN8UHFBMRUYGSn2cjNSMLmWlPYVDJBICi1PeRnp5e6m0SVRRCCGRmZuL+/fvQ0dGBgYHBG7XHYEdERAXKyM7FhtPxGNwaMFamQFH6uQ666U9Kv1GiCqZSpUqoWbMmdHTebDKVwY6IiAoV+/A5vo64BZWRXplcvxM+qWcZtEpUcejq6kJPT0/6Pt43wWBHRESvlZGdi6SnmWXS9qtP2SeiktPqzRNHjx5Fjx49YGNjA4VCgZ07dxZaf+jQoVAoFBpL48aNpTohISH51uE1HERERCR3Wg12qampcHJywvLly4tUf8mSJUhISJCWu3fvomrVqujbt69aPVNTU7V6CQkJ/IuQiIiIZE+rU7He3t7w9vYucn2VSgWVSiW93rlzJx4/foyPPvpIrZ5CoYCVlVWp9ZOIiIioIqjQz7Fbu3YtOnXqBHt7e7XyZ8+ewd7eHra2tujevTuioqK01EMiIiKi8lNhb55ISEjAr7/+is2bN6uVOzo6IiQkBE2bNkVKSgqWLFmCNm3a4Pz586hfv36+bWVkZCAjI0N6nZKSUqZ9JyIiIioLFXbELiQkBFWqVEHPnj3Vyt3c3DBo0CA4OTmhbdu22LJlCxo0aIBly5YV2FZQUJA0zatSqWBnZ1fGvSciIiIqfRUy2AkhsG7dOvj5+b32Cc06Ojpo1aoVYmJiCqwTGBiI5ORkabl7925pd5mIiIiozFXIqdgjR47gxo0bGDZs2GvrCiEQHR2Npk2bFlhHqVRCqVSWZheJiIiIyp1Wg92zZ89w48YN6XVsbCyio6NRtWpV1KxZE4GBgYiPj8eGDRvUtlu7di1cXV3RpEkTjTZnz54NNzc31K9fHykpKVi6dCmio6Px3XfflfnxEBEREWmTVoPdmTNn0KFDB+l1QEAAAGDIkCEICQlBQkIC4uLi1LZJTk5GeHg4lixZkm+bT548wciRI5GYmAiVSgVnZ2ccPXoUrVu3LrsDISIiInoLaDXYtW/fHkKIAteHhIRolKlUKqSlpRW4zeLFi7F48eLS6B4RERFRhVIhb54gIiIiIk0MdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBNaDXZHjx5Fjx49YGNjA4VCgZ07dxZa//Dhw1AoFBrL1atX1eqFh4ejUaNGUCqVaNSoEXbs2FGGR0FERET0dtBqsEtNTYWTkxOWL19erO2uXbuGhIQEaalfv760LjIyEv369YOfnx/Onz8PPz8/+Pr64tSpU6XdfSIiIqK3ip42d+7t7Q1vb+9ib2dhYYEqVarkuy44OBidO3dGYGAgACAwMBBHjhxBcHAwQkND36S7RERERG+1CnmNnbOzM6ytrdGxY0ccOnRIbV1kZCS8vLzUyrp06YKTJ08W2F5GRgZSUlLUFiIiIqKKpkIFO2tra6xevRrh4eHYvn07HBwc0LFjRxw9elSqk5iYCEtLS7XtLC0tkZiYWGC7QUFBUKlU0mJnZ1dmx0BERERUVrQ6FVtcDg4OcHBwkF67u7vj7t27WLBgAdq1ayeVKxQKte2EEBplLwsMDERAQID0OiUlheGOiIiIKpwKNWKXHzc3N8TExEivraysNEbnkpKSNEbxXqZUKmFqaqq2EBEREVU0FT7YRUVFwdraWnrt7u6OiIgItToHDhyAh4dHeXeNiIiIqFxpdSr22bNnuHHjhvQ6NjYW0dHRqFq1KmrWrInAwEDEx8djw4YNAF7c8VqrVi00btwYmZmZ2LhxI8LDwxEeHi61MW7cOLRr1w7z58/H+++/j127duHgwYM4fvx4uR8fERERUXnSarA7c+YMOnToIL3Ou85tyJAhCAkJQUJCAuLi4qT1mZmZmDBhAuLj42FkZITGjRtj79698PHxkep4eHjg559/xrRp0zB9+nTUrVsXYWFhcHV1Lb8DIyIiItIChRBCaLsTb5uUlBSoVCokJyeXyvV2LhM3lEKv6L/u7LeDtd0FDXxvU2l4G9/bRG+T4uSSCn+NHRERERG9wGBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBNaDXZHjx5Fjx49YGNjA4VCgZ07dxZaf/v27ejcuTOqV68OU1NTuLu747ffflOrExISAoVCobGkp6eX4ZEQERERaZ9Wg11qaiqcnJywfPnyItU/evQoOnfujH379uHs2bPo0KEDevTogaioKLV6pqamSEhIUFsMDQ3L4hCIiIiI3hp62ty5t7c3vL29i1w/ODhY7fW8efOwa9cu7N69G87OzlK5QqGAlZVVaXWTiIiIqEKo0NfY5ebm4unTp6hatapa+bNnz2Bvbw9bW1t0795dY0TvVRkZGUhJSVFbiIiIiCqaCh3sFi5ciNTUVPj6+kpljo6OCAkJwS+//ILQ0FAYGhqiTZs2iImJKbCdoKAgqFQqabGzsyuP7hMRERGVqgob7EJDQzFr1iyEhYXBwsJCKndzc8OgQYPg5OSEtm3bYsuWLWjQoAGWLVtWYFuBgYFITk6Wlrt375bHIRARERGVKq1eY1dSYWFhGDZsGLZu3YpOnToVWldHRwetWrUqdMROqVRCqVSWdjeJiIiIylWFG7ELDQ3F0KFDsXnzZnTr1u219YUQiI6OhrW1dTn0joiIiEh7tDpi9+zZM9y4cUN6HRsbi+joaFStWhU1a9ZEYGAg4uPjsWHDBgAvQt3gwYOxZMkSuLm5ITExEQBgZGQElUoFAJg9ezbc3NxQv359pKSkYOnSpYiOjsZ3331X/gdIREREVI60OmJ35swZODs7S48qCQgIgLOzM2bMmAEASEhIQFxcnFT/+++/R3Z2NkaPHg1ra2tpGTdunFTnyZMnGDlyJBo2bAgvLy/Ex8fj6NGjaN26dfkeHBEREVE50+qIXfv27SGEKHB9SEiI2uvDhw+/ts3Fixdj8eLFb9gzIiIiooqnwl1jR0RERET5Y7AjIiIikgkGOyIiIiKZYLAjIiIikgkGOyIiIiKZYLAjIiIikgkGOyIiIiKZYLAjIiIikgkGOyIiIiKZYLAjIiIikgkGOyIiIiKZKFGwe/fdd/HkyRON8pSUFLz77rtv2iciIiIiKoESBbvDhw8jMzNTozw9PR3Hjh17404RERERUfHpFafyhQsXpH9fvnwZiYmJ0uucnBzs378fNWrUKL3eEREREVGRFSvYNW/eHAqFAgqFIt8pVyMjIyxbtqzUOkdERERERVesYBcbGwshBOrUqYPTp0+jevXq0joDAwNYWFhAV1e31DtJRERERK9XrGBnb28PAMjNzS2TzhARERFRyRUr2L3s+vXrOHz4MJKSkjSC3owZM964Y0RERERUPCUKdj/88AM+/fRTmJubw8rKCgqFQlqnUCgY7IiIiIi0oETB7quvvsLcuXMxefLk0u4PEREREZVQiZ5j9/jxY/Tt27e0+0JEREREb6BEwa5v3744cOBAafeFiIiIiN5AiaZi69Wrh+nTp+PPP/9E06ZNoa+vr7Z+7NixpdI5IiIiIiq6EgW71atXo3Llyjhy5AiOHDmitk6hUDDYEREREWlBiYJdbGxsafeDiIiIiN5Qia6xIyIiIqK3T4lG7D7++ONC169bt65EnSEiIiKikitRsHv8+LHa66ysLFy8eBFPnjzBu+++WyodIyIiIqLiKVGw27Fjh0ZZbm4uPvvsM9SpU+eNO0VERERExVdq19jp6Ohg/PjxWLx4cWk1SURERETFUKo3T9y8eRPZ2dml2SQRERERFVGJpmIDAgLUXgshkJCQgL1792LIkCGl0jEiIiIiKp4SjdhFRUWpLRcuXAAALFy4EMHBwUVu5+jRo+jRowdsbGygUCiwc+fO125z5MgRuLi4wNDQEHXq1MGqVas06oSHh6NRo0ZQKpVo1KhRvtcEEhEREclNiUbsDh06VCo7T01NhZOTEz766CN88MEHr60fGxsLHx8fjBgxAhs3bsSJEyfw2WefoXr16tL2kZGR6NevH7788kv06tULO3bsgK+vL44fPw5XV9dS6TcRERHR26hEwS7P/fv3ce3aNSgUCjRo0ADVq1cv1vbe3t7w9vYucv1Vq1ahZs2a0qhgw4YNcebMGSxYsEAKdsHBwejcuTMCAwMBAIGBgThy5AiCg4MRGhparP4RERERVSQlmopNTU3Fxx9/DGtra7Rr1w5t27aFjY0Nhg0bhrS0tNLuoyQyMhJeXl5qZV26dMGZM2eQlZVVaJ2TJ0+WWb+IiIiI3gYlCnYBAQE4cuQIdu/ejSdPnuDJkyfYtWsXjhw5gi+++KK0+yhJTEyEpaWlWpmlpSWys7Px4MGDQuskJiYW2G5GRgZSUlLUFiIiIqKKpkRTseHh4di2bRvat28vlfn4+MDIyAi+vr5YuXJlafVPg0KhUHsthNAoz6/Oq2UvCwoKwuzZs0uxl0REVJG5TNyg7S6QTJz9dnC57q9EI3ZpaWkao2IAYGFhUaZTsVZWVhojb0lJSdDT00O1atUKrZNff/MEBgYiOTlZWu7evVv6nSciIiIqYyUKdu7u7pg5cybS09OlsufPn2P27Nlwd3cvtc7lt9+IiAi1sgMHDqBly5bQ19cvtI6Hh0eB7SqVSpiamqotRERERBVNiaZig4OD4e3tDVtbWzg5OUGhUCA6OhpKpRIHDhwocjvPnj3DjRs3pNexsbGIjo5G1apVUbNmTQQGBiI+Ph4bNrwYEh81ahSWL1+OgIAAjBgxApGRkVi7dq3a3a7jxo1Du3btMH/+fLz//vvYtWsXDh48iOPHj5fkUImIiIgqjBIFu6ZNmyImJgYbN27E1atXIYRA//79MXDgQBgZGRW5nTNnzqBDhw7S67xvtBgyZAhCQkKQkJCAuLg4aX3t2rWxb98+jB8/Ht999x1sbGywdOlStWfgeXh44Oeff8a0adMwffp01K1bF2FhYXyGHREREcleiYJdUFAQLC0tMWLECLXydevW4f79+5g8eXKR2mnfvr1080N+QkJCNMo8PT1x7ty5Qtvt06cP+vTpU6Q+EBEREclFia6x+/777+Ho6KhR3rhx43y/4ouIiIiIyl6Jgl1iYiKsra01yqtXr46EhIQ37hQRERERFV+Jgp2dnR1OnDihUX7ixAnY2Ni8caeIiIiIqPhKdI3d8OHD4e/vj6ysLLz77rsAgN9//x2TJk0q02+eICIiIqKClSjYTZo0CY8ePcJnn32GzMxMAIChoSEmT56MwMDAUu0gERERERVNiYKdQqHA/PnzMX36dFy5cgVGRkaoX78+lEplafePiIiIiIqoRMEuT+XKldGqVavS6gsRERERvYES3TxBRERERG8fBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJrQe7FStWoHbt2jA0NISLiwuOHTtWYN2hQ4dCoVBoLI0bN5bqhISE5FsnPT29PA6HiIiISGu0GuzCwsLg7++PqVOnIioqCm3btoW3tzfi4uLyrb9kyRIkJCRIy927d1G1alX07dtXrZ6pqalavYSEBBgaGpbHIRERERFpjVaD3aJFizBs2DAMHz4cDRs2RHBwMOzs7LBy5cp866tUKlhZWUnLmTNn8PjxY3z00Udq9RQKhVo9Kyur8jgcIiIiIq3SWrDLzMzE2bNn4eXlpVbu5eWFkydPFqmNtWvXolOnTrC3t1crf/bsGezt7WFra4vu3bsjKiqq1PpNRERE9LbS09aOHzx4gJycHFhaWqqVW1paIjEx8bXbJyQk4Ndff8XmzZvVyh0dHRESEoKmTZsiJSUFS5YsQZs2bXD+/HnUr18/37YyMjKQkZEhvU5JSSnBERERERFpl9ZvnlAoFGqvhRAaZfkJCQlBlSpV0LNnT7VyNzc3DBo0CE5OTmjbti22bNmCBg0aYNmyZQW2FRQUBJVKJS12dnYlOhYiIiIibdJasDM3N4eurq7G6FxSUpLGKN6rhBBYt24d/Pz8YGBgUGhdHR0dtGrVCjExMQXWCQwMRHJysrTcvXu36AdCRERE9JbQWrAzMDCAi4sLIiIi1MojIiLg4eFR6LZHjhzBjRs3MGzYsNfuRwiB6OhoWFtbF1hHqVTC1NRUbSEiIiKqaLR2jR0ABAQEwM/PDy1btoS7uztWr16NuLg4jBo1CsCLkbT4+Hhs2LBBbbu1a9fC1dUVTZo00Whz9uzZcHNzQ/369ZGSkoKlS5ciOjoa3333XbkcExEREZG2aDXY9evXDw8fPsScOXOQkJCAJk2aYN++fdJdrgkJCRrPtEtOTkZ4eDiWLFmSb5tPnjzByJEjkZiYCJVKBWdnZxw9ehStW7cu8+MhIiIi0iatBjsA+Oyzz/DZZ5/luy4kJESjTKVSIS0trcD2Fi9ejMWLF5dW94iIiIgqDK3fFUtEREREpYPBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZELrwW7FihWoXbs2DA0N4eLigmPHjhVY9/Dhw1AoFBrL1atX1eqFh4ejUaNGUCqVaNSoEXbs2FHWh0FERESkdVoNdmFhYfD398fUqVMRFRWFtm3bwtvbG3FxcYVud+3aNSQkJEhL/fr1pXWRkZHo168f/Pz8cP78efj5+cHX1xenTp0q68MhIiIi0iqtBrtFixZh2LBhGD58OBo2bIjg4GDY2dlh5cqVhW5nYWEBKysradHV1ZXWBQcHo3PnzggMDISjoyMCAwPRsWNHBAcHl/HREBEREWmX1oJdZmYmzp49Cy8vL7VyLy8vnDx5stBtnZ2dYW1tjY4dO+LQoUNq6yIjIzXa7NKlS6FtZmRkICUlRW0hIiIiqmi0FuwePHiAnJwcWFpaqpVbWloiMTEx322sra2xevVqhIeHY/v27XBwcEDHjh1x9OhRqU5iYmKx2gSAoKAgqFQqabGzs3uDIyMiIiLSDj1td0ChUKi9FkJolOVxcHCAg4OD9Nrd3R13797FggUL0K5duxK1CQCBgYEICAiQXqekpDDcERERUYWjtRE7c3Nz6OrqaoykJSUlaYy4FcbNzQ0xMTHSaysrq2K3qVQqYWpqqrYQERERVTRaC3YGBgZwcXFBRESEWnlERAQ8PDyK3E5UVBSsra2l1+7u7hptHjhwoFhtEhEREVVEWp2KDQgIgJ+fH1q2bAl3d3esXr0acXFxGDVqFIAXU6Tx8fHYsGEDgBd3vNaqVQuNGzdGZmYmNm7ciPDwcISHh0ttjhs3Du3atcP8+fPx/vvvY9euXTh48CCOHz+ulWMkIiIiKi9aDXb9+vXDw4cPMWfOHCQkJKBJkybYt28f7O3tAQAJCQlqz7TLzMzEhAkTEB8fDyMjIzRu3Bh79+6Fj4+PVMfDwwM///wzpk2bhunTp6Nu3boICwuDq6truR8fERERUXlSCCGEtjvxtklJSYFKpUJycnKpXG/nMnFDKfSK/uvOfjtY213QwPc2lQa+t0nOSuP9XZxcovWvFCMiIiKi0sFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTWg92K1asQO3atWFoaAgXFxccO3aswLrbt29H586dUb16dZiamsLd3R2//fabWp2QkBAoFAqNJT09vawPhYiIiEirtBrswsLC4O/vj6lTpyIqKgpt27aFt7c34uLi8q1/9OhRdO7cGfv27cPZs2fRoUMH9OjRA1FRUWr1TE1NkZCQoLYYGhqWxyERERERaY2eNne+aNEiDBs2DMOHDwcABAcH47fffsPKlSsRFBSkUT84OFjt9bx587Br1y7s3r0bzs7OUrlCoYCVlVWZ9p2IiIjobaO1EbvMzEycPXsWXl5eauVeXl44efJkkdrIzc3F06dPUbVqVbXyZ8+ewd7eHra2tujevbvGiN6rMjIykJKSorYQERERVTRaC3YPHjxATk4OLC0t1cotLS2RmJhYpDYWLlyI1NRU+Pr6SmWOjo4ICQnBL7/8gtDQUBgaGqJNmzaIiYkpsJ2goCCoVCppsbOzK9lBEREREWmR1m+eUCgUaq+FEBpl+QkNDcWsWbMQFhYGCwsLqdzNzQ2DBg2Ck5MT2rZtiy1btqBBgwZYtmxZgW0FBgYiOTlZWu7evVvyAyIiIiLSEq1dY2dubg5dXV2N0bmkpCSNUbxXhYWFYdiwYdi6dSs6depUaF0dHR20atWq0BE7pVIJpVJZ9M4TERERvYW0NmJnYGAAFxcXREREqJVHRETAw8OjwO1CQ0MxdOhQbN68Gd26dXvtfoQQiI6OhrW19Rv3mYiIiOhtptW7YgMCAuDn54eWLVvC3d0dq1evRlxcHEaNGgXgxRRpfHw8NmzYAOBFqBs8eDCWLFkCNzc3abTPyMgIKpUKADB79my4ubmhfv36SElJwdKlSxEdHY3vvvtOOwdJREREVE60Guz69euHhw8fYs6cOUhISECTJk2wb98+2NvbAwASEhLUnmn3/fffIzs7G6NHj8bo0aOl8iFDhiAkJAQA8OTJE4wcORKJiYlQqVRwdnbG0aNH0bp163I9NiIiIqLyptVgBwCfffYZPvvss3zX5YW1PIcPH35te4sXL8bixYtLoWdEREREFYvW74olIiIiotLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkE1oPditWrEDt2rVhaGgIFxcXHDt2rND6R44cgYuLCwwNDVGnTh2sWrVKo054eDgaNWoEpVKJRo0aYceOHWXVfSIiIqK3hlaDXVhYGPz9/TF16lRERUWhbdu28Pb2RlxcXL71Y2Nj4ePjg7Zt2yIqKgr/+9//MHbsWISHh0t1IiMj0a9fP/j5+eH8+fPw8/ODr68vTp06VV6HRURERKQVWg12ixYtwrBhwzB8+HA0bNgQwcHBsLOzw8qVK/Otv2rVKtSsWRPBwcFo2LAhhg8fjo8//hgLFiyQ6gQHB6Nz584IDAyEo6MjAgMD0bFjRwQHB5fTURERERFph9aCXWZmJs6ePQsvLy+1ci8vL5w8eTLfbSIjIzXqd+nSBWfOnEFWVlahdQpqk4iIiEgu9LS14wcPHiAnJweWlpZq5ZaWlkhMTMx3m8TExHzrZ2dn48GDB7C2ti6wTkFtAkBGRgYyMjKk18nJyQCAlJSUYh1TQXIynpdKO/TfVlrvx9LE9zaVBr63Sc5K4/2d14YQ4rV1tRbs8igUCrXXQgiNstfVf7W8uG0GBQVh9uzZGuV2dnYFd5yonKmWjdJ2F4jKBN/bJGel+f5++vQpVCpVoXW0FuzMzc2hq6urMZKWlJSkMeKWx8rKKt/6enp6qFatWqF1CmoTAAIDAxEQECC9zs3NxaNHj1CtWrVCAyGVjpSUFNjZ2eHu3bswNTXVdneISg3f2yRXfG+XLyEEnj59Chsbm9fW1VqwMzAwgIuLCyIiItCrVy+pPCIiAu+//36+27i7u2P37t1qZQcOHEDLli2hr68v1YmIiMD48ePV6nh4eBTYF6VSCaVSqVZWpUqV4h4SvSFTU1P+gCBZ4nub5Irv7fLzupG6PFqdig0ICICfnx9atmwJd3d3rF69GnFxcRg16sWwZWBgIOLj47FhwwYAwKhRo7B8+XIEBARgxIgRiIyMxNq1axEaGiq1OW7cOLRr1w7z58/H+++/j127duHgwYM4fvy4Vo6RiIiIqLxoNdj169cPDx8+xJw5c5CQkIAmTZpg3759sLe3BwAkJCSoPdOudu3a2LdvH8aPH4/vvvsONjY2WLp0KT744AOpjoeHB37++WdMmzYN06dPR926dREWFgZXV9dyPz4iIiKi8qQQRbnFgqgMZWRkICgoCIGBgRpT4kQVGd/bJFd8b7+9GOyIiIiIZELr3xVLRERERKWDwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6ISAv4QAKSu5ycHG134T+JwY7eKvxlR3L077//4vjx4/j111+RkpICAPweapKlK1euYN68eQAAXV1dhjst0Oo3TxDlSUtLQ6VKlaBQKCCE4C89ko2///4b/fr1Q3p6Om7fvg1PT0/MnDkT7du313bXiErVjRs30L59e9y/fx/379/H4sWLpXCnq6ur7e79Z3DEjrTu7t27GDZsGHbu3AkAUrgjquguXLgAV1dX9O7dG1u2bMGhQ4dw6dIlLFq0iCMZJCvJycmYM2cO3nnnHXzzzTfYtGkTxowZA4Ajd+WNI3akdUlJSbhy5QrWr18PAwMD+Pj4vHbkjqN69LaLiYlB8+bNMWXKFHz11VdS+axZszBp0iTExsaiXr16WuwhUemytLREmzZt0LFjR5iZmSEwMBAAsGzZMo7clSMGO9Kax48fQ6lUwsXFBatXr8akSZOwYsUKAJDCXW5uLnR0Xgws5+Tk4MaNG3BwcGCoo7ferVu3AAAGBgbIysoCAOjr68PIyAjVqlWDnh5//JJ8qFQqTJkyBdWqVQMAfPDBB8jNzcXUqVMB/F+4y8jIwPPnz1GlShUt9lbe+JOFtOLff/+Fn58f3nnnHXzxxRdo3bo15s+fjylTpuC7776DEALdunWDjo4OhBDIysrC+PHjkZCQgB9//BEmJibaPgSiQnXp0gVhYWEYMGAAnj17hgULFiAuLg4TJ07Ep59+ilq1amm7i0RvJD4+HidOnMDjx4/Rvn17ODg4QAiB3NxcVKlSBf369QMAtXA3fvx46OvrY+HChfzjpozwrJJWmJmZoVq1avjtt99QqVIlfPrpp3B1dcXXX3+NKVOmYMWKFVAoFPDx8QEAfPHFF1i9ejVOnTrFUEdvtZenm/r27QshBAYMGICUlBRERETA19cXX375JQCojUgTVSQXLlxA3759AQD//PMPdHV1sXv3bnh6ekozKqampujfvz8AYObMmdi/fz9iY2Px559/MtSVIYXgVepUzvJ+8aWlpcHf31/6ATFq1CgYGxvj1KlTmDJlCipVqoRPPvkEhw4dwvfff48TJ07A2dlZ290nyldycjJUKpVaWd61oFu3bsXQoUNhZ2eH6OhoGBoaaqmXRG/u/Pnz8PDwwOeff47PP/8ct27dwtdff42oqCicO3cONjY2avUfPHiA9957D9euXcORI0fQpEkTLfX8P0IQaUFGRob07xYtWghHR0fx7bffimfPngkhhPjzzz9Fp06dhLm5uTAyMhJnz57VVleJXuvq1auiRo0awsvLS/z5558iLi5Oo8727duFnp6emDx5ssjKytJCL4neXFxcnDA2NhajRo1SKw8JCREqlUpcuHBBrTw7O1tMmzZN6OrqivPnz5dnV/+zOAdA5eL69evYtm0bgBejGAYGBgCAJUuW4NatW7C3t8fWrVuxcuVKpKamwtXVFV9++SXc3Nzw119/oUWLFtrsPlGhrl+/Dmtra+jp6eHLL79Enz59sH79ety9e1eq06tXL2zYsAFLly6Fv78/srOztdhjopI5f/486tWrh7i4OMTHx0vltra20NPT07ix7fnz50hPT8e5c+fQrFmz8u7uf5O2kyXJX3JysliyZIlQKBRi48aNUvnXX38tzMzMxIkTJ4QQQowYMUK0bt1aLFy4UDx9+lQIIUR6erpW+kxUHJcvXxadOnUSp06dEv/++69YvHixqFevnujVq5eYMmWKePjwoUhNTRVCCLF+/XpRvXp18e+//2q510Qls337dtG+fXvRvn17kZWVJZ4+fSrMzc1FYGBgvvWzs7PLuYf/bbzGjsrUkydPUK9ePaxduxY3b97E5MmTsWfPHly4cAFff/01fv75Z3Tu3BkAkJGRAX9/f/z+++8YO3YsRo8eDYBfvURvp/T0dLVr5aZMmYI//vgD+/fvR9WqVfH48WO4urrixo0baNWqFZo2bQo/Pz94enri6dOnvAmIKpzs7Gzppoft27dj2bJlyMjIwM2bNzFw4EAsWrQIAG8K0jaeeSpTJiYmaNeuHUJCQjBy5Ej4+/vD29sb//vf/7BlyxYp1OXk5ECpVCI4OBg+Pj7o1q0bFAoFQx29leLj4zF48GAcOnRIKhsxYgTMzMxw4cIFAC/u5M7KykJUVBQGDBiAO3fuoG/fvnjy5AlDHVUYjx8/xv379wEAenp6yM3NBQD07t0bY8aMgYGBAXR0dODv7w/gRfhjqNMujthRmVuxYgWmT5+OU6dOoV69evjqq68wY8YMbNmyBX369JHqvfzXINHb7NatWxg0aBCqVq2KKVOm4J133oEQAn379oWhoSGMjIywd+9e7Ny5E61btwYAZGZm4smTJ7CwsNBy74mK5s6dO2jVqhXatWsHR0dHzJgxAwqFAvr6+lKd8PBwLF++HDo6OtiwYQNq1KjBETstY7CjMiNe+tqvFi1aoF69etiyZQsAYPLkyVi8eDF+/PFHfPjhh9rsJlGJxMTEYOzYsRBCIDAwEJ6enrhx4waaN28OU1NT7N+/nxeLU4W2Z88e9OvXDyEhIZg3bx6srKxgb2+PqVOnSjcLAcC2bduwatUqPH78GLt379Z43AmVL0ZqKlUZGRnSvxUKhXTn38CBAxETE4OrV68CAObPn4+AgACMGDEC69ev10pfid5E/fr1sXTpUigUCgQFBeHYsWOoV68evL290alTJzRr1kyatiKqiLp37w5XV1dcu3YN586dQ58+fZCSkgJ3d3dMnDgRe/bsAQD06dMHY8aMgaWlpfT1eaQ9HLGjUhMbG4uxY8fi/fffR//+/VG5cmVp3T///AMnJyeMHj0ac+bMkco///xzbN26FTExMTA1NdVGt4neyMsjd4sWLZK+Xunw4cNo06aNtrtHVCJZWVnQ19fHli1bEBoaipCQEOkB3A4ODsjMzERiYiJ69eoFd3d3jBkzBmlpaahUqZKWe04csaNSk56eDgD49NNP4e3tjcmTJ+Pp06dIT0+Hra0tJk2ahG3btuHy5cvSNsuXL8fff//NUEcVVt7InRAC/v7+EELA29sbP/zwA59VRxVKUlISkpKSAEC6ji7vWaJ5zyEdOnQoUlJSsGPHDhw9ehT379/HunXrEB8fz1D3luCIHZW6v//+G8uXL0dERARycnLQt29fDBkyBJmZmejZsyeWL1+O999/X+07NYkqupiYGAQEBCA5ORn29vaYM2cOateure1uERVJWloaatWqBS8vLyxcuBCWlpbSujVr1mDbtm0QQuD8+fP49ddfpa93TE5ORm5uLszMzLTVdXoFgx2ViYyMDDx//hxz585FZGQkTp06hf/9739YsWIFatSogePHj6tN1RLJweXLlxEUFISgoCDY2tpquztExbJr1y70798fgwcPxuzZs2FlZQUA+Ouvv+Dr6wtdXV1ERERIf7C8fIMcvT0Y7KjMPXjwAHv27EFISAj++usv6OvrIyYmBtWrV9d214hKXWZmpvSVeUQVwcuPJzl27Bg6dOiA4cOHY+bMmbC2tgYATJgwATt37sTly5dhYGDAUPcWY7CjMvPqBz8pKQm3b9+Gubk56tSpo8WeERER8H8/pw8cOIB9+/Zh+vTpuHDhAjp16oSRI0di2rRpqFGjBi5duoShQ4fi888/x5AhQ7TdbSoEb56gMvPqX3MWFhZo3bo1Qx0R0VtCoVBg+/bt6NmzJ6pVq4YbN26gQ4cO2Lt3L1avXo2vvvoKDx48gKOjIxQKBbZu3cqbgt5yHLEjIiL6j7p27Rq8vb0xceJEfPrpp2rr9u/fj27dumHEiBFYvHgxbt++DYVCAUdHRy31loqC399ERET0HxUXFwc9PT34+PhIZXlPLOjatSv++OMPdOjQQfoub15X9/ZjsCMiIvqPSk1NlZ5BCry4kSLvMVS///47WrRogePHj8PMzIyhroLgNXZERET/UU5OTnjw4AFWr14NANLdsQDwyy+/YOHChfDw8EDDhg211UUqJo7YERER/UfVrl0by5cvx6hRo5CVlYXBgwdDV1cXISEh2LBhAyIjI7XdRSom3jxBRET0H5abm4vw8HB88sknMDY2hqGhIXR1dREaGip9wwRVHAx2REREhHv37uHOnTtQKBSoXbu22teKUcXBYEdEREQkE7x5goiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoioDCgUCuzcuVPb3SCi/xgGOyKStaFDh0KhUGgsXbt2lep88sknqFu3LoyMjFC9enW8//77uHr16mvb7dmzZ4HrExIS4O3tXVqHQURUJHra7gARUVnr2rUr1q9fr1amVCqlf7u4uGDgwIGoWbMmHj16hFmzZsHLywuxsbHQ1dUt0T6trKzeqM9ERCXBETsikj2lUgkrKyu1xczMTFo/cuRItGvXDrVq1UKLFi3w1Vdf4e7du7h9+3aJ9/nqVOzJkyfRvHlzGBoaomXLlti5cycUCgWio6MBADk5ORg2bBhq164NIyMjODg4YMmSJWptHj58GK1bt4axsTGqVKmCNm3a4M6dO9L63bt3w8XFBYaGhqhTpw5mz56N7OzsEh8DEVU8HLEjInpJamoq1q9fj9q1a8POzq5U2nz69Cl69OgBHx8fbN68GXfu3IG/v79andzcXNja2mLLli0wNzfHyZMnMXLkSFhbW8PX1xfZ2dno2bMnRowYgdDQUGRmZuL06dNQKBQAgN9++w2DBg3C0qVL0bZtW9y8eRMjR44EAMycObNUjoOI3n4MdkQke3v27EHlypXVyiZPnozp06dLr1esWIFJkyYhNTUVjo6OiIiIgIGBQansf9OmTVAoFPjhhx9gaGiIRo0aIT4+HiNGjJDq6OvrY/bs2dLr2rVr4+TJk9iyZQt8fX2RkpKC5ORkdO/eHXXr1gUANGzYUKo/d+5cTJkyBUOGDAEA1KlTB19++SUmTZrEYEf0H8JgR0Sy16FDB6xcuVKtrGrVqmqvBw4ciM6dOyMhIQELFiyAr68vTpw4AUNDwzfe/7Vr19CsWTO1tlq3bq1Rb9WqVVizZg3u3LmD58+fIzMzE82bN5f6O3ToUHTp0gWdO3dGp06d4OvrC2trawDA2bNn8ddff2Hu3LlSezk5OUhPT0daWhoqVar0xsdBRG8/Bjsikj1jY2PUq1ev0DoqlQoqlQr169eHm5sbzMzMsGPHDnz44YdvvH8hhDRl+nLZy7Zs2YLx48dj4cKFcHd3h4mJCb799lucOnVKqrN+/XqMHTsW+/fvR1hYGKZNm4aIiAi4ubkhNzcXs2fPRu/evTX2XxrhlIgqBgY7IqJ8CCGQkZFRKm05Ojpi06ZNyMjIkO7GPXPmjFqdY8eOwcPDA5999plUdvPmTY22nJ2d4ezsjMDAQLi7u2Pz5s1wc3NDixYtcO3atdcGWCKSNwY7IpK9jIwMJCYmqpXp6enB3Nwct27dQlhYGLy8vFC9enXEx8dj/vz5MDIygo+PT6HtJicnS3e15qlatSpq1qypVjZgwABMnToVI0eOxJQpUxAXF4cFCxYAgDSSV69ePWzYsAG//fYbateujZ9++gl//fUXateuDQCIjY3F6tWr8d5778HGxgbXrl3D9evXMXjwYADAjBkz0L17d9jZ2aFv377Q0dHBhQsX8Pfff+Orr74q8bkjogpGEBHJ2JAhQwQAjcXBwUEIIUR8fLzw9vYWFhYWQl9fX9ja2ooBAwaIq1evlqjdIUOGCCGEACB27Ngh1T9x4oRo1qyZMDAwEC4uLmLz5s0CgLSf9PR0MXToUKFSqUSVKlXEp59+KqZMmSKcnJyEEEIkJiaKnj17Cmtra2FgYCDs7e3FjBkzRE5OjrSP/fv3Cw8PD2FkZCRMTU1F69atxerVq0vvZBLRW08hxCsXehARUZnbtGkTPvroIyQnJ8PIyEjb3SEimeBULBFROdiwYQPq1KmDGjVq4Pz585g8eTJ8fX0Z6oioVDHYERGVg8TERMyYMQOJiYmwtrZG37591R5NQkRUGjgVS0RERCQT/K5YIiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIpn4f83NZSEOxSYsAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:19: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES'] = active_df[active_df['Smiles'].isin(smiles)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:19: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES'] = active_df[active_df['Smiles'].isin(smiles)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:20: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES and not Uniprot'] = active_df[active_df['Smiles'].isin(smiles) & (active_df['Uniprot'] != uniprot_id)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:20: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of entries with same SMILES and not Uniprot'] = active_df[active_df['Smiles'].isin(smiles) & (active_df['Uniprot'] != uniprot_id)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:22: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of active entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == True)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:22: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of active entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == True)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:23: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of inactive entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == False)].shape[0]\n",
"C:\\Users\\ste\\AppData\\Local\\Temp\\ipykernel_16240\\2323036171.py:23: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" uniprot_count['Number of inactive entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == False)].shape[0]\n"
]
},
{
"data": {
"text/plain": [
"Uniprot P00520\n",
"Number of entries 16\n",
"Number of entries per E3 ligase 3\n",
"Number of entries with same SMILES 17\n",
"Number of entries with same SMILES and not Uniprot 1\n",
"Number of active entries 1\n",
"Number of inactive entries 15\n",
"Name: 16, dtype: object"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSSElEQVR4nO3dd3gUVf/+8XvTNiEkoQYSSui9h+5DR6qooKDSkQ4KiCLw0FEEVBRFAQGJIEWKYsMHRYqAIFW69CoSQYEECQkp5/eHv+yXJQkkIbBkeL+ua6+LPXN25jOT3eRmzpxZmzHGCAAAAJmem6sLAAAAQMYg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2CFdPvnkE9lsNsfD29tbefPmVYMGDTRx4kRduHAhyWvGjh0rm82Wpu1ERUVp7NixWr9+fZpel9y2ChUqpMceeyxN67mTRYsWaerUqckus9lsGjt2bIZuL6OtWbNGVatWla+vr2w2m7788stk+506dcrp533r4+b9XLx4serWras8efLIbrcrODhYrVq10ubNm1NVU/369VW/fn2ntsxwLFMjtcc7I6xfv142m03Lly9PdvkLL7yQ5s9josTP/6lTpxxtXbt2dXpP2O12lSxZUmPGjFF0dHS6tpOcP/74Q2PHjtXu3btT1T+545Ce31+3W3fiw93dXXny5FHbtm3122+/Jek/bdo0lSpVSna7XYULF9a4ceMUGxubpN+FCxfUtWtX5cqVS1myZFGtWrW0Zs2aJP3q16+f7OexWbNmTv127typ/v37q3z58vLz81OePHnUuHFjrV27Ntn9OnHihNq0aaNs2bIpa9asevTRR7Vr165UHRO4noerC0DmFhYWplKlSik2NlYXLlzQpk2bNHnyZL399ttasmSJGjdu7Ojbo0ePJL9w7iQqKkrjxo2TpCR/7G8nPdtKj0WLFmn//v0aNGhQkmVbtmxR/vz573kN6WWMUbt27VSiRAl9/fXX8vX1VcmSJW/7mhdffFHt27dP0n7zfv7999965JFHNHDgQOXKlUvnz5/XO++8o7p162rNmjWqV69emmt90I9laqTneD+oWrZsqS1btigoKMip3cfHxxEWLl++rMWLF2v8+PE6dOiQlixZkiHb/uOPPzRu3DgVKlRIlSpVuqt1peX31+288cYbatCggW7cuKEdO3Zo/PjxWrNmjfbt26d8+fJJkiZMmKBRo0Zp2LBhatKkibZv366RI0fq3LlzmjVrlmNdMTExatSoka5cuaL33ntPgYGB+vDDD9WsWTP9+OOPST4/RYoU0cKFC53asmXL5vR88eLF2rZtm55//nlVrFhR165d08yZM9WoUSPNmzdPnTt3dvS9ePGi6tSpo+zZs2vu3Lny9vbWxIkTVb9+fW3fvj3TvmcfKgZIh7CwMCPJbN++Pcmy06dPmwIFChg/Pz8THh5+V9u5ePGikWTGjBmTqv7Xrl1LcVlISIhp2bLlXdVzq5YtW5qQkJAMXef98vvvvxtJZvLkyXfse/LkSSPJvPXWW+na1pUrV4ynp6fp1KnTHfvWq1fP1KtXL13beZCl5XinVlRUlElISEh22bp164wks2zZsmSX9+/f32Tkn4AuXboYX1/fJO116tQxkszvv/+e4mujoqJSvZ3t27cbSSYsLCxV/ZM7Dhn1+yulY/zxxx8bSeb11183xhjz119/GW9vb9OrVy+nfhMmTDA2m80cOHDA0fbhhx8aSWbz5s2OttjYWFOmTBlTvXp1p9fXq1fPlC1b9g5HwJg///wzSVtcXJypUKGCKVq0qFP7kCFDjKenpzl16pSjLSIiwuTKlcu0a9fujtuC6zEUiwxXsGBBTZkyRVevXtVHH33kaE9ueHTt2rWqX7++cubMKR8fHxUsWFBPPfWUoqKidOrUKeXOnVuSNG7cOMcwQ9euXZ3Wt2vXLj399NPKnj27ihYtmuK2Eq1YsUIVKlSQt7e3ihQpovfff99peXLDTNL/DbskDgvXr19fK1eu1OnTp52GQRIlN3y4f/9+PfHEE8qePbu8vb1VqVIlzZs3L9ntLF68WCNGjFBwcLD8/f3VuHFjHT58OOUDf5NNmzapUaNG8vPzU5YsWVS7dm2tXLnSsXzs2LGOM2BDhw6VzWZToUKFUrXu9PDz85O3t7c8PNI3SJDcsdy0aZNq1aolb29v5cuXT6NGjdKcOXOS/OyWLFmiJk2aKCgoSD4+PipdurSGDRuma9euOa3vxIkTevbZZxUcHCy73a48efKoUaNGSYb8lixZolq1asnX11dZs2ZV06ZN9euvv962/jsd7zv9vKT/e1/+8MMPev7555U7d25lyZJFMTExqTuIqWCz2fTCCy/o008/VenSpZUlSxZVrFhR3377bbK13PoZSU7NmjUlSadPn5b0f5dEfPHFF6pcubK8vb0dZ+Xv9PlYv369qlWrJknq1q1bspcC3K2Ufn+lxa37vGrVKkVHR6tbt25O/bp16yZjjNOQ/IoVK1SyZEnVqlXL0ebh4aGOHTtq27ZtOnfuXJrrCQwMTNLm7u6u0NBQnT171ql9xYoVatiwoUJCQhxt/v7+atOmjb755hvFxcWlefu4vwh2uCdatGghd3d3bdiwIcU+p06dUsuWLeXl5aW5c+dq1apVmjRpknx9fXXjxg0FBQVp1apVkqTu3btry5Yt2rJli0aNGuW0njZt2qhYsWJatmyZZs6cedu6du/erUGDBumll17SihUrVLt2bQ0cOFBvv/12mvdx+vTpeuSRR5Q3b15HbVu2bEmx/+HDh1W7dm0dOHBA77//vr744guVKVNGXbt21Ztvvpmk/3//+1+dPn1ac+bM0axZs3T06FG1atVK8fHxt63rp59+UsOGDRUREaGPP/5Yixcvlp+fn1q1auUYDuvRo4e++OILSf8Or27ZskUrVqy44z4nJCQoLi4uySM58fHxio2N1alTp9S3b18ZY9S/f/87biM19u7dq0cffVRRUVGaN2+eZs6cqV27dmnChAlJ+h49elQtWrTQxx9/rFWrVmnQoEFaunSpWrVq5dSvRYsW2rlzp958802tXr1aM2bMUOXKlXXlyhVHnzfeeEPPPfecypQpo6VLl+rTTz/V1atXVadOHR08eDDFem93vFPz87rZ888/L09PT3366adavny5PD0903MIU7Ry5Up98MEHGj9+vD7//HPlyJFDrVu31okTJ9K1vmPHjkmS4z9pkrRr1y4NGTJEAwYM0KpVq/TUU0+l6vNRpUoVhYWFSZJGjhzp+Mz16NHjLvfaWWp+f93Orfu8f/9+SVL58uWd+gUFBSlXrlyO5Yl9K1SokGSdiW0HDhxwaj9+/Lhy5MghDw8PFS1aVCNGjND169fvWGNcXJw2btyosmXLOtquX7+u48ePp7j969evp/t9gPvI1acMkTndbigjUZ48eUzp0qUdz8eMGeM09LN8+XIjyezevTvFddxuKDZxfaNHj05x2c1CQkKMzWZLsr1HH33U+Pv7O4ZxE/ft5MmTTv0Sh13WrVvnaLvdUOytdT/77LPGbrebM2fOOPVr3ry5yZIli7ly5YrTdlq0aOHUb+nSpUaS2bJlS7LbS1SzZk0TGBhorl696miLi4sz5cqVM/nz53cM3aVleDWxb0qPjRs3JnlNyZIlHcuDgoLMpk2b7rgdY5Ifir31WLZt29b4+vqaixcvOtri4+NNmTJlkv3ZJUpISDCxsbHmp59+MpLMnj17jDH/DpVJMlOnTk2xrjNnzhgPDw/z4osvOrVfvXrV5M2b947DVCkd79T+vBLfl507d77tdhKlZyhWksmTJ4+JjIx0tIWHhxs3NzczceJER1tyn5HEodjY2FgTGxtrLl68aN577z1js9lMtWrVHP1CQkKMu7u7OXz4sNO2U/v5uNdDsYlu/f11u3UvWbLExMbGmqioKLNhwwZTrFgx4+7u7nh/9ezZ09jt9mTXUaJECdOkSRPHc09PT9O7d+8k/TZv3mwkmUWLFjnaRowYYaZPn27Wrl1rVq5caV544QXj4eFh6tata+Lj429b+4gRI4wk8+WXXzrazp07ZyQ5/awTLVq0KMkQMR5MnLHDPWOMue3ySpUqycvLS7169dK8efPS/T/Bp556KtV9y5Ytq4oVKzq1tW/fXpGRkfd81tfatWvVqFEjFShQwKm9a9euioqKSnK27/HHH3d6nvi/6MThneRcu3ZNW7du1dNPP62sWbM62t3d3dWpUyf9/vvvqR7OTc7AgQO1ffv2JI/kLmL//PPPtXXrVi1btkxlypRR8+bN0zy7OSWJZ7ly5crlaHNzc1O7du2S9D1x4oTat2+vvHnzyt3dXZ6eno4L0BNnLubIkUNFixbVW2+9pXfeeUe//vqrEhISnNbz/fffKy4uTp07d3Y6W+nt7a169eqla9/S8/NKy/s9PRo0aCA/Pz/H8zx58igwMPC277tE165dk6enpzw9PZU7d24NGjRIzZs3T3I2uEKFCipRooRTW1o/H/fanX5/3eyZZ56Rp6ensmTJorp16yo+Pl7Lly93OvN1uxnIty5Lbd/XX39dffv2VYMGDdSiRQtNmzZNkyZN0oYNG/TVV1+luI45c+ZowoQJevnll/XEE0/csZ7ULsODgVmxuCeuXbumv//+O8nQw82KFi2qH3/8UW+++ab69++va9euqUiRIhowYIAGDhyY6m3dOjPvdvLmzZti299//53q9aTH33//nWytwcHByW4/Z86cTs/tdrsk3XaY5fLlyzLGpGk7aZE/f35VrVo1VX0Th3iqV6+uJ598UpUrV9bAgQO1Z8+edG8/0d9//608efIkab+17Z9//lGdOnXk7e2t119/XSVKlFCWLFl09uxZtWnTxnEsbTab1qxZo/Hjx+vNN9/Uyy+/rBw5cqhDhw6aMGGC/Pz89Oeff0qS4xqvW7m5pf3/yen5eaX2/Z54PWNKQ/dxcXHJXvN46/tO+ve9l5rhPR8fH8fwpd1uV0hIiPz9/ZP0S24f0vr5uJdS8/vrZpMnT1bDhg3l7u6uXLlyJQmnOXPmVHR0tKKiopQlSxanZZcuXVJoaKhT3+T29dKlS5L+/U/I7XTs2FGvvPKKfvnlF7Vu3TrJ8rCwMPXu3Vu9evXSW2+95bQse/bsstlsd7V9uB7BDvfEypUrFR8ff8dblNSpU0d16tRRfHy8duzYoWnTpmnQoEHKkyePnn322VRtKy3/gwwPD0+xLfEPmre3tyQluSj9r7/+SvV2kpMzZ06dP38+Sfsff/whSU5nn9Ire/bscnNzu+fbSSsPDw9VqVJFS5cuzZD15cyZ0xG0bnbrz3ft2rX6448/tH79eqfbRNx83VyikJAQffzxx5KkI0eOaOnSpRo7dqxu3LihmTNnOo7b8uXLnS4svxvp+Xml9v2eGHJTutj+3LlzyYbju+Hm5paq4J/cPtyPz0dqpfb3V6IiRYrcdr8TA+K+fftUo0YNR3t4eLj++usvlStXzqnvvn37kqwjse3mvreT3H80wsLC1KNHD3Xp0kUzZ85M8nPw8fFRsWLFUty+j4+PihQpkqrtw3UYikWGO3PmjF555RUFBASod+/eqXqNu7u7atSooQ8//FCSHMOiqTlLlRYHDhxIcsZo0aJF8vPzU5UqVSTJMVtx7969Tv2+/vrrJOtL7ZkMSWrUqJEjaNxs/vz5ypIli2Mm3d3w9fVVjRo19MUXXzjVlZCQoAULFih//vxJhsDuh+joaP3yyy8qVqxYhqyvXr16Wrt2rVPYTkhI0LJly5z6Jf7hSnwfJbrTbMcSJUpo5MiRKl++vOO92LRpU3l4eOj48eOqWrVqso+0upc/r+LFiyskJETLli1LMqx48eJFrVu3LtX3absfUvv5yOjfCbdKz++vO2nWrJm8vb31ySefOLUnzi5+8sknHW2tW7fWoUOHtHXrVkdbXFycFixYoBo1ajjOYKYkcRbxrb9PPvnkE/Xo0UMdO3Z0zB5PTuvWrbV27Vqn2bJXr17VF198occffzzdM9tx//ATwl3Zv3+/41qjCxcuaOPGjQoLC5O7u7tWrFjhNBPuVjNnztTatWvVsmVLFSxYUNHR0Zo7d64kOf7g+Pn5KSQkRF999ZUaNWqkHDlyKFeuXOm+NUdwcLAef/xxjR07VkFBQVqwYIFWr16tyZMnO4ZIqlWrppIlS+qVV15RXFycsmfPrhUrVmjTpk1J1le+fHl98cUXmjFjhkJDQ297xmLMmDH69ttv1aBBA40ePVo5cuTQwoULtXLlSr355psKCAhI1z7dauLEiXr00UfVoEEDvfLKK/Ly8tL06dO1f/9+LV68+K6ukTlz5ox++eWXJO25c+d23Gqmdu3aevzxx1W6dGkFBATo1KlTmjFjho4fP56qmbepMWLECH3zzTdq1KiRRowYIR8fH82cOdNxC5PEsxW1a9dW9uzZ1adPH40ZM0aenp5auHBhknC/d+9evfDCC2rbtq2KFy8uLy8vrV27Vnv37tWwYcMk/Rv4x48frxEjRujEiRNq1qyZsmfPrj///FPbtm2Tr6+v47YdaXEvf15vv/222rVrp0aNGqlnz57Kmzevjh49qkmTJsnLyyvJDHNXSu3no2jRovLx8dHChQtVunRpZc2aVcHBwXcMPMm5m99faZEjRw6NHDlSo0aNUo4cORw3KB47dqx69OihMmXKOPo+//zz+vDDD9W2bVtNmjRJgYGBmj59ug4fPqwff/zR0W/jxo2aMGGCWrdurSJFiig6Olr/+9//NGvWLDVs2NBp1veyZcvUvXt3VapUSb1799a2bduc6qtcubIjML/yyiv69NNP1bJlS40fP152u12TJk1SdHS0Jb795aHg0qkbyLQSZ5UlPry8vExgYKCpV6+eeeONN8yFCxeSvObWmapbtmwxrVu3NiEhIcZut5ucOXOaevXqma+//trpdT/++KOpXLmysdvtRpLp0qWL0/punhmZ0raM+b8bFC9fvtyULVvWeHl5mUKFCpl33nknyeuPHDlimjRpYvz9/U3u3LnNiy++aFauXJlkVuylS5fM008/bbJly2ZsNpvTNpXMbN59+/aZVq1amYCAAOPl5WUqVqyYZHZfSrMZE2dVpmY24MaNG03Dhg2Nr6+v8fHxMTVr1jTffPNNsuvLiFmxHTp0cPR9+eWXTcWKFU1AQIDx8PAwefPmNa1btzY///zzHbdjTOpmxSbuY40aNYzdbjd58+Y1Q4YMMZMnTzaSHDMojfl3NmGtWrVMlixZTO7cuU2PHj3Mrl27nI7ln3/+abp27WpKlSplfH19TdasWU2FChXMu+++a+Li4py2++WXX5oGDRoYf39/Y7fbTUhIiHn66afNjz/+mKpjmNzxTs3PKzUzOZPz448/miZNmphs2bIZDw8PExQUZDp27GiOHj2apK8k079//yTtISEhjs/dzbUkNyv2Tm53o/DUfD6MMWbx4sWmVKlSxtPT8443ML/drNi0/P5K7bpv57333jMlSpQwXl5epmDBgmbMmDHmxo0bSfqFh4ebzp07mxw5chhvb29Ts2ZNs3r1aqc+R48eNS1atDD58uUzdrvdeHt7m/Lly5sJEyaY6Ohop75dunS57ef31lnkx44dM08++aTx9/c3WbJkMY0aNTI7d+5M1T7C9WzGpGHqDwA8wJo0aaJTp07pyJEjri4FAFyCoVgAmdLgwYNVuXJlFShQQJcuXdLChQu1evVqxwQIAHgYEewAZErx8fEaPXq0wsPDZbPZVKZMGX366afq2LGjq0sDAJdhKBYAAMAiuN0JAACARRDsAAAALIJgBwAAYBGZevJEQkKC/vjjD/n5+fHFxAAAwJKMMbp69aqCg4Pv+L3UmTrY/fHHH0m+bBkAAMCKzp49q/z589+2T6YOdn5+fpL+3VF/f38XVwMAAJDxIiMjVaBAAUfuuZ1MHewSh1/9/f0JdgAAwNJSc9kZkycAAAAsgmAHAABgEQQ7AAAAi8jU19gBAO6PhIQE3bhxw9VlAJbk6ekpd3f3DFkXwQ4AcFs3btzQyZMnlZCQ4OpSAMvKli2b8ubNe9f35SXYAQBSZIzR+fPn5e7urgIFCtzx5qgA0sYYo6ioKF24cEGSFBQUdFfrI9gBAFIUFxenqKgoBQcHK0uWLK4uB7AkHx8fSdKFCxcUGBh4V8Oy/NcLAJCi+Ph4SZKXl5eLKwGsLfE/TrGxsXe1HoIdAOCO+D5u4N7KqM8YwQ4AAMAiCHYAgAfKJ598omzZst2XbXXq1ElvvPHGfdkWHl7VqlXTF198cV+2RbADANyVzZs3y93dXc2aNUvzawsVKqSpU6c6tT3zzDM6cuRIBlWXsr1792rlypV68cUXHW3169eXzWaTzWaT3W5Xvnz51KpVq/v2Rzm99u3bp3r16snHx0f58uXT+PHjZYy54+tWrlypGjVqyMfHR7ly5VKbNm0yvLaxY8c6jqmHh4dy5cqlunXraurUqYqJiUnS/9ixY+rWrZvy588vu92uwoUL67nnntOOHTscfQoVKuRYZ+Jj2LBhTus5c+aMWrVqJV9fX+XKlUsDBgxI1b0Yt2zZooYNG8rX11fZsmVT/fr1df369du+Zvr06SpcuLC8vb0VGhqqjRs3Oi0fNWqUhg0bdl9uGUSwAwDclblz5+rFF1/Upk2bdObMmbten4+PjwIDAzOgstv74IMP1LZtW/n5+Tm19+zZU+fPn9exY8f0+eefq0yZMnr22WfVq1eve15TekRGRurRRx9VcHCwtm/frmnTpuntt9/WO++8c9vXff755+rUqZO6deumPXv26Oeff1b79u3vSY1ly5bV+fPndebMGa1bt05t27bVxIkTVbt2bV29etXRb8eOHQoNDdWRI0f00Ucf6eDBg1qxYoVKlSqll19+2Wmd48eP1/nz5x2PkSNHOpbFx8erZcuWunbtmjZt2qTPPvtMn3/+eZJ13GrLli1q1qyZmjRpom3btmn79u164YUXbnubnyVLlmjQoEEaMWKEfv31V9WpU0fNmzd3+iy0bNlSERER+v7779N66NLOZGIRERFGkomIiHB1KQBgSdevXzcHDx40169fT3b5P//8Y/z8/MyhQ4fMM888Y8aNG5ekz1dffWVCQ0ON3W43OXPmNK1btzbGGFOvXj0jyelhjDFhYWEmICDAGGPMoUOHjCTz22+/Oa1zypQpJiQkxCQkJBhjjDlw4IBp3ry58fX1NYGBgaZjx47m4sWLKe5XfHy8yZYtm/n222+d2uvVq2cGDhyYpP/cuXONJLN69WpjjDEnT540ksySJUvMf/7zH+Pt7W2qVq1qDh8+bLZt22ZCQ0ONr6+vadq0qblw4YJjPdu2bTONGzc2OXPmNP7+/qZu3bpm586djuXr1q0znp6eZsOGDY62t99+2+TMmdP88ccfye7L9OnTTUBAgImOjna0TZw40QQHBzuOz61iY2NNvnz5zJw5c1I8RqkxZswYU7FiRTNz5kyTP39+4+PjY55++mlz+fLlJH1u9dtvvxkvLy8zYsQIY4wxCQkJpmzZsiY0NNTEx8cn6X/zOkNCQsy7776bYl3fffedcXNzM+fOnXO0LV682Njt9ttmhho1apiRI0emvMPJqF69uunTp49TW6lSpcywYcOc2rp27Wo6deqU4npu91lLS97hjB0AIN2WLFmikiVLqmTJkurYsaPCwsKchgBXrlypNm3aqGXLlvr111+1Zs0aVa1aVZL0xRdfKH/+/E5nXm5VsmRJhYaGauHChU7tixYtUvv27WWz2XT+/HnVq1dPlSpV0o4dO7Rq1Sr9+eefateuXYp17927V1euXHHUciddunRR9uzZkwzJjhkzRiNHjtSuXbvk4eGh5557Tq+++qree+89bdy4UcePH9fo0aMd/a9evaouXbpo48aN+uWXX1S8eHG1aNHCcdaqfv36GjRokDp16qSIiAjt2bNHI0aM0OzZs1O8ce2WLVtUr1492e12R1vTpk31xx9/6NSpU8m+ZteuXTp37pzc3NxUuXJlBQUFqXnz5jpw4ECqjsfNjh07pqVLl+qbb77RqlWrtHv3bvXv3/+OrytVqpSaN2/uOKa7d+/WgQMH9PLLLyd7huzW6y4nT56snDlzqlKlSpowYYLTMOuWLVtUrlw5BQcHO9qaNm2qmJgY7dy5M9l6Lly4oK1btyowMFC1a9dWnjx5VK9ePW3atCnFfbhx44Z27typJk2aOLU3adJEmzdvdmqrXr16kiHae4EbFANQ6JD5ri4hU9n5VmdXl/DA+Pjjj9WxY0dJUrNmzfTPP/9ozZo1aty4sSRpwoQJevbZZzVu3DjHaypWrChJypEjh9zd3eXn56e8efOmuI0OHTrogw8+0GuvvSZJOnLkiHbu3Kn58/99386YMUNVqlRxmgQxd+5cFShQQEeOHFGJEiWSrPPUqVNyd3dP9ZCvm5ubSpQokSQovfLKK2ratKkkaeDAgXruuee0Zs0aPfLII5Kk7t2765NPPnH0b9iwodPrP/roI2XPnl0//fSTHnvsMUnS66+/rh9//FG9evXSgQMH1KlTJ7Vu3TrF2sLDw1WoUCGntjx58jiWFS5cOMlrTpw4Ienf69/eeecdFSpUSFOmTFG9evV05MgR5ciR484H5f+Ljo7WvHnzlD9/fknStGnT1LJlS02ZMuW2P1fp33D3ww8/SJKOHj3qaLuTgQMHqkqVKsqePbu2bdum4cOH6+TJk5ozZ45jvxOPQaLs2bPLy8tL4eHhya7z5mPy9ttvq1KlSpo/f74aNWqk/fv3q3jx4kle89dffyk+Pj7JtvLkyZNkO/ny5dOZM2eUkJBwT7/BhTN2AIB0OXz4sLZt26Znn31WkuTh4aFnnnlGc+fOdfTZvXu3GjVqdFfbefbZZ3X69Gn98ssvkqSFCxeqUqVKKlOmjCRp586dWrdunbJmzep4JIaD48ePJ7vO69evy263p+neYcaYJP0rVKjg+HfiH/fy5cs7tSV+VZT071mhPn36qESJEgoICFBAQID++ecfp+uxvLy8tGDBAn3++ee6fv16ksklybm1rsSzpintX+JF/CNGjNBTTz2l0NBQhYWFyWazadmyZXfc3s0KFizoCHWSVKtWLSUkJOjw4cN3fO3Nx/RONd/spZdeUr169VShQgX16NFDM2fO1Mcff6y///7b0Se59ST3M0yUeEx69+6tbt26qXLlynr33XdVsmRJp/d0cpI7/re2+fj4KCEhIdkJIxmJM3YAgHT5+OOPFRcXp3z58jnajDHy9PTU5cuXlT17dsdXJd2NoKAgNWjQQIsWLVLNmjW1ePFi9e7d27E8ISFBrVq10uTJk5N9bXJy5cqlqKgo3bhxI1XfqhEfH6+jR4+qWrVqTu2enp6Ofyf+Ib+17eaZkF27dtXFixc1depUhYSEyG63q1atWklmayYO4126dEmXLl2Sr69virXlzZs3ydmhxDB565mkRInHJTEcS5LdbleRIkXuegJM4nFITUD77bffHGcUE8+s/vbbb6pUqVKatlmzZk1J/w4L58yZU3nz5tXWrVud+ly+fFmxsbFpOiaSVLp06RSPSa5cueTu7p7s8b91O5cuXVKWLFky5DNxO5yxAwCkWVxcnObPn68pU6Zo9+7djseePXsUEhLiuCauQoUKWrNmTYrr8fLycnxt2e106NBBS5Ys0ZYtW3T8+HHHWUJJqlKlig4cOKBChQqpWLFiTo+UAlFicDh48GCq9nfevHm6fPmynnrqqVT1T8nGjRs1YMAAtWjRQmXLlpXdbtdff/3l1Of48eN66aWXNHv2bNWsWVOdO3e+7W0yatWqpQ0bNjiFwx9++EHBwcFJhmgThYaGym63O51Vi42N1alTpxQSEpKmfTpz5oz++OMPx/MtW7Y4hq5v59ChQ1q1apXjmCaehZ0yZUqy+3vlypUU1/Xrr79K+r9wVqtWLe3fv9/pus0ffvhBdrtdoaGhya6jUKFCCg4OTnKm8ciRIykeEy8vL4WGhmr16tVO7atXr1bt2rWd2vbv368qVaqkuA8ZhWAHAEizb7/9VpcvX1b37t1Vrlw5p8fTTz+tjz/+WNK/kwsWL16sMWPG6LffftO+ffv05ptvOtZTqFAhbdiwQefOnUsScG7Wpk0bRUZGqm/fvmrQoIHTWcL+/fvr0qVLeu6557Rt2zadOHFCP/zwg55//vkUQ2Pu3LlVpUqVZC+Mj4qKUnh4uH7//Xdt3bpVQ4cOVZ8+fRzbvhvFihXTp59+qt9++01bt25Vhw4dnM7gxMfHq1OnTmrSpIm6deumsLAw7d+/X1OmTElxne3bt5fdblfXrl21f/9+rVixQm+88YYGDx7sOGu2bds2lSpVSufOnZMk+fv7q0+fPhozZox++OEHHT58WH379pUktW3bNk375O3trS5dumjPnj2O4NquXTun6+vi4uIUHh6uP/74Q/v27dO0adMcE16GDBki6d8zfGFhYTpy5Ijq1q2r7777TidOnNDevXs1YcIEPfHEE5L+DY7vvvuudu/erZMnT2rp0qXq3bu3Hn/8cRUsWFDSv5MXypQpo06dOjkm7bzyyivq2bOn/P39k90Pm82mIUOG6P3339fy5ct17NgxjRo1SocOHVL37t0d/Ro1aqQPPvjA8Xzw4MGaM2eO5s6dq99++00vvfSSzpw5oz59+jitf+PGjUkmWdwLBDsAQJp9/PHHaty4sQICApIse+qpp7R7927t2rVL9evX17Jly/T111+rUqVKatiwodMQ2fjx43Xq1CkVLVpUuXPnTnF7/v7+atWqlfbs2aMOHTo4LQsODtbPP/+s+Ph4NW3aVOXKldPAgQMVEBBw24vUe/XqlWS2rSTHDNSiRYuqdevWOnjwoJYsWaLp06en5tDc1ty5c3X58mVVrlxZnTp10oABA5wmcEyYMEGnTp3SrFmzJP07zDpnzhyNHDlSu3fvTnadAQEBWr16tX7//XdVrVpV/fr10+DBgzV48GBHn6ioKB0+fNjpC+bfeustPfvss+rUqZOqVaum06dPa+3atcqePbujT6FChTR27Njb7lOxYsXUpk0btWjRQk2aNFG5cuWSHKsDBw4oKChIBQsWVP369bV06VINHz5cGzduVNasWR39qlevrh07dqho0aLq2bOnSpcurccff1wHDhxwXGtot9u1ZMkS1a9fX2XKlNHo0aPVs2dPLV682LEed3d3rVy5Ut7e3nrkkUfUrl07Pfnkk3r77bdvuy+DBg3S8OHD9dJLL6lixYpas2aNVq9eraJFizr6HD9+3Ok/Ic8884ymTp2q8ePHq1KlStqwYYO+++47p7N8586d0+bNm9WtW7fbbj8j2IxJxa2pH1CRkZEKCAhQREREigkcwJ0xKzZtHqZZsdHR0Tp58qTjrvpWEh0drZIlS+qzzz5TrVq1XF3OA+f69evKkSOHvvvuuxTPVI4dO1ZffvlliqET/xoyZIgiIiIcgT05t/uspSXvMHkCAPBQ8vb21vz58287BPww++mnn9SwYcO7Hn6GFBgYqFdeeeW+bItgBwB4aNWrV8/VJTywmjVrlq7v/0VSidcR3g9cYwcAANJl7NixDMM+YAh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAIBkffLJJ8qWLZury0AacINiAADuwv3+Sr70fKVd165dNW/evCTtR48eVbFixTKiLDwgCHYAADwEmjVrprCwMKe23Llzu6ga3CsMxQIA8BCw2+3Kmzev0+O9995T+fLl5evrqwIFCqhfv376559/UlzHnj171KBBA/n5+cnf31+hoaHasWOHY/nmzZtVt25d+fj4qECBAhowYICuXbt2P3YP/x/BDgCAh5Sbm5vef/997d+/X/PmzdPatWv16quvpti/Q4cOyp8/v7Zv366dO3dq2LBh8vT0lCTt27dPTZs2VZs2bbR3714tWbJEmzZt0gsvvHC/dgdiKBYAgIfCt99+q6xZszqeN2/eXMuWLXM8L1y4sF577TX17dtX06dPT3YdZ86c0ZAhQ1SqVClJUvHixR3L3nrrLbVv316DBg1yLHv//fdVr149zZgxQ97e3vdgr3Argh0AAA+BBg0aaMaMGY7nvr6+Wrdund544w0dPHhQkZGRiouLU3R0tK5duyZfX98k6xg8eLB69OihTz/9VI0bN1bbtm1VtGhRSdLOnTt17NgxLVy40NHfGKOEhASdPHlSpUuXvvc7CYZiAQB4GPj6+qpYsWKOx40bN9SiRQuVK1dOn3/+uXbu3KkPP/xQkhQbG5vsOsaOHasDBw6oZcuWWrt2rcqUKaMVK1ZIkhISEtS7d2/t3r3b8dizZ4+OHj3qCH+49zhjBwDAQ2jHjh2Ki4vTlClT5Ob273mepUuX3vF1JUqUUIkSJfTSSy/pueeeU1hYmFq3bq0qVarowIED3D7FxThjBwDAQ6ho0aKKi4vTtGnTdOLECX366aeaOXNmiv2vX7+uF154QevXr9fp06f1888/a/v27Y4h1qFDh2rLli3q37+/du/eraNHj+rrr7/Wiy++eL92CSLYAQDwUKpUqZLeeecdTZ48WeXKldPChQs1ceLEFPu7u7vr77//VufOnVWiRAm1a9dOzZs317hx4yRJFSpU0E8//aSjR4+qTp06qly5skaNGqWgoKD7tUuQZDPGGFcXkV6RkZEKCAhQRESE/P39XV0OkGnd7zvnZ3bpufN/ZhUdHa2TJ0+qcOHCzGoE7qHbfdbSknc4YwcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFuHSYBcXF6eRI0eqcOHC8vHxUZEiRTR+/HglJCS4siwAAIBMyaXfPDF58mTNnDlT8+bNU9myZbVjxw5169ZNAQEBGjhwoCtLAwAAyHRcGuy2bNmiJ554Qi1btpQkFSpUSIsXL9aOHTtcWRYAAECm5NKh2P/85z9as2aNjhw5Iknas2ePNm3apBYtWriyLAAAgEzJpWfshg4dqoiICJUqVUru7u6Kj4/XhAkT9NxzzyXbPyYmRjExMY7nkZGR96tUAACAB55Lg92SJUu0YMECLVq0SGXLltXu3bs1aNAgBQcHq0uXLkn6T5w40fGddAAAPAjOjC9/X7dXcPS+VPe12Wy3Xd6lSxd98sknd1kRHiQuDXZDhgzRsGHD9Oyzz0qSypcvr9OnT2vixInJBrvhw4dr8ODBjueRkZEqUKDAfasXAIDM5Pz5845/L1myRKNHj9bhw4cdbT4+Pk79Y2Nj5enped/qQ8Zz6TV2UVFRcnNzLsHd3T3F253Y7Xb5+/s7PQAAQPLy5s3reAQEBMhmszmeR0dHK1u2bFq6dKnq168vb29vLViwQGPHjlWlSpWc1jN16lQVKlTIqS0sLEylS5eWt7e3SpUqpenTp9+/HUOKXHrGrlWrVpowYYIKFiyosmXL6tdff9U777yj559/3pVlAQDw0Bg6dKimTJmisLAw2e12zZo1646vmT17tsaMGaMPPvhAlStX1q+//qqePXvK19c32RE33D8uDXbTpk3TqFGj1K9fP124cEHBwcHq3bu3Ro8e7cqyAAB4aAwaNEht2rRJ02tee+01TZkyxfG6woUL6+DBg/roo48Idi7m0mDn5+enqVOnaurUqa4sAwCAh1bVqlXT1P/ixYs6e/asunfvrp49ezra4+LiFBAQkNHlIY1cGuwAAIBr+fr6Oj13c3OTMcapLTY21vHvxOvgZ8+erRo1ajj1c3d3v0dVIrUIdgAAwCF37twKDw+XMcZxu5Tdu3c7lufJk0f58uXTiRMn1KFDBxdViZQQ7AAAgEP9+vV18eJFvfnmm3r66ae1atUq/e9//3O6E8XYsWM1YMAA+fv7q3nz5oqJidGOHTt0+fJlp9uS4f5z6e1OAADAg6V06dKaPn26PvzwQ1WsWFHbtm3TK6+84tSnR48emjNnjj755BOVL19e9erV0yeffKLChQu7qGoksplbB9IzkcjISAUEBCgiIoJ72gF3IXTIfFeXkKnsfKuzq0u4b6Kjo3Xy5EkVLlxY3t7eri4HsKzbfdbSknc4YwcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AIA7ysTz7IBMIaM+YwQ7AECKEr9J4MaNGy6uBLC2qKgoSZKnp+ddrYcbFAMAUuTh4aEsWbLo4sWL8vT0lJsb5wOAjGSMUVRUlC5cuKBs2bLd9deyEewAACmy2WwKCgrSyZMndfr0aVeXA1hWtmzZlDdv3rteD8EOAHBbXl5eKl68OMOxwD3i6el512fqEhHsAAB35ObmxjdPAJkAF0sAAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFuHyYHfu3Dl17NhROXPmVJYsWVSpUiXt3LnT1WUBAABkOh6u3Pjly5f1yCOPqEGDBvrf//6nwMBAHT9+XNmyZXNlWQAAAJmSS4Pd5MmTVaBAAYWFhTnaChUq5LqCAAAAMjGXDsV+/fXXqlq1qtq2bavAwEBVrlxZs2fPdmVJAAAAmZZLg92JEyc0Y8YMFS9eXN9//7369OmjAQMGaP78+cn2j4mJUWRkpNMDAAAA/3LpUGxCQoKqVq2qN954Q5JUuXJlHThwQDNmzFDnzp2T9J84caLGjRt3v8sEAADIFFx6xi4oKEhlypRxaitdurTOnDmTbP/hw4crIiLC8Th79uz9KBMAACBTcOkZu0ceeUSHDx92ajty5IhCQkKS7W+322W32+9HaQAAAJmOS8/YvfTSS/rll1/0xhtv6NixY1q0aJFmzZql/v37u7IsAACATMmlwa5atWpasWKFFi9erHLlyum1117T1KlT1aFDB1eWBQAAkCm5dChWkh577DE99thjri4DAAAg03P5V4oBAAAgYxDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARaQr2DVs2FBXrlxJ0h4ZGamGDRvebU0AAABIh3QFu/Xr1+vGjRtJ2qOjo7Vx48a7LgoAAABp55GWznv37nX8++DBgwoPD3c8j4+P16pVq5QvX76Mqw4AAACplqZgV6lSJdlsNtlstmSHXH18fDRt2rQMKw4AAACpl6Zgd/LkSRljVKRIEW3btk25c+d2LPPy8lJgYKDc3d0zvEgAAADcWZqCXUhIiCQpISHhnhQDAACA9EtTsLvZkSNHtH79el24cCFJ0Bs9evRdFwYAAIC0SVewmz17tvr27atcuXIpb968stlsjmU2m41gBwB44IUOme/qEjKdnW91dnUJuIN0BbvXX39dEyZM0NChQzO6HgAAAKRTuu5jd/nyZbVt2zajawEAAMBdSFewa9u2rX744YeMrgUAAAB3IV1DscWKFdOoUaP0yy+/qHz58vL09HRaPmDAgAwpDgAAAKmXrmA3a9YsZc2aVT/99JN++uknp2U2m41gBwAA4ALpCnYnT57M6DoAAABwl9J1jR0AAAAePOk6Y/f888/fdvncuXPTVQwAAADSL13B7vLly07PY2NjtX//fl25ckUNGzbMkMIAAACQNukKditWrEjSlpCQoH79+qlIkSJ3XRQAAADSLsOusXNzc9NLL72kd999N6NWCQAAgDTI0MkTx48fV1xcXEauEgAAAKmUrqHYwYMHOz03xuj8+fNauXKlunTpkiGFAQAAIG3SFex+/fVXp+dubm7KnTu3pkyZcscZswAAALg30hXs1q1bl9F1AAAA4C6lK9glunjxog4fPiybzaYSJUood+7cGVUXAAAA0ihdkyeuXbum559/XkFBQapbt67q1Kmj4OBgde/eXVFRURldIwAAAFIhXcFu8ODB+umnn/TNN9/oypUrunLlir766iv99NNPevnllzO6RgAAAKRCuoZiP//8cy1fvlz169d3tLVo0UI+Pj5q166dZsyYkVH1AQAAIJXSdcYuKipKefLkSdIeGBjIUCwAAICLpCvY1apVS2PGjFF0dLSj7fr16xo3bpxq1aqVYcUBAAAg9dI1FDt16lQ1b95c+fPnV8WKFWWz2bR7927Z7Xb98MMPGV0jAAAAUiFdwa58+fI6evSoFixYoEOHDskYo2effVYdOnSQj49PRtcIAACAVEhXsJs4caLy5Mmjnj17OrXPnTtXFy9e1NChQzOkOAAAAKReuq6x++ijj1SqVKkk7WXLltXMmTPvuigAAACkXbqCXXh4uIKCgpK0586dW+fPn7/rogAAAJB26Qp2BQoU0M8//5yk/eeff1ZwcPBdFwUAAIC0S9c1dj169NCgQYMUGxurhg0bSpLWrFmjV199lW+eAAAAcJF0BbtXX31Vly5dUr9+/XTjxg1Jkre3t4YOHarhw4dnaIEAAABInXQFO5vNpsmTJ2vUqFH67bff5OPjo+LFi8tut2d0fQAAAEildAW7RFmzZlW1atUyqhYAAADchXRNngAAAMCDh2AHAABgEQ9MsJs4caJsNpsGDRrk6lIAAAAypQci2G3fvl2zZs1ShQoVXF0KAABApuXyYPfPP/+oQ4cOmj17trJnz+7qcgAAADItlwe7/v37q2XLlmrcuPEd+8bExCgyMtLpAQAAgH/d1e1O7tZnn32mXbt2afv27anqP3HiRI0bN+4eVwUAAJA5ueyM3dmzZzVw4EAtWLBA3t7eqXrN8OHDFRER4XicPXv2HlcJAACQebjsjN3OnTt14cIFhYaGOtri4+O1YcMGffDBB4qJiZG7u7vTa+x2O99uAQAAkAKXBbtGjRpp3759Tm3dunVTqVKlNHTo0CShDgAAALfnsmDn5+encuXKObX5+voqZ86cSdoBAABwZy6fFQsAAICM4dJZsbdav369q0sAAADItDhjBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAItwabCbOHGiqlWrJj8/PwUGBurJJ5/U4cOHXVkSAABApuXSYPfTTz+pf//++uWXX7R69WrFxcWpSZMmunbtmivLAgAAyJQ8XLnxVatWOT0PCwtTYGCgdu7cqbp167qoKgAAgMzJpcHuVhEREZKkHDlyJLs8JiZGMTExjueRkZH3pS4AAIDM4IGZPGGM0eDBg/Wf//xH5cqVS7bPxIkTFRAQ4HgUKFDgPlcJAADw4Hpggt0LL7ygvXv3avHixSn2GT58uCIiIhyPs2fP3scKAQAAHmwPxFDsiy++qK+//lobNmxQ/vz5U+xnt9tlt9vvY2UAAACZh0uDnTFGL774olasWKH169ercOHCriwHAAAgU3NpsOvfv78WLVqkr776Sn5+fgoPD5ckBQQEyMfHx5WlAQAAZDouvcZuxowZioiIUP369RUUFOR4LFmyxJVlAQAAZEouH4oFAABAxnhgZsUCAADg7hDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCA9XF/AgCR0y39UlZCor/N5ydQmZTsHR+1xdAgDAwjhjBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALMLlwW769OkqXLiwvL29FRoaqo0bN7q6JAAAgEzJpcFuyZIlGjRokEaMGKFff/1VderUUfPmzXXmzBlXlgUAAJApuTTYvfPOO+revbt69Oih0qVLa+rUqSpQoIBmzJjhyrIAAAAyJZcFuxs3bmjnzp1q0qSJU3uTJk20efNmF1UFAACQeXm4asN//fWX4uPjlSdPHqf2PHnyKDw8PNnXxMTEKCYmxvE8IiJCkhQZGZkhNcXHXM+Q9TwsrnrGu7qETCej3qsZjfd+2jyoP0ekDe/7tOO97xqJx90Yc8e+Lgt2iWw2m9NzY0yStkQTJ07UuHHjkrQXKFDgntSG2yvn6gIyo4kBrq4AGSBgWh9XlwC4BO9917p69aoCAm7/d8RlwS5Xrlxyd3dPcnbuwoULSc7iJRo+fLgGDx7seJ6QkKBLly4pZ86cKYZB3BuRkZEqUKCAzp49K39/f1eXA9w3vPfxsOK97zrGGF29elXBwcF37OuyYOfl5aXQ0FCtXr1arVu3drSvXr1aTzzxRLKvsdvtstvtTm3ZsmW7l2XiDvz9/fmA46HEex8PK977rnGnM3WJXDoUO3jwYHXq1ElVq1ZVrVq1NGvWLJ05c0Z9+nCqFwAAIK1cGuyeeeYZ/f333xo/frzOnz+vcuXK6bvvvlNISIgrywIAAMiUXD55ol+/furXr5+ry0Aa2e12jRkzJsnQOGB1vPfxsOK9nznYTGrmzgIAAOCB5/LvigUAAEDGINgBAABYBMEOAADAIgh2AAAAFkGwAwAAdy0uLs7VJUAEOwDIMNxkAA+rs2fPqmbNmjp69KirS3noEeyQIfiDhofNn3/+qU2bNul///ufIiMjJYnvrMZDy263KzY2Vo899phOnDjh6nIeagQ73JWoqChJ//5BI9zhYbFv3z41aNBAnTt3VsuWLfXEE09o/fr1ri4LcAljjAIDA/X9998rb968evTRRwl3LkSwQ7qdPXtW3bt315dffimJcIeHw969e1WjRg21adNGS5cu1bp163TgwAG98847io+Pd3V5wH1z/fp1Sf93pjpv3rz67LPPFBwcTLhzIYId0u3ChQv67bffFBYWpu+++07SncMdwQ+Z2dGjR1WpUiUNGjRIr7/+uqpWrap69epp7NixWrt2rU6ePOnqEoH74siRI2revLm6d++utWvX6vDhw5KkoKAgffnll8qfP78aNGhAuHMBgh3S7PLly4qKilJoaKhmzZqliIgITZ8+3SncJSQkOPrHx8c7PvRcg4TMLPGPlJeXl2JjYxUbGytJ8vHxUc6cOeXh4fKv3wbuuRs3bmjq1KnasGGDwsLCNGnSJIWGhqpz586aNGmSYmJiNH/+fFWsWFEtWrTgPzz3GcEOafLnn3/qmWee0dtvv61r166pevXqmjx5sq5du6YPP/xQK1eulCS5ubnJGKMbN25owIABGj58uK5everi6oG707RpUy1ZskQTJkzQ8OHD5enpqTNnzmjIkCHq3LmzChUq5OoSgXvOy8tLXbt2VZ8+fVSlShU9/vjj+vbbb+Xr66tp06apUaNGatWqlUqWLKkjR46oRYsWOn36tKvLfmjw30ukSfbs2ZUzZ059//33ypIli/r27asaNWpo0qRJGjZsmKZPny6bzaYWLVpIkl5++WXNmjVLW7dulZ+fn4urB9InPj5e7u7ukqS2bdvKGKP27dsrMjJSq1evVrt27fTaa69JkhISEuTmxv+ZYW3Vq1dXfHy8YmJi9OGHH2rmzJmaMWOG3nnnHW3YsEHr16/X1q1bZbfbdfjwYS7DuY9shqONVEr84xYVFaVBgwZp7969atu2rfr06SNfX19t3bpVw4YNU5YsWdS7d2+tW7dOH330kX7++WdVrlzZ1eUDaRYREaGAgACnNmOMbDabli1bpq5du6pAgQLavXu3vL29XVQlcO+dOnVKX331lRISElSxYkU1bNhQkrRz5069//772r59u1577TU99dRTjtdERkbqypUrMsYoJCTEVaU/dAh2SJMbN27Iy8tLkhQaGqqoqCh1795dffv2dYS7kSNHavfu3bp27Zo2bdqkKlWquLhqIO0OHz6sRo0aqWzZsho/fryCg4NVoEABpz4rVqxQu3bt9PLLL+v111/nGjtY0p49e9S8eXOVLl1aBw4cUNmyZTVmzBjVrVtXkrRjxw598MEH2r59u9544w098cQTkv79Jgo+E/cf4wW4rSNHjmj58uWS/j1TkRjq3nvvPZ04cUIhISFatmyZZsyYoWvXrqlGjRp67bXXVLNmTW3fvp1Qh0zryJEjCgoKkoeHh1577TU9/fTTCgsL09mzZx19Wrdurfnz5+v999/XoEGD+EolWM7evXtVq1Ytde3aVT/88IPWr1+vI0eO6MyZM44+VatWVb9+/VStWjWNHj1ay5YtkyRCnasYIAURERHmvffeMzabzSxYsMDRPmnSJJM9e3bz888/G2OM6dmzp6levbqZMmWKuXr1qjHGmOjoaJfUDGSUgwcPmsaNG5utW7eaP//807z77rumWLFipnXr1mbYsGHm77//NteuXTPGGBMWFmZy585t/vzzTxdXDWScQ4cOGTc3NzNixAin9latWpmOHTuaTp06mZdfftnRvm3bNtOmTRtTs2ZNc/XqVZOQkHC/S4YxhmCHZF2+fNnkzJnTfPnll2bKlCnGw8PDrFq1yrz55psmR44c5ocffnD0jY6ONn369DHFixc306ZNMwkJCXygkSldv37d6fnQoUNNtWrVzN9//22MMebSpUumePHixmazmerVq5vu3bub9evXG2OMiYyMvO/1AvfSZ599Zmw2m5k2bZqjbeLEicZms5m+ffuaNm3amCxZspgmTZo4lu/evducO3fOFeXi/yPYIVlxcXGmdevW5sknnzRXr141r7zyirHZbMbDw8P8+OOPTv2M+TfcDRw40Jw4ccJVJQN35ffffzdt27Y1a9eudbQdO3bMNGnSxKxbt84YY0y3bt1MoUKFzO7du83UqVNN48aNTe7cuc3ly5ddUzRwj3344YfGZrOZ2bNnm0mTJpkcOXKY7777zhhjTHx8vJk+fXqSvwtwLQbAkSx3d3c1btxYo0aNUnh4uN566y0FBARo9OjRunz5slO/uLg42e12TZ061XUFA3cpJiZGv//+u6ZMmSJPT0/95z//UZEiReTn56c5c+Zo4cKFWrVqlb788ktVrFhRFStWVN++fXXlyhVly5bN1eUD90S/fv2UkJCgXr16SZJWrVqlJk2aOG7rU6JECeXLl0+5c+d2caVIxKxYJGH+/+0cJKlKlSoqVqyYli5dKkkaOnSo3n33Xc2bN0/PPfecK8sEMtzRo0c1YMAAGWM0fPhw1atXT8eOHVOlSpXk7++vVatWqUKFCq4uE7gnfv/9d61fv14JCQkqVaqUqlev7lg2b948devWTVOmTNHAgQMd92ocPny4Vq9ere+++06BgYGuKh034YwdJP17tsJut0v692u/Eqepd+jQQQsWLNChQ4dUqlQpTZ48WTabTT179lR0dLS6devm4sqBjFO8eHG9//77GjBggCZOnCg3NzfVqVNHzZs3l4+PjypUqMANiGFJe/fu1RNPPKHAwEDt2bNHZcuW1auvvqpnnnlGktSlSxf9888/evHFFxUXF6chQ4ZozJgxeu+997R582ZC3YPEtSPBeBCcOHHCPPbYY2b27NmOWa2Jzp49a3LkyGFGjRrl1N6/f38TGBhoIiIi7mepwH1x5MgR06xZM9O0aVNz4MABs2nTJuPh4WE2bdrk6tKADLdnzx6TJUsWM3z4cBMZGWnWrl1rcufObdq1a2diY2OdJsN98MEHxm63m6pVq5qsWbOaHTt2uLByJIf/dkLR0dGSpL59+6p58+YaOnSorl69qujoaOXPn1+vvvqqli9froMHDzpe88EHH2jfvn3y9/d3VdnAPZN45s4Yo0GDBskYo+bNm2v27Nncqw6WcuzYMT3yyCPq0KGD3njjDfn5+alBgwYqVKiQdu3apYiICMelOZLUv39/TZo0ScePH9eGDRsUGhrqwuqRHIIdVLp0aX3zzTfatWuXypQpo2XLlqlcuXIaOXKk9u3bp8aNG+vq1as6evSopH+/WkwSp95hacWLF9cHH3wgu92u//73vwoICNCYMWO46Sos5dixY7p27ZoCAgJ07NgxSdKkSZO0Y8cO+fr6qkuXLurXr5+mTp2qiIgIXbt2TYMGDdLJkyf5qsgHFJMn4CQmJkbXr1/XhAkTtGXLFm3dulX//e9/NX36dOXLl0+bNm1S1qxZXV0mcN8cPHhQEydO1MSJE5U/f35XlwNkiIsXL+r06dPKly+f9u3bp+eff15dunRRTEyMwsLC9NFHH6lUqVI6duyYNm7cqM8++0zGGFWvXl2ff/653NzcnM7k4cFBsEOK/vrrL3377bf65JNPtH37dnl6euro0aNMa8dD5+bvSAYyu4MHD6pXr17KkiWLsmbNqi+++ELz58/XkCFDdPnyZX300UdJJsZdvXpVS5YsUYMGDVS0aFEXVY7UINghCXPT7U4k6cKFCzp16pRy5cqlIkWKuLAyAMDdOHDggP7zn/+oX79+6t27t4KDgx2XF3z++ed64YUX1L59e/Xp00fFixeXJMXGxsrT09OVZSMNCHYAADwELl26pCeeeEKVK1fW+++/72hPvL2VJC1YsEDDhg3TU089pRdffFHFihVzVblIJ64CBgDgIRAeHq7z58/r9ddfd7ofo4eHhxLP8XTs2FE2m03//e9/dfXqVY0cOZKRmkyGWbEAADwEdu/erdOnT6tu3bpyc3NTQkKCY5nNZpPNZlNUVJTq16+v9957T7/88ot8fX1dWDHSg2AHAMBDoFChQvLw8NAXX3whScl+g8qcOXPUrVs3Pfnkk9qyZYvy5Mlzv8vEXSLYAQDwEAgJCZG/v7/mz5+v06dPO9pvvtT+zJkzqlSpkowx3IA+kyLYAQDwEMiXL59mzJih77//XqNGjXJ8m1DiEOx///tfLV++XD169HAMzSLzYVYsAAAPiYSEBM2ePVsvvPCCihYtqtq1a8vb21vnzp3TL7/8olWrVvGNEpkcwQ4AgIfMtm3b9NZbb+n48ePy9fXVI488ou7duzvuXYfMi2AHAMBD6OZbnsA6+IkCAPAQuvkaOs7xWAdn7AAAACyCM3YAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AUslms+nLL790dRkAkCKCHYBMp2vXrrLZbEkezZo1c/Tp3bu3ihYtKh8fH+XOnVtPPPGEDh06dMf1PvnkkykuP3/+vJo3b55RuwEAGc7D1QUAQHo0a9ZMYWFhTm12u93x79DQUHXo0EEFCxbUpUuXNHbsWDVp0kQnT56Uu7t7uraZN2/eu6oZAO41ztgByJTsdrvy5s3r9MiePbtjea9evVS3bl0VKlRIVapU0euvv66zZ8/q1KlT6d7mrUOxmzdvVqVKleTt7a2qVavqyy+/lM1m0+7duyVJ8fHx6t69uwoXLiwfHx+VLFlS7733ntM6169fr+rVq8vX11fZsmXTI488otOnTzuWf/PNNwoNDZW3t7eKFCmicePGKS4uLt37AMDaOGMHwPKuXbumsLAwFS5cWAUKFMiQdV69elWtWrVSixYttGjRIp0+fVqDBg1y6pOQkKD8+fNr6dKlypUrlzZv3qxevXopKChI7dq1U1xcnJ588kn17NlTixcv1o0bN7Rt2zbHl7N///336tixo95//33VqVNHx48fV69evSRJY8aMyZD9AGAtBDsAmdK3336rrFmzOrUNHTpUo0aNcjyfPn26Xn31VV27dk2lSpXS6tWr5eXllSHbX7hwoWw2m2bPni1vb2+VKVNG586dU8+ePR19PD09NW7cOMfzwoULa/PmzVq6dKnatWunyMhIRURE6LHHHlPRokUlSaVLl3b0nzBhgoYNG6YuXbpIkooUKaLXXntNr776KsEOQLIIdgAypQYNGmjGjBlObTly5HB63qFDBz366KM6f/683n77bbVr104///yzvL2973r7hw8fVoUKFZzWVb169ST9Zs6cqTlz5uj06dO6fv26bty4oUqVKjnq7dq1q5o2bapHH31UjRs3Vrt27RQUFCRJ2rlzp7Zv364JEyY41hcfH6/o6GhFRUUpS5Ysd70fAKyFYAcgU/L19VWxYsVu2ycgIEABAQEqXry4atasqezZs2vFihV67rnn7nr7xhjHkOnNbTdbunSpXnrpJU2ZMkW1atWSn5+f3nrrLW3dutXRJywsTAMGDNCqVau0ZMkSjRw5UqtXr1bNmjWVkJCgcePGqU2bNkm2nxHhFID1EOwAPDSMMYqJicmQdZUqVUoLFy5UTEyMYzbujh07nPps3LhRtWvXVr9+/Rxtx48fT7KuypUrq3Llyho+fLhq1aqlRYsWqWbNmqpSpYoOHz58xwALAIkIdgAypZiYGIWHhzu1eXh4KFeuXDpx4oSWLFmiJk2aKHfu3Dp37pwmT54sHx8ftWjR4rbrjYiIcMxqTZQjRw4VLFjQqa19+/YaMWKEevXqpWHDhunMmTN6++23JclxJq9YsWKaP3++vv/+exUuXFiffvqptm/frsKFC0uSTp48qVmzZunxxx9XcHCwDh8+rCNHjqhz586SpNGjR+uxxx5TgQIF1LZtW7m5uWnv3r3at2+fXn/99XQfOwAWZgAgk+nSpYuRlORRsmRJY4wx586dM82bNzeBgYHG09PT5M+f37Rv394cOnQoXevt0qWLMcYYSWbFihWO/j///LOpUKGC8fLyMqGhoWbRokVGkmM70dHRpmvXriYgIMBky5bN9O3b1wwbNsxUrFjRGGNMeHi4efLJJ01QUJDx8vIyISEhZvTo0SY+Pt6xjVWrVpnatWsbHx8f4+/vb6pXr25mzZqVcQcTgKXYjLnlohAAQLosXLhQ3bp1U0REhHx8fFxdDoCHEEOxAJBO8+fPV5EiRZQvXz7t2bNHQ4cOVbt27Qh1AFyGYAcA6RQeHq7Ro0crPDxcQUFBatu2rdOtSQDgfmMoFgAAwCL4rlgAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACL+H/PVb29som97QAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# In active_df, for each uniprot ID, count the corresponding number of entries,\n",
"# then count its corresponding number of entries per E3 ligase. The final dataframe\n",
"# should have the following columns:\n",
"# * Uniprot\n",
"# * Number of entries\n",
"# * Number of entries per E3 ligase type (e.g. CRL, VHL, etc.)\n",
"test_candidate_df = active_df['Uniprot'].value_counts().reset_index()\n",
"test_candidate_df.columns = ['Uniprot', 'Number of entries']\n",
"test_candidate_df['Number of entries per E3 ligase'] = test_candidate_df['Uniprot'].map(active_df.groupby('Uniprot')['E3 Ligase'].nunique())\n",
"# Sort by the number of entries per E3 ligase\n",
"test_candidate_df = test_candidate_df.sort_values('Number of entries per E3 ligase', ascending=False)\n",
"# Take the first row, then get all the SMILES associated to that Uniprot ID\n",
"for row_idx in range(5):\n",
" uniprot_id = test_candidate_df['Uniprot'].iloc[row_idx]\n",
" smiles = active_df[active_df['Uniprot'] == uniprot_id]['Smiles']\n",
" # Get the entries in active_df that have the same SMILES but NOT the same Uniprot ID\n",
" uniprot_count = test_candidate_df.iloc[row_idx]\n",
" # uniprot_count['SMILES'] = smiles\n",
" uniprot_count['Number of entries with same SMILES'] = active_df[active_df['Smiles'].isin(smiles)].shape[0]\n",
" uniprot_count['Number of entries with same SMILES and not Uniprot'] = active_df[active_df['Smiles'].isin(smiles) & (active_df['Uniprot'] != uniprot_id)].shape[0]\n",
" # Get the number of active and inactive entries with the same UniProt ID\n",
" uniprot_count['Number of active entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == True)].shape[0]\n",
" uniprot_count['Number of inactive entries'] = active_df[(active_df['Uniprot'] == uniprot_id) & (active_df[active_col] == False)].shape[0]\n",
" display(uniprot_count)\n",
" # Plot the distribution of E3 in active_df[active_df['Uniprot'] == uniprot_id]\n",
" sns.countplot(data=active_df[active_df['Uniprot'] == uniprot_id], x='E3 Ligase', hue=active_col)\n",
" plt.title(f'Distribution of E3 ligase for UniProt ID {uniprot_id}')\n",
" plt.xticks(rotation=45)\n",
" plt.tight_layout()\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Isolating _all_ entries with Uniprot ID (target) corresponding to P00533 seems to be a good addition to the test set. In fact, it has a balanced distribution of active and inactive entries, plus, the E3 ligase distribution is also quite balanced."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHJCAYAAAAIIHTEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByCklEQVR4nO3de1yP9/8/8Me7d0ep5FTREZ2UHFLIRg0lhTlMNtNQSOTQ2NYYYZaZQzMKW5Q5tTnNxhDDmFOjJuf60DJKS5SJDu+u3x9+XV9v70rxTvXucb/d3reb6/V6Xq/r9apLPXtd1/W6JIIgCCAiIiKiek+ttjtARERERMrBxI6IiIhIRTCxIyIiIlIRTOyIiIiIVAQTOyIiIiIVwcSOiIiISEUwsSMiIiJSEUzsiIiIiFQEEzsiIiIiFcHEjqgeiY2NhUQiET/a2towNjaGh4cHIiIikJ2drbBPeHg4JBJJtY5TUFCA8PBwHD16tFr7lXcsS0tL+Pr6VqudF9myZQsiIyPLrZNIJAgPD1fq8ZTt8OHD6Nq1K3R1dSGRSLB79+5y49LT0+W+389/nh3n1q1b0atXLxgZGUFLSwutWrXCwIEDcfLkySr1yd3dHY6OjpXGvMy5RESvl3ptd4CIqm/Dhg2ws7NDcXExsrOzceLECXz55ZdYunQp4uPj0bdvXzE2MDAQ/fv3r1b7BQUFmD9/PoCnv/Cr6mWO9TK2bNmCixcvYvr06Qp1p06dgqmpaY334WUJgoARI0bAxsYGe/bsga6uLmxtbSvdJyQkBO+9955C+bPjvHfvHnr27Ilp06ahefPmyMzMxPLly9GrVy8cPnwYvXv3fuW+v67vLxG9PCZ2RPWQo6MjunbtKm4PGzYMM2bMwBtvvIGhQ4ciNTUVRkZGAJ7+8q/pRKegoACNGjV6Lcd6ke7du9fq8V/kzp07yM3NxZAhQ9CnT58q7WNubv7CcU2ZMkWhzNvbGy1atEBMTIxSEru68P0losrxUiyRijA3N8eyZcvw8OFDrF27Viwv7/LZb7/9Bnd3dzRr1gw6OjowNzfHsGHDUFBQgPT0dLRo0QIAMH/+fPGy35gxY+TaO3/+PIYPHw5DQ0O0bdu2wmOV2bVrF5ycnKCtrY02bdpg5cqVcvVll5nT09Plyo8ePQqJRCJeFnZ3d8fevXvx999/y12WLFPepdiLFy9i8ODBMDQ0hLa2Njp16oS4uLhyj7N161bMnj0brVq1gr6+Pvr27Ytr165V/IV/xokTJ9CnTx/o6emhUaNGcHNzw969e8X68PBwMTH6+OOPIZFIYGlpWaW2X4aenh60tbWhrq6cv+HL+/4WFhbiww8/hLGxMRo1aoRevXrh3LlzsLS0FM8ZAPj3338RHByM9u3bo3HjxmjZsiXeeustHD9+XOE40dHR6NixIxo3bgw9PT3Y2dnh008/lYvJysrCxIkTYWpqCk1NTVhZWWH+/PkoKSmpdltEqoQzdkQqZMCAAZBKpfj9998rjElPT4ePjw/efPNNrF+/Hk2aNMHt27exf/9+FBUVwcTEBPv370f//v0REBCAwMBAABCTvTJDhw7FyJEjERQUhEePHlXar+TkZEyfPh3h4eEwNjbG5s2bMW3aNBQVFWHmzJnVGmNUVBQmTJiA//3vf9i1a9cL469duwY3Nze0bNkSK1euRLNmzbBp0yaMGTMGd+/exUcffSQX/+mnn6Jnz5747rvvkJ+fj48//hgDBw7ElStXIJVKKzzOsWPH0K9fPzg5OSEmJgZaWlqIiorCwIEDsXXrVvj5+SEwMBAdO3bE0KFDxcurWlpaLxxDaWmpQsICoNyETSaTobS0FLdv30ZERAQEQcDkyZNfeIyXNXbsWMTHx+Ojjz7CW2+9hcuXL2PIkCHIz8+Xi8vNzQUAzJs3D8bGxvjvv/+wa9cuuLu74/Dhw+Il/23btiE4OBghISFYunQp1NTUkJaWhsuXL4ttZWVlwdXVFWpqapg7dy7atm2LU6dO4fPPP0d6ejo2bNhQ5baIVI5ARPXGhg0bBABCYmJihTFGRkaCvb29uD1v3jzh2f/q27dvFwAIycnJFbbx77//CgCEefPmKdSVtTd37twK655lYWEhSCQSheP169dP0NfXFx49eiQ3tps3b8rFHTlyRAAgHDlyRCzz8fERLCwsyu378/0eOXKkoKWlJWRkZMjFeXt7C40aNRIePHggd5wBAwbIxf3www8CAOHUqVPlHq9M9+7dhZYtWwoPHz4Uy0pKSgRHR0fB1NRUKC0tFQRBEG7evCkAEL766qtK23s2tqLP8ePHFfaxtbUV601MTIQTJ0688DiCIAi9e/cWHBwcKo15/vt76dIlAYDw8ccfy8Vt3bpVACB88MEHFbZVUlIiFBcXC3369BGGDBkilk+ZMkVo0qRJpf2YOHGi0LhxY+Hvv/+WK1+6dKkAQLh06VKV2yJSNbwUS6RiBEGotL5Tp07Q1NTEhAkTEBcXhxs3brzUcYYNG1blWAcHB3Ts2FGu7L333kN+fj7Onz//Usevqt9++w19+vSBmZmZXPmYMWNQUFCAU6dOyZUPGjRIbtvJyQkA8Pfff1d4jEePHuHMmTMYPnw4GjduLJZLpVKMHj0a//zzT5Uv55Zn2rRpSExMVPh06tRJIXbHjh04c+YMfvzxR7Rv3x7e3t7Vfrq5qo4dOwYAGDFihFz58OHDy51NXLNmDbp06SJeHtbQ0MDhw4dx5coVMcbV1RUPHjzAu+++i59++gk5OTkK7fzyyy/w8PBAq1atUFJSIn68vb3l+lWVtohUDRM7IhXy6NEj3Lt3D61ataowpm3btjh06BBatmyJyZMno23btmjbti2+/vrrah3LxMSkyrHGxsYVlt27d69ax62ue/fuldvXsq/R88dv1qyZ3HbZpdLHjx9XeIz79+9DEIRqHac6TE1N0bVrV4XPs0lkGQcHB7i6umL48OHYv38/LCwsMG3atJc+dmXKxlT2oE4ZdXV1ha/j8uXLMWnSJHTr1g07duzA6dOnkZiYiP79+8t9bUePHo3169fj77//xrBhw9CyZUt069YNCQkJYszdu3fx888/Q0NDQ+7j4OAAAGICV5W2iFQNEzsiFbJ3717IZLIXLlHy5ptv4ueff0ZeXh5Onz6NHj16YPr06di2bVuVj1Wd9cyysrIqLCtLALS1tQE8vRn/Wa86y9KsWTNkZmYqlN+5cwcA0Lx581dqHwAMDQ2hpqZW48epLnV1dXTp0gXXr1+vkfbLvnd3796VKy8pKVFIZDdt2gR3d3dER0fDx8cH3bp1Q9euXfHw4UOFdseOHYuTJ08iLy8Pe/fuhSAI8PX1FWdNmzdvDk9Pz3JnMRMTExEQEFDltohUDRM7IhWRkZGBmTNnwsDAABMnTqzSPlKpFN26dcPq1asBQLwsWpVZquq4dOkS/vrrL7myLVu2QE9PD126dAEA8enQCxcuyMXt2bNHoT0tLa0q961Pnz747bffxASrzMaNG9GoUSOlLI+iq6uLbt26YefOnXL9Ki0txaZNm2BqagobG5tXPk51PXnyBKdPn0a7du1qpP1evXoBAOLj4+XKt2/frvCwh0QiUXhQ5MKFCwqXwp+lq6sLb29vzJ49G0VFRbh06RIAwNfXFxcvXkTbtm3Lncksb8a6oraIVA2fiiWqhy5evCjeV5SdnY3jx49jw4YNkEql2LVrl8ITrM9as2YNfvvtN/j4+MDc3BxPnjzB+vXrAUBc2FhPTw8WFhb46aef0KdPHzRt2hTNmzd/6aU5WrVqhUGDBiE8PBwmJibYtGkTEhIS8OWXX6JRo0YAABcXF9ja2mLmzJkoKSmBoaEhdu3ahRMnTii016FDB+zcuRPR0dFwdnaGmpqa3Lp+z5o3b554T9bcuXPRtGlTbN68GXv37sWSJUtgYGDwUmN6XkREBPr16wcPDw/MnDkTmpqaiIqKwsWLF7F169ZXemNDRkYGTp8+rVDeokULcakZNzc3DBo0CPb29jAwMEB6ejqio6Or/PQwAOTn52P79u3lHqe8dfAcHBzw7rvvYtmyZZBKpXjrrbdw6dIlLFu2DAYGBlBT+7+5A19fXyxcuBDz5s1D7969ce3aNSxYsABWVlZySeD48eOho6ODnj17wsTEBFlZWYiIiICBgQFcXFwAAAsWLEBCQgLc3NwwdepU2Nra4smTJ0hPT8e+ffuwZs0amJqaVqktIpVTu89uEFF1lD05WvbR1NQUWrZsKfTu3Vv44osvhOzsbIV9nn+S8dSpU8KQIUMECwsLQUtLS2jWrJnQu3dvYc+ePXL7HTp0SOjcubOgpaUl94RjWXv//vvvC48lCE+fivXx8RG2b98uODg4CJqamoKlpaWwfPlyhf2vX78ueHp6Cvr6+kKLFi2EkJAQYe/evQpPxebm5grDhw8XmjRpIkgkErljopyneVNSUoSBAwcKBgYGgqamptCxY0dhw4YNcjFlT8X++OOPcuVlT6Y+H1+e48ePC2+99Zagq6sr6OjoCN27dxd+/vnncttTxlOxo0aNEmM//PBDoWPHjoKBgYGgrq4uGBsbC0OGDBH++OOPFx5HEJ4+FVvRcXr37i0IQvnf3ydPngihoaFCy5YtBW1tbaF79+7CqVOnBAMDA2HGjBliXGFhoTBz5kyhdevWgra2ttClSxdh9+7dwgcffCD3hHNcXJzg4eEhGBkZCZqamkKrVq2EESNGCBcuXJA77r///itMnTpVsLKyEjQ0NISmTZsKzs7OwuzZs4X//vuvWm0RqRKJILzgEToiIqJqOHnyJHr27InNmzeX+yo0Iqo5TOyIiOilJSQk4NSpU3B2doaOjg7++usvLF68GAYGBrhw4YL4UAwRvR68x46IiF6avr4+Dh48iMjISDx8+BDNmzeHt7c3IiIimNQR1QLO2BERERGpCC53QkRERKQimNgRERERqQgmdkREREQqgg9P1ILS0lLcuXMHenp6r7RoKREREb0+giDg4cOHaNWqldwC3HUJE7tacOfOHZiZmdV2N4iIiOgl3Lp1C6amprXdjXIxsasFenp6AJ6eGPr6+kptWyaT4X//+x/atm0LqVSq1LapYeG5RMrCc4mUqTbPp/z8fJiZmYm/x+siJna1oOzyq76+fo0kdo0bN4a+vj5/gNIr4blEysJziZSpLpxPdfk2Kq5jVwvy8/NhYGCAjiFrINXSUWrbUgnwhpkWTtwqhIzfWXoFPJdIWXgukTJV5Xw695V/jRy77Pd3Xl6e0idmlKVu3vlHRERERNXGxI6IiIhIRTCxIyIiIlIRTOyIiIiIVAQTOyIiIiIVwcSOiIiIVFJ4eDgkEoncx9jYWK7ezs4Ourq6MDQ0RN++fXHmzJkXttu7d280adIEurq66NSpE77//nu5+ocPH2L69OmwsLCAjo4O3NzckJiYKBezdOlSGBkZwcjICCtWrJCrO3PmDJydnSGTyao9Zq5jR0RERCrLwcEBhw4dErefXfvOxsYGq1atQps2bfD48WOsWLECnp6eSEtLQ4sWLSpsc+bMmejSpQs0NTXxyy+/YOzYsWjZsiW8vLwAAIGBgbh48SK+//57tGrVCps2bULfvn1x+fJltG7dGikpKZg7dy5++eUXCIIAX19f9OvXD46OjiguLkZQUBDWrVv3Uuv0ccaOiIiIVJa6ujqMjY3Fz7MJ23vvvYe+ffuiTZs2cHBwwPLly5Gfn48LFy5U2ubAgQNhb2+Ptm3bYtq0aXBycsKJEycAAI8fP8aOHTuwZMkS9OrVC+3atUN4eDisrKwQHR0NALhy5QqcnJzw1ltvoU+fPnBycsKVK1cAAF999RV69eoFFxeXlxovEzsiIiJSWampqWjVqhWsrKwwcuRI3Lhxo9y4oqIirFu37ukLBDp2rFLbgiDg8OHDuHbtGnr16gUAKCkpgUwmg7a2tlysjo6OmPx16NAB169fR0ZGBv7++29cv34djo6OSEtLQ2xsLD7//POXHi8TOyIiIlJJ3bp1w8aNG3HgwAF8++23yMrKgpubG+7duyfG/PLLL2jcuDG0tbWxYsUKJCQkoHnz5pW2m5eXh8aNG0NTUxM+Pj745ptv0K9fPwBP3wffo0cPLFy4EHfu3IFMJsOmTZtw5swZZGZmAgDs7e3xxRdfoF+/fvD09ERERATs7e0RFBSEJUuW4MCBA3B0dETnzp3x+++/V2vM9T6xy8rKQkhICNq0aQMtLS2YmZlh4MCBOHz4MADA0tJSvGFSR0cHdnZ2+Oqrr/Dsm9TS09PlbqzU1NREu3bt8Pnnn8vFld2EGRQUJNeH5ORkSCQSpKenv5YxExER0Yt5e3tj2LBh6NChA/r27Yu9e/cCAOLi4sQYDw8PJCcn4+TJk+jfvz9GjBiB7OzsStvV09NDcnIyEhMTsWjRIoSGhuLo0aNi/ffffw9BENC6dWtoaWlh5cqVeO+99+TumQsKCsK1a9dw7do1BAUFITY2VkwKAwMDsWvXLixfvhwjR45EYWFhlcdcrx+eSE9PR8+ePdGkSRMsWbIETk5OKC4uxoEDBzB58mRcvXoVALBgwQKMHz8eT548waFDhzBp0iTo6+tj4sSJcu0dOnQIDg4OKCwsxIkTJxAYGAgTExMEBASIMdra2oiJiUFoaChsbGxe63iJiIjo5enq6qJDhw5ITU2VK2vXrh3atWuH7t27w9raGjExMQgLC6uwHTU1NbRr1w4A0KlTJ1y5cgURERFwd3cHALRt2xbHjh3Do0ePkJ+fDxMTE/j5+cHKyqrc9nJycrBgwQL8/vvvOHPmDGxsbGBtbQ1ra2sUFxfj+vXr6NChQ5XGWK9n7IKDgyGRSHD27FkMHz4cNjY2cHBwQGhoKE6fPi3G6enpwdjYGJaWlggMDISTkxMOHjyo0F6zZs1gbGwMCwsLjBo1Cm5ubjh//rxcjK2tLTw8PDBnzpwaHx8REREpT2FhIa5cuQITE5MKYwRBqNYMWWX76OrqwsTEBPfv38eBAwcwePDgcvefPn06ZsyYAVNTU8hkMhQXF4t1ZffsVVW9nbHLzc3F/v37sWjRIujq6irUN2nSRKFMEAQcO3YMV65cgbW1daXt//nnnzh//jw++OADhbrFixfDxcUFiYmJVXpqpbCwUO4bnp+f/8J9iIiI6NXMnDkTAwcOhLm5ObKzs/H5558jPz8fH3zwAR49eoRFixZh0KBBMDExwb179xAVFYV//vkH77zzjtiGv78/WrdujYiICLHst99+g5OTE4qKirBv3z5s3LhRfOIVAA4cOABBEGBra4u0tDTMmjULtra2GDt2rEIfExISkJqaio0bNwIAXF1dcfXqVfz666+4desWpFIpbG1tqzzmepvYpaWlQRAE2NnZvTD2448/xpw5c1BUVITi4mJoa2tj6tSpCnFubm5QU1MT4yZMmAB/f3+FuC5dumDEiBH45JNPxHv5KhMREYH58+dXbWBERESkFP/88w/effdd5OTkoEWLFujevTtOnz4NCwsLPHnyBFevXkVcXBxycnLQrFkzuLi44Pjx43BwcBDbyMjIgJqa/AXODz/8EHfu3BHv3d+0aRP8/PzE+ry8PISFheGff/5B06ZNMWzYMCxatAgaGhpy7Tx+/BhTpkxBfHy8eIzWrVvjm2++wdixY6GlpYW4uDjo6OhUecz1NrEre6hBIpG8MHbWrFkYM2YM/v33X8yePRtvvfUW3NzcFOLi4+Nhb2+P4uJipKSkYOrUqTA0NMTixYsVYj///HPY29vj4MGDaNmyZaXHDwsLQ2hoqLidn58PMzOzF/abiIiIXt62bdsqrNPW1sbOnTtf2MazD0WUSUpKgr6+foX7jBgxAiNGjHhh2zo6Orh27ZpCeWBgIAIDA1+4f3nq7T121tbWkEgk4oJ+lWnevDnatWuHHj16YMeOHVixYoXcKtRlzMzM0K5dO9jb22PEiBGYPn06li1bhidPnijEtm3bFuPHj8cnn3wi9+RsebS0tKCvry/3ISIiIlK2epvYNW3aFF5eXli9ejUePXqkUP/gwYNy9zM0NERISAhmzpz5woRMKpWipKQERUVF5dbPnTsX169fr/QvAiIiIqLXpd4mdgAQFRUFmUwGV1dX7NixA6mpqbhy5QpWrlyJHj16VLjf5MmTce3aNezYsUOu/N69e8jKysI///yDX3/9FV9//TU8PDwqnGEzMjJCaGgoVq5cqdRxEREREb2Mep3YWVlZ4fz58/Dw8MCHH34IR0dH9OvXD4cPH5Z7OuV5LVq0wOjRoxEeHo7S0lKxvG/fvjAxMYGlpSUmTJiAAQMGID4+vtI+zJo1C40bN1bamIiIiIhelkR40fVIUrr8/Pyn76ILWQOpVtWfdKkKqQR4w0wLJ24VQsbvLL0CnkukLDyXSJmqcj6d+0pxRQtlKPv9nZeXV2fvl6/XM3ZERERE9H+Y2BERERGpCCZ2RERERCqCiR0RERGRimBiR0RERKQimNgRERERqQgmdkREREQqgokdERERkYrgAsW1oCYXOJTJZEhNTYW1tTWkUqlS26aGhecSKQvPJVKm2jyfuEAxEREREb02TOyIiIiIVAQTOyIiIiIVwcSOiIiISEUwsSMiIiJSEUzsiIiIiFSEem13oCG7tbg79LSV+6h2qUSKvJa9cevHY1ATZEptmxoWnkukLDyXqKrM56bUdhfqPc7YEREREakIJnZEREREKoKJHREREZGKYGJHREREpCKY2BERERGpCCZ2REREVGdFRERAIpFg+vTpYpkgCJg/fz5atWoFHR0duLu749KlS5W2c+nSJQwbNgyWlpaQSCSIjIws91guLi7Q09NDy5Yt8fbbb+PatWsKce3atYORkRFWrFghV37mzBk4OztDJqu9p7+Z2BEREVGdlJiYiHXr1sHJyUmu/LvvvkNkZCRWrVqFxMREGBsbo1+/fnj48GGFbRUUFKBNmzZYvHgxjI2Ny405duwYJk+ejNOnTyMhIQElJSXw9PTEo0ePAEBMHmNiYrBlyxZ8+umnuHjxIgCguLgYQUFBWLNmDaRS5S5lVh1cx46IiIjqnP/++w+jRo3Ct99+i88//1wsFwQBGzduRFhYGIYOHQoAiIuLg5GREbZs2YKJEyeW256LiwtcXFwAAJ988km5Mfv375fb3rBhA1q2bIlz586hV69e4uxd7969oa+vDycnJ1y5cgWOjo746quv0KtXL/EYtYUzdkRERFTnTJ48GT4+Pujbt69c+c2bN5GTk4N+/fqJZVpaWujduzdOnjyp1D7k5eUBAJo2bQoAcHBwAADcunULf//9N65fvw5HR0ekpaUhNjZWLgGtLZyxIyIiojpl27ZtOH/+PBITExXqsrKyAABGRkZy5UZGRvj777+V1gdBEBAaGoo33ngDjo6OAABbW1sAwNtvvw01NTVERETA3t4effv2xZIlS3DgwAGEh4dDQ0MDX3/9NXr16qW0/lRVg0jsBg4ciMePH+PQoUMKdadOnYKbmxvOnTsHZ2dnJCUloVOnTnIx7u7u6NSpk3ij5fPbREREpBy3bt3CtGnTcPDgQWhra1cYJ5FI5LYFQVAoexVTpkzBhQsXcOLECYW6c+fOQV9fHwAQGxsLPT099OjRA7a2tkhMTMQ///yDkSNH4ubNm9DS0lJan6qiQVyKDQgIwG+//VZuJr9+/Xp06tRJnGYlIiKi2nPu3DlkZ2fD2dkZ6urqUFdXx7Fjx7By5Uqoq6uLM3VlM3dlsrOzFWbxXlZISAj27NmDI0eOwNTUtMK4nJwcLFiwAN988w3OnDkDGxsbWFtbw8PDA8XFxbh+/bpS+lMdDSKx8/X1RcuWLREbGytXXlBQgPj4eAQEBNROx4iIiEhOnz59kJKSguTkZPHTtWtXjBo1CsnJyWjTpg2aN28udxWuqKgIx44dg5ub2ysdWxAETJkyBTt37sRvv/0GKyurSuOnT5+OGTNmwNTUFDKZDMXFxWJdSUlJrSx70iAuxaqrq8Pf3x+xsbGYO3euOFX7448/oqioCKNGjRJvkKwJhYWFKCwsFLfz8/Nr7FhERET1mZ6ennhPWxldXV00a9YMjo6OkMlk8Pf3x+LFi2Frawtra2t88cUXaNSoEd577z1xH39/f7Ru3RoREREAniZ/ly9fFv99+/ZtJCcno3HjxmjXrh2Apw9sbNmyBT/99BP09PTEWUEDAwPo6OjI9SkhIQGpqanYuHEjAMDV1RVXr17Fr7/+ilu3bkEqlYr35L1ODSKxA4Bx48bhq6++wtGjR+Hh4QHg6WXYoUOHwtDQUEzs3NzcoKYmP5H5+PFjhfvuqiMiIgLz589/6f2JiIjo/wQGBkJXVxfBwcG4f/8+unXrhoMHD0JPT0+MycjIkPt9fufOHXTu3FncXrp0KZYuXYrevXvj6NGjAIDo6GgAT++lf9aGDRswZswYcfvx48eYMmUK4uPjxWO0bt0a33zzDcaOHQstLS3ExcUpJIOvQ4NJ7Ozs7ODm5ob169fDw8MD//vf/3D8+HEcPHhQLi4+Ph729vZyZaNGjXqlY4eFhSE0NFTczs/Ph5mZ2Su1SURE1FCUJV5lJBIJ5s2bhwULFlR5H0tLSwiCUOlxXlRfRkdHp9w3UgQGBiIwMLBKbdSUBpPYAU8fopgyZQpWr16NDRs2wMLCAn369JGLMTMzE6dky7xqxq2lpfXan4ohIiKihqdBPDxRZsSIEZBKpdiyZQvi4uIwduxYpT4aTURERFSbGtSMXePGjeHn54dPP/0UeXl5ctfLq+vff/9FcnKyXJmxsXGF758jIiIiqmkNasYOeHo59v79++jbty/Mzc1fup0tW7agc+fOcp81a9YosadERERE1dOgZuwAoEePHuXeHFnZTZXP34D5/DYRERFRXdDgZuyIiIiIVBUTOyIiIiIVwcSOiIiISEUwsSMiIiJSEUzsiIiIiFQEEzsiIiIiFcHEjoiIiEhFMLEjIiIiUhENboHiusTsk9PQ19dXapsymQxPUlNhZr0cUqlUqW1Tw8JziZSF5xLR68MZOyIiIiIVwcSOiIiISEUwsSMiIiJSEUzsiIiIiFQEEzsiIiIiFcHEjoiIiEhFcLmTWtRvTT+o6yj3WyCFFN0NuuN0wmnIIFNq29Sw8FxSLX+E/FHbXSCi14AzdkREREQqgokdERERkYpgYkdERESkIpjYEREREakIJnZEREREKoKJHRFRAxEREQEXFxfo6emhZcuWePvtt3Ht2rUX7rd582Z07NgRjRo1gomJCcaOHYt79+7JxezYsQPt27eHlpYW2rdvj127dsnV//zzz7C0tETTpk0xa9Ysubr09HTY2NggPz//1QdJ1MAxsSMiaiCOHTuGyZMn4/Tp00hISEBJSQk8PT3x6NGjCvc5ceIE/P39ERAQgEuXLuHHH39EYmIiAgMDxZhTp07Bz88Po0ePxl9//YXRo0djxIgROHPmDAAgJycHn332GZYsWYIDBw4gLi4Oe/fuFfefNGkSFi9eDH19/ZobPFEDwXXsiIgaiP3798ttb9iwAS1btsS5c+fQq1evcvc5ffo0LC0tMXXqVACAlZUVJk6ciCVLlogxkZGR6NevH8LCwgAAYWFhOHbsGCIjI7F161bcuHEDenp6GDFiBKRSKTw8PHD58mX4+Phgy5Yt0NTUxNChQ2to1EQNC2fsiIgaqLy8PABA06ZNK4xxc3PDP//8g3379kEQBNy9exfbt2+Hj4+PGHPq1Cl4enrK7efl5YWTJ08CAKytrfH48WMkJSUhNzcXiYmJcHJyQm5uLubOnYtVq1bVwOiIGiYmdkREDZAgCAgNDcUbb7wBR0fHCuPc3NywefNm+Pn5QVNTE8bGxmjSpAm++eYbMSYrKwtGRkZy+xkZGSErKwsAYGhoiIiICIwdOxaurq7w9/eHl5cXZs6ciZCQENy8eROdO3eGo6Mjtm/fXjMDJmogGnxiN2bMGLz99ttyZSdPnoRUKkX//v0V4tPT0yGRSMSPoaEhevXqhWPHjr2mHhMRvbopU6bgwoUL2Lp1a6Vxly9fxtSpUzF37lycO3cO+/fvx82bNxEUFCQXJ5FI5LYFQZAr69evH5KTk5GWlobw8HAcPXoUKSkpGD9+PEaOHInIyEjs2LEDAQEByM7OVt5AiRqYBp/YlWf9+vUICQnBiRMnkJGRUW7MoUOHkJmZiWPHjkFfXx8DBgzAzZs3X3NPiYiqLyQkBHv27MGRI0dgampaaWxERAR69uyJWbNmwcnJCV5eXoiKisL69euRmZkJADA2NhZn58pkZ2crzOKVKSwsRHBwMNauXYu0tDSUlJSgd+/esLW1hY2NjfjQBRFVHxO75zx69Ag//PADJk2aBF9fX8TGxpYb16xZMxgbG8PJyQlr165FQUEBDh48+Ho7S0RUDYIgYMqUKdi5cyd+++03WFlZvXCfgoICqKnJ/6qQSqViewDQo0cPJCQkyMUcPHgQbm5u5ba5cOFCeHt7o0uXLpDJZCgpKRHriouLIZPJqjUuIvo/fCr2OfHx8bC1tYWtrS3ef/99hISE4LPPPlO4zPCsRo0aAXj6A6k8hYWFKCwsFLe5VhMR1YbJkydjy5Yt+Omnn6CnpyfOshkYGEBHRwfA0ydab9++jY0bNwIABg4ciPHjxyM6OhpeXl7IzMzE9OnT4erqilatWgEApk2bhl69euHLL7/E4MGD8dNPP+HQoUM4ceKEQh8uXbqE+Ph4JCcnAwDs7OygpqaGmJgYGBsb4+rVq3BxcXkNXw0i1cQZu+fExMTg/fffBwD0798f//33Hw4fPlxh/KNHjxAWFgapVIrevXuXGxMREQEDAwPxY2ZmViN9JyKqTHR0NPLy8uDu7g4TExPxEx8fL8ZkZmbK3YIyZswYLF++HKtWrYKjoyPeeecd2NraYufOnWKMm5sbtm3bhg0bNsDJyQmxsbGIj49Ht27d5I4vCAImTJiAFStWQFdXFwCgo6OD2NhYLFiwAAEBAVi1ahVat25dw18JItUlEcrm0huoMWPG4MGDB9i9ezeuXbsGR0dH/PPPP+K9IVOmTEFubi62bNkC4OnDE1ZWVtDR0YGamhoKCgpgYmKCL7/8UkwIn1fejJ2ZmRlcv3SFuo5yJ02lkKK7QXeczjsNGXg5g14ezyXV8kfIH7V2bJlMhtTUVFhbW4uXcYleVm2eT/n5+TAwMEBeXl6dXVCbl2KfERMTg5KSErm/FgVBgIaGBu7fvw9DQ0OxPD4+Hu3bt0eTJk3QrFmzStvV0tKClpZWjfWbiIiICOClWFFJSQk2btyIZcuWITk5Wfz89ddfsLCwwObNm+XizczM0LZt2xcmdURERESvC2fs/r9ffvkF9+/fR0BAAAwMDOTqhg8fjpiYGEyZMqWWekdERET0Ypyx+/9iYmLQt29fhaQOAIYNG4bk5GScP3++FnpGREREVDUNfsauonXqntWlSxc8+4xJA3/ehIiIiOooztgRERERqQgmdkREREQqgokdERERkYpgYkdERESkIpjYEREREakIJnZEREREKoKJHREREZGKYGJHREREpCIa/ALFtSkhKAH6+vpKbVMmkyE1NRUR1hGQSqVKbZsaFp5LRET1D2fsiIiIiFQEEzsiIiIiFcHEjoiIiEhFMLEjIiIiUhFM7IiIiIhUBBM7IiIiIhXB5U5q0Yn+3tBVV+63QJBK8cTVFVlnz0Iikym1bWpYVOFc6v37sdruAhHRa8UZOyIiIiIVwcSOiIiISEUwsSMiIiJSEUzsiIiIiFQEEzsiIiIiFcHEjohUXlRUFKysrKCtrQ1nZ2ccP3680vjVq1fD3t4eOjo6sLW1xcaNGxViIiMjYWtrCx0dHZiZmWHGjBl48uSJWL9582aYmZmhadOmmDVrlty+6enpsLGxQX5+vnIGSET0/3G5EyJSafHx8Zg+fTqioqLQs2dPrF27Ft7e3rh8+TLMzc0V4qOjoxEWFoZvv/0WLi4uOHv2LMaPHw9DQ0MMHDgQwNOk7ZNPPsH69evh5uaG69evY8yYMQCAFStWICcnB4GBgYiNjUWbNm3g4+MDd3d3+Pj4AAAmTZqExYsXQ19f/7V9HYioYeCMHRGptOXLlyMgIACBgYGwt7dHZGQkzMzMEB0dXW78999/j4kTJ8LPzw9t2rTByJEjERAQgC+//FKMOXXqFHr27In33nsPlpaW8PT0xLvvvos///wTAHDjxg0YGBjAz88PLi4u8PDwwOXLlwEAW7ZsgaamJoYOHVrzgyeiBoeJHRGprKKiIpw7dw6enp5y5Z6enjh58mS5+xQWFkJbW1uuTEdHB2fPnkVxcTEA4I033sC5c+dw9uxZAE8TuX379okzctbW1igoKEBSUhJyc3ORmJgIJycn5ObmYu7cuVi1apWyh0pEBICJHRGpsJycHMhkMhgZGcmVGxkZISsrq9x9vLy88N133+HcuXMQBAF//vkn1q9fj+LiYuTk5AAARo4ciYULF+KNN96AhoYG2rZtCw8PD3zyyScAAENDQ8TFxcHf3x+urq7w9/eHl5cXZs6ciZCQENy8eROdO3eGo6Mjtm/fXrNfBCJqUFQ6sZNIJNi9e7dC+YQJEyCVSrFt2zaFuvDwcEgkEkgkEkilUpiZmSEwMBD//vuvGLNo0SK4ubmhUaNGaNKkSQ2OgIiUQSKRyG0LgqBQVuazzz6Dt7c3unfvDg0NDQwePFi8f04qlQIAjh49ikWLFiEqKgrnz5/Hzp078csvv2DhwoViO0OGDEFKSgrS0tIQHh6Oo0ePIiUlBePHj8fIkSMRGRmJHTt2ICAgANnZ2TUzcCJqcFQ6sStPQUEB4uPjMWvWLMTExJQb4+DggMzMTGRkZCA6Oho///wz/P39xfqioiK88847mDRp0uvqNhG9hObNm0MqlSrMzmVnZyvM4pXR0dHB+vXrUVBQgPT0dGRkZMDS0hJ6enpo3rw5gKfJ3+jRoxEYGIgOHTpgyJAh+OKLLxAREYHS0lKFNgsLCxEcHIy1a9ciLS0NJSUl6N27N2xtbWFjY4MzZ84of/BE1CDV+8SutLQUX375Jdq1awctLS2Ym5tj0aJFFcb/+OOPaN++PcLCwvDHH38gPT1dIUZdXR3GxsZo3bo1fH19MXXqVBw8eBCPHz8GAMyfPx8zZsxAhw4dampYRKQEmpqacHZ2RkJCglx5QkIC3NzcKt1XQ0MDpqam4uy+r68v1NSe/sgsKCgQ/11GKpVCEAQIgqDQ1sKFC+Ht7Y0uXbpAJpOhpKRErCsuLoZMJnvZIRIRyan3y52ULUuwYsUKvPHGG8jMzMTVq1crjI+JicH7778PAwMDDBgwABs2bMD8+fMrPYaOjg5KS0vlfhhXR2FhIQoLC8Vtrl1F9PqEhoZi9OjR6Nq1K3r06IF169YhIyMDQUFBAJ7+DLl9+7a4Vt3169dx9uxZdOvWDffv38fy5ctx8eJFxMXFiW0OHDgQy5cvR+fOndGtWzekpaXhs88+w6BBg8TLtWUuXbqE+Ph4JCcnAwDs7OygpqaGmJgYGBsb4+rVq3BxcXk9XwwiUnn1OrF7+PAhvv76a6xatQoffPABAKBt27Z44403yo1PTU3F6dOnsXPnTgDA+++/j6lTp2LevHkKf32XuXr1KqKjo+Hq6go9Pb2X6mdERMQLk0ciqhl+fn64d+8eFixYgMzMTDg6OmLfvn2wsLAAAPG2izIymQzLli3DtWvXoKGhAQ8PD5w8eRKWlpZizJw5cyCRSDBnzhzcvn0bLVq0wMCBAxWuFgiCgAkTJmDFihXQ1dUF8PQPxdjYWEyePBmFhYVYtWoVWrduXfNfCCJqEOp1YnflyhUUFhaiT58+VYqPiYmBl5eXeJ/MgAEDEBAQgEOHDskth5CSkoLGjRtDJpOhsLAQ7u7uWLdu3Uv3MywsDKGhoeJ2fn4+zMzMXro9Iqqe4OBgBAcHl1sXGxsrt21vb4+kpKRK21NXV8e8efMwb968SuMkEgn++OMPhXJfX1/4+vpW3mkiopdQrxM7HR2dKsfKZDJs3LgRWVlZUFdXlyuPiYmRS+xsbW2xZ88eSKVStGrVClpaWq/UTy0trVdug4iIiOhF6nViZ21tDR0dHRw+fBiBgYGVxu7btw8PHz5EUlKS3D0wV69exahRo3Dv3j00a9YMwNMbrtu1a1ejfSciIiJStnqd2Glra+Pjjz/GRx99BE1NTfTs2RP//vsvLl26hICAALnYmJgY+Pj4oGPHjnLlDg4OmD59OjZt2oRp06ZV6bgZGRnIzc1FRkYGZDKZeFN0u3bt0LhxY6WMjYiIiKi66nViBzxdT0pdXR1z587FnTt3YGJiIj7tVubu3bvYu3cvtmzZorC/RCLB0KFDERMTU+XEbu7cuXJPyHXu3BkAcOTIEbi7u7/8YIiIiIhegUQob9ElqlH5+fkwMDDA3h5u0FVXbm4tSKV44uoK7bNnIeHaWPQKVOFc6v37sdruAuHpvcypqamwtrZWWA6GqLpq83wq+/2dl5cHfX3913rsqqr3CxQTERER0VNM7IiIiIhUBBM7IiIiIhXBxI6IiIhIRTCxIyIiIlIRTOyIiIiIVAQTOyIiIiIVwcSOiIiISEXU+zdP1Gdv7P9V6Qscigs3frGIC4HSK+G5RERU/3DGjoiIiEhFMLEjIiIiUhFM7IiIiIhUBBM7IiIiIhXBxI6IiIhIRTCxIyIiIlIRXO6kFq399FfoaDVSbqMSAfrmAg59dx0QJMptmxqWenguTVk2sLa7QERUqzhjR0RERKQiXimxe/LkibL6QURERESvqNqJXWlpKRYuXIjWrVujcePGuHHjBgDgs88+Q0xMjNI7SERERERVU+3E7vPPP0dsbCyWLFkCTU1NsbxDhw747rvvlNo5IiIiIqq6aid2GzduxLp16zBq1Ci590c6OTnh6tWrSu0cEREREVVdtRO727dvo127dgrlpaWlKC4uVkqniIheVVRUFKysrKCtrQ1nZ2ccP3680vjVq1fD3t4eOjo6sLW1xcaNG+Xqd+7cia5du6JJkybQ1dVFp06d8P3338vFbN68GWZmZmjatClmzZolV5eeng4bGxvk5+crZ4BEROWo9nInDg4OOH78OCwsLOTKf/zxR3Tu3FlpHSMielnx8fGYPn06oqKi0LNnT6xduxbe3t64fPkyzM3NFeKjo6MRFhaGb7/9Fi4uLjh79izGjx8PQ0NDDBz4dAmVpk2bYvbs2bCzs4OmpiZ++eUXjB07Fi1btoSXlxdycnIQGBiI2NhYtGnTBj4+PnB3d4ePjw8AYNKkSVi8eDH09fVf69eCiBqWaid28+bNw+jRo3H79m2UlpZi586duHbtGjZu3IhffvmlJvpIRFQty5cvR0BAAAIDAwEAkZGROHDgAKKjoxEREaEQ//3332PixInw8/MDALRp0wanT5/Gl19+KSZ27u7ucvtMmzYNcXFxOHHiBLy8vHDjxg0YGBiIbXh4eODy5cvw8fHBli1boKmpiaFDh9bgqImIXuJS7MCBAxEfH499+/ZBIpFg7ty5uHLlCn7++Wf069evJvpIRFRlRUVFOHfuHDw9PeXKPT09cfLkyXL3KSwshLa2tlyZjo4Ozp49W+4tJoIg4PDhw7h27Rp69eoFALC2tkZBQQGSkpKQm5uLxMREODk5ITc3F3PnzsWqVauUNEIiooq91JsnvLy84OXlpey+EBG9spycHMhkMhgZGcmVGxkZISsrq9x9vLy88N133+Htt99Gly5dcO7cOaxfvx7FxcXIycmBiYkJACAvLw+tW7dGYWEhpFIpoqKixD9oDQ0NERcXB39/fzx+/Bj+/v7w8vLCuHHjEBISgps3b2LQoEEoLi5GeHg4hg8fXrNfCCJqkKo9Y3fr1i38888/4vbZs2cxffp0rFu3TqkdexUymQxubm4YNmyYXHleXh7MzMwwZ84cpKenQyKRIDk5WWF/T09PSKVSnD59WqFuzJgxkEgkkEgk0NDQQJs2bTBz5kw8evSopoZDRC9BIpF/DZogCAplZT777DN4e3uje/fu0NDQwODBgzFmzBgAkHv6X09PD8nJyUhMTMSiRYsQGhqKo0ePivVDhgxBSkoK0tLSEB4ejqNHjyIlJQXjx4/HyJEjERkZiR07diAgIADZ2dlKHzMRUbUTu/feew9HjhwBAGRlZaFv3744e/YsPv30UyxYsEDpHXwZUqkUcXFx2L9/PzZv3iyWh4SEoGnTppg7d26F+2ZkZODUqVOYMmVKhQsu9+/fH5mZmbhx4wY+//xzREVFYebMmUofBxFVX/PmzSGVShVm57KzsxVm8cro6Ohg/fr1KCgoQHp6OjIyMmBpaQk9PT00b95cjFNTU0O7du3QqVMnfPjhhxg+fHi59+wBTy/vBgcHY+3atUhLS0NJSQl69+4NW1tb2NjY4MyZM8obNBHR/1ftxO7ixYtwdXUFAPzwww/o0KEDTp48iS1btiA2NlbZ/Xtp1tbWiIiIQEhICO7cuYOffvoJ27ZtQ1xcnNzCys/bsGEDfH19MWnSJMTHx5c7E6elpQVjY2OYmZnhvffew6hRo7B79+4aHA0RVZWmpiacnZ2RkJAgV56QkAA3N7dK99XQ0ICpqSmkUim2bdsGX19fqKlV/GNSEAQUFhaWW7dw4UJ4e3ujS5cukMlkKCkpEeuKi4shk8mqMSoioqqp9j12xcXF0NLSAgAcOnQIgwYNAgDY2dkhMzNTub17RSEhIdi1axf8/f2RkpKCuXPnolOnThXGC4KADRs2YPXq1bCzs4ONjQ1++OEHjB07ttLj6OjoVLqGX2FhodwPf65jRVSzQkNDMXr0aHTt2hU9evTAunXrkJGRgaCgIABAWFgYbt++La5Vd/36dZw9exbdunXD/fv3sXz5cly8eBFxcXFimxEREejatSvatm2LoqIi7Nu3Dxs3bkR0dLTC8S9duoT4+HjxVg87OzuoqakhJiYGxsbGuHr1KlxcXGr+C0FEDc5LrWO3Zs0a+Pj4ICEhAQsXLgQA3LlzB82aNVN6B1+FRCJBdHQ07O3t0aFDB3zyySeVxh86dAgFBQXigyHvv/8+YmJiKk3szp49iy1btqBPnz4VxkRERGD+/PkvNwgiqjY/Pz/cu3cPCxYsQGZmJhwdHbFv3z5x/c3MzExkZGSI8TKZDMuWLcO1a9egoaEBDw8PnDx5EpaWlmLMo0ePEBwcjH/++Qc6Ojqws7PDpk2bxOVNygiCgAkTJmDFihXQ1dUF8PSPv9jYWEyePBmFhYVYtWoVWrduXfNfCCJqcCSCIAjV2eHo0aMYMmQI8vPz8cEHH2D9+vUAgE8//RRXr17Fzp07a6SjL+ujjz7C6tWroaamhpSUFPEHdXp6OqysrJCUlCTO4o0cORItWrTAN998AwC4e/cuTE1NcfHiRdja2gJ4+vDEpk2boK2tjZKSEhQXF2Pw4MFYs2YNWrZsWW4fypuxMzMzw5LJ26Cj1Ui5A5YI0DcXkJ8hAYTybxQnqpJ6eC5NWTawtrtA5ZDJZEhNTYW1tbXcwyhEL6M2z6f8/HwYGBggLy+vzi42Xu0ZO3d3d+Tk5CA/Px+GhoZi+YQJE9CokZKTlFd06tQprFixAr/++iuWLFmCgIAAHDp0qNwn43Jzc7F7924UFxfLXVqRyWRYv349vvzyS7HMw8MD0dHR0NDQQKtWraChoVFpP7S0tMTL10REREQ15aXWsZNKpXJJHQC5SxZ1wePHj/HBBx9g4sSJ6Nu3L2xsbODo6Ii1a9eK99k8a/PmzTA1NVV4COLw4cOIiIjAokWLoK7+9Mulq6tb7vtyiYiIiGrTSyV227dvxw8//ICMjAwUFRXJ1Z0/f14pHXtVn3zyCUpLS8WZNnNzcyxbtgyhoaHo37+/QnxMTAyGDx8OR0dHuXILCwt8/PHH2Lt3LwYPHvxa+k5ERET0Mqq93MnKlSvFF18nJSXB1dUVzZo1w40bN+Dt7V0Tfay2Y8eOYfXq1YiNjRVvXgaA8ePHw83NDQEBAXj21sJz587hr7/+UljQGHi6IKmnp2eFa9oRERER1RXVnrGLiorCunXr8O677yIuLg4fffQR2rRpg7lz5yI3N7cm+lhtvXv3llsz6lkHDhwQ//1sclfZMyR79uwR/12X1uojIiIiela1Z+wyMjLERT51dHTw8OFDAMDo0aOxdetW5faOiIiIiKqs2omdsbEx7t27B+Dp/Wdl71O9efNmpbNeRERERFSzqp3YvfXWW/j5558BAAEBAZgxYwb69esHPz8/DBkyROkdJCIiIqKqqfY9duvWrUNpaSkAICgoCE2bNsWJEycwcODAcpcRISIiIqLXo9qJnZqamtxLsUeMGIERI0YotVNEREREVH3VTuwuXLhQbrlEIoG2tjbMzc35lgUiIiKiWlDtxK5Tp07lvpKrjIaGBvz8/LB27Vpoa2u/UueIiIiIqOqq/fDErl27YG1tjXXr1iE5ORlJSUlYt24dbG1tsWXLFsTExOC3337DnDlzaqK/RERERFSBas/YLVq0CF9//TW8vLzEMicnJ5iamuKzzz7D2bNnoauriw8//BBLly5VamdVzcQvvKGvr6/UNmUyGVJTU2FtbQ2pVKrUtqlh4blERFT/VHvGLiUlBRYWFgrlFhYWSElJAfD0cm1mZuar946IiIiIqqzaiZ2dnR0WL16MoqIisay4uBiLFy+GnZ0dAOD27dswMjJSXi+JiIiI6IWqfSl29erVGDRoEExNTeHk5ASJRIILFy5AJpPhl19+AQDcuHEDwcHBSu8sEREREVWs2omdm5sb0tPTsWnTJly/fh2CIGD48OF47733oKenB+Dpe2OJiIiI6PWqdmIHAI0bN+ZbJoiIiIjqmColdnv27IG3tzc0NDSwZ8+eSmMHDRqklI4RERERUfVUKbF7++23kZWVhZYtW+Ltt9+uME4ikUAmkymrbyrvq/Gjoa2hodQ2JWpqaGHniJ1XL0L4/+/0JXoZr/Ncmr1pe422T0TUUFQpsSt95od6KZMFIiIiojqp2sudVOTWrVsYN26cspojIiIiompSWmKXm5uLuLg4ZTVHRERERNWktMSOiIiIiGoXEzsiIiIiFcHEjojqlKioKFhZWUFbWxvOzs44fvx4hbFjxoyBRCJR+Dg4OMjF7dixA+3bt4eWlhbat2+PXbt2ydVv3rwZZmZmaNq0KWbNmiVXl56eDhsbG+Tn5ytvkERENaTKCxQPHTq00voHDx68al+IqIGLj4/H9OnTERUVhZ49e2Lt2rXw9vbG5cuXYW5urhD/9ddfY/HixeJ2SUkJOnbsiHfeeUcsO3XqFPz8/LBw4UIMGTIEu3btwogRI3DixAl069YNOTk5CAwMRGxsLNq0aQMfHx+4u7vDx8cHADBp0iQsXrwY+vr6Nf8FICJ6RVWesTMwMKj0Y2FhAX9//5rsKxGpuOXLlyMgIACBgYGwt7dHZGQkzMzMEB0dXW68gYEBjI2Nxc+ff/6J+/fvY+zYsWJMZGQk+vXrh7CwMNjZ2SEsLAx9+vRBZGQkgKfvtjYwMICfnx9cXFzg4eGBy5cvAwC2bNkCTU3NF/5hS0RUV1R5xm7Dhg012Q8iauCKiopw7tw5fPLJJ3Llnp6eOHnyZJXaiImJQd++fWFhYSGWnTp1CjNmzJCL8/LyEhM7a2trFBQUICkpCRYWFkhMTMS4ceOQm5uLuXPn4siRI682MCKi16jB3GPn7u6O6dOn13Y3iKgCOTk5kMlkMDIykis3MjJCVlbWC/fPzMzEr7/+isDAQLnyrKysSts0NDREXFwc/P394erqCn9/f3h5eWHmzJkICQnBzZs30blzZzg6OmL7dr4hg4jqtnqT2JXdJB0UFKRQFxwcDIlEgjFjxtRoH44ePYrBgwfDxMQEurq66NSpEzZv3lyjxyRqaCQSidy2IAgKZeWJjY1FkyZNyn3t4YvaHDJkCFJSUpCWlobw8HAcPXoUKSkpGD9+PEaOHInIyEjs2LEDAQEByM7OfrmBERG9BvUmsQMAMzMzbNu2DY8fPxbLnjx5gq1bt5Z7Y7WynTx5Ek5OTtixYwcuXLiAcePGwd/fHz///HONH5tI1TVv3hxSqVRhdi47O1thxu15giBg/fr1GD16NDQ1NeXqjI2Nq9VmYWEhgoODsXbtWqSlpaGkpAS9e/eGra0tbGxscObMmZcYHRHR61GvErsuXbrA3NwcO3fuFMt27twJMzMzdO7cWSx79OgR/P390bhxY5iYmGDZsmUKbVlaWuLzzz8X4ywsLPDTTz/h33//xeDBg9G4cWN06NABf/75p7jPp59+ioULF8LNzQ1t27bF1KlT0b9/f4WlE4io+jQ1NeHs7IyEhAS58oSEBLi5uVW677Fjx5CWloaAgACFuh49eii0efDgwQrbXLhwIby9vdGlSxfIZDKUlJSIdcXFxZDJZFUdEhHRa1evEjsAGDt2rNyDHOvXr1d4R+2sWbNw5MgR7Nq1CwcPHsTRo0dx7tw5hbZWrFiBnj17IikpCT4+Phg9ejT8/f3x/vvv4/z582jXrh38/f0hCEKF/cnLy0PTpk0r7XNhYSHy8/PlPkSkKDQ0FN999x3Wr1+PK1euYMaMGcjIyBBvwQgLCyv36fuYmBh069YNjo6OCnXTpk3DwYMH8eWXX+Lq1av48ssvcejQoXLvub106RLi4+OxYMECAICdnR3U1NQQExODvXv34urVq3BxcVHuoImIlKjKT8UCTy93pKenw8zMDOrq6igqKsKuXbtQWFiIAQMGoHnz5jXVT9Ho0aMRFhaG9PR0SCQS/PHHH9i2bRuOHj0KAPjvv/8QExODjRs3ol+/fgCAuLg4mJqaKrQ1YMAATJw4EQAwd+5cREdHw8XFRVwD6+OPP0aPHj1w9+5dGBsbK+y/fft2JCYmYu3atZX2OSIiAvPnz3+VYRM1CH5+frh37x4WLFiAzMxMODo6Yt++feJTrpmZmcjIyJDbJy8vDzt27MDXX39dbptubm7Ytm0b5syZg88++wxt27ZFfHw8unXrJhcnCAImTJiAFStWQFdXFwCgo6OD2NhYTJ48GYWFhVi1ahVat25dAyMnIlKOKid2165dg5eXF27duoU2bdrg4MGDeOedd3D16lUIgoBGjRrh5MmTsLa2rsn+onnz5vDx8UFcXBwEQYCPj49cQvm///0PRUVF6NGjh1jWtGlT2NraKrTl5OQk/rvsfpsOHToolGVnZyskdkePHsWYMWPw7bffKqxy/7ywsDCEhoaK2/n5+TAzM6vKcIkanODgYAQHB5dbFxsbq1BmYGCAgoKCStscPnw4hg8fXmlM2R+Kz/P19YWvr2+l+xIR1RVVvhT78ccfo2PHjkhOThZ/0JmamuL+/fu4f/8+evbsKV6+qGnjxo1DbGws4uLiFC7DVnbZ9HkaGhriv8uekCuvrLS0VG6/Y8eOYeDAgVi+fHmVFmXW0tKCvr6+3IeIiIhI2aqc2J08eRLz589Hhw4d8Pnnn+PKlSuYOXMmNDQ0oKmpiY8//hi///57TfZV1L9/fxQVFaGoqAheXl5yde3atYOGhgZOnz4tlt2/fx/Xr19XyrGPHj0KHx8fLF68GBMmTFBKm0RERETKUOVLsf/995/4kICuri50dXVhYmIi1puamuLu3bvK72E5pFIprly5Iv77WY0bN0ZAQABmzZqFZs2awcjICLNnz4aa2qs/J1KW1E2bNg3Dhg0Tl1DQ1NR84QMURERERDWtytlOq1at5G5aXrJkCVq2bClu//vvvzA0NFRu7ypR2SXNr776Cr169cKgQYPQt29fvPHGG3B2dn7lY8bGxqKgoAAREREwMTERP3yPJBEREdUFEqGKN6UFBQWha9euCq/rKbN48WIcP34ce/fuVWoHVVF+fj4MDAwwZ8QgaD9zT58ySNTU0MLOEf9evQjhuXsDiarjdZ5LszfxVV2qTCaTITU1FdbW1gpXWYiqqzbPp7Lf33l5eXX2fvkqX4pds2ZNpfV+fn744IMPXrlDRERERPRyqrWOXWWsrKyU1RQRERERvYQq32M3YMAA5OXliduLFi3CgwcPxO179+6hffv2Su0cEREREVVdlRO7AwcOoLCwUNz+8ssvkZubK26XlJTg2rVryu0dEREREVVZlRO755+xqM5CwERERERU8159cTciIiIiqhOqnNhJJBLxFVvPlhERERFR3VDlp2IFQcCYMWOgpaUFAHjy5AmCgoKgq6sLAHL33xERERHR61flxO75Neref/99hRh/f/9X71EDMuvb75W+wOH/Ldw4mwuB0ivhuUREVP9UObHbsGFDTfaDiIiIiF4RH54gIiIiUhFM7IiIiIhUBBM7IiIiIhXBxI6IiIhIRTCxIyIiIlIRVX4qlpTv2lfH0FhbV6ltlkoE5LYogmznbagJXECaXt7LnEv2s9+q4V4REVFlOGNHREREpCKY2BERERGpCCZ2RERERCqCiR0RERGRimBiR0RERKQimNgRUY2IioqClZUVtLW14ezsjOPHj1cYe/ToUUgkEoXP1atX5eIePHiAyZMnw8TEBNra2rC3t8e+ffvE+s2bN8PMzAxNmzbFrFmz5PZNT0+HjY0N8vPzlTtQIqI6hMudEJHSxcfHY/r06YiKikLPnj2xdu1aeHt74/LlyzA3N69wv2vXrkFfX1/cbtGihfjvoqIi9OvXDy1btsT27dthamqKW7duQU9PDwCQk5ODwMBAxMbGok2bNvDx8YG7uzt8fHwAAJMmTcLixYvl2iciUjVM7IhI6ZYvX46AgAAEBgYCACIjI3HgwAFER0cjIiKiwv1atmyJJk2alFu3fv165Obm4uTJk9DQ0AAAWFhYiPU3btyAgYEB/Pz8AAAeHh64fPkyfHx8sGXLFmhqamLo0KFKGiERUd3ES7FEpFRFRUU4d+4cPD095co9PT1x8uTJSvft3LkzTExM0KdPHxw5ckSubs+ePejRowcmT54MIyMjODo64osvvoBMJgMAWFtbo6CgAElJScjNzUViYiKcnJyQm5uLuXPnYtWqVcodKBFRHcTEjoiUKicnBzKZDEZGRnLlRkZGyMrKKncfExMTrFu3Djt27MDOnTtha2uLPn364Pfffxdjbty4ge3bt0Mmk2Hfvn2YM2cOli1bhkWLFgEADA0NERcXB39/f7i6usLf3x9eXl6YOXMmQkJCcPPmTXTu3BmOjo7Yvn17zX0BiIhqUb1J7MaMGQOJRIKgoCCFuuDgYEgkEowZM0YuViKRQENDA0ZGRujXrx/Wr1+P0tJSuX0tLS0hkUiwbds2hXYdHBwgkUgQGxsLAMjNzUVISAhsbW3RqFEjmJubY+rUqcjLy1P6eInqO4lE/jVkgiAolJWxtbXF+PHj0aVLF/To0QNRUVHw8fHB0qVLxZjS0lK0bNkS69atg7OzM0aOHInZs2cjOjpajBkyZAhSUlKQlpaG8PBwHD16FCkpKRg/fjxGjhyJyMhI7NixAwEBAcjOzq6ZgRMR1aJ6k9gBgJmZGbZt24bHjx+LZU+ePMHWrVsVbsju378/MjMzkZ6ejl9//RUeHh6YNm0afH19UVJSotDuhg0b5MpOnz6NrKws6Or+37tc79y5gzt37mDp0qVISUlBbGws9u/fj4CAgBoYLVH91Lx5c0ilUoXZuezsbIVZvMp0794dqamp4raJiQlsbGwglUrFMnt7e2RlZaGoqEhh/8LCQgQHB2Pt2rVIS0tDSUkJevfuDVtbW9jY2ODMmTMvMToiorqtXiV2Xbp0gbm5OXbu3CmW7dy5E2ZmZujcubNcrJaWFoyNjdG6dWt06dIFn376KX766Sf8+uuv4gxcmVGjRuHYsWO4deuWWLZ+/XqMGjUK6ur/93yJo6MjduzYgYEDB6Jt27Z46623sGjRIvz8888KySJRQ6WpqQlnZ2ckJCTIlSckJMDNza3K7SQlJcHExETc7tmzJ9LS0uRm3a9fvw4TExNoamoq7L9w4UJ4e3ujS5cukMlkcv9Hi4uLxXvziIhUSb1K7ABg7NixcrNr69evx7hx46q071tvvYWOHTvKJYbA03t/vLy8EBcXBwAoKChAfHx8ldrNy8uDvr6+XAL4vMLCQuTn58t9iFRZaGgovvvuO6xfvx5XrlzBjBkzkJGRId5KERYWBn9/fzE+MjISu3fvRmpqKi5duoSwsDDs2LEDU6ZMEWMmTZqEe/fuYdq0abh+/Tr27t2LL774ApMnT1Y4/qVLlxAfH48FCxYAAOzs7KCmpoaYmBjs3bsXV69ehYuLSw1/FYiIXr96t9zJ6NGjERYWhvT0dEgkEvzxxx/Ytm0bjh49WqX97ezscOHCBYXycePG4cMPP8Ts2bOxfft2tG3bFp06daq0rXv37mHhwoWYOHFipXERERGYP39+lfpHpAr8/Pxw7949LFiwAJmZmXB0dMS+ffvE5UkyMzORkZEhxhcVFWHmzJm4ffs2dHR04ODggL1792LAgAFijJmZGQ4ePIgZM2bAyckJrVu3xrRp0/Dxxx/LHVsQBEyYMAErVqwQb6XQ0dFBbGwsJk+ejMLCQqxatQqtW7d+DV8JIqLXq94lds2bN4ePjw/i4uIgCAJ8fHzQvHnzKu9f0Q3cPj4+mDhxIn7//fcqzQLm5+fDx8cH7du3x7x58yqNDQsLQ2hoqNy+ZmZmVe4zUX0UHByM4ODgcuuevx3io48+wkcfffTCNnv06IHTp09XGlP2B9/zfH194evr+8JjEBHVZ/UusQOezq6VXaJZvXp1tfa9cuUKrKysFMrV1dUxevRozJs3D2fOnMGuXbsqbOPhw4fo378/GjdujF27domLpVZES0sLWlpa1eonERERUXXVu3vsgKdPvBYVFaGoqAheXl5V3u+3335DSkoKhg0bVm79uHHjcOzYMQwePBiGhoblxuTn58PT0xOamprYs2cPtLW1X2oMRERERMpWL2fspFIprly5Iv67PIWFhcjKyoJMJsPdu3exf/9+REREwNfXV+6m7WfZ29sjJycHjRo1Krf+4cOH8PT0REFBATZt2iT3IESLFi0q7AsRERHR61AvEzsAL3yR9/79+2FiYgJ1dXUYGhqiY8eOWLlyJT744AOoqVU8UdmsWbMK686dOyeufdWuXTu5ups3b8LS0rLqAyAiIiJSsnqT2D1/s/Xzdu/eLRf7ovgy6enpldY/ePBA/Le7uzsEQahSu0RERESvW728x46IiIiIFDGxIyIiIlIRTOyIiIiIVAQTOyIiIiIVwcSOiIiISEUwsSMiIiJSEUzsiIiIiFQEEzsiIiIiFVFvFihWRbazer/wDRrVJZPJkJqaCmtra77ijF4JzyUiovqHM3ZEREREKoKJHREREZGKYGJHREREpCKY2BERERGpCCZ2RERERCqCiR0RERGRiuByJ7UoIiICWlpaSm1TIpHAyMgI8fHxEARBqW1T/RUeHl7bXSAioteAM3ZEREREKoKJHREREZGKYGJHREREpCKY2BERERGpCCZ2RERERCqCiR1RAxMVFQUrKytoa2vD2dkZx48frzD23LlzePPNN9GsWTPo6OjAzs4OK1askItxd3eHRCJR+Pj4+IgxmzdvhpmZGZo2bYpZs2bJ7Z+eng4bGxvk5+crd6BERA0QlzshakDi4+Mxffp0REVFoWfPnli7di28vb1x+fJlmJubK8Tr6Ohg8uTJ6NSpE3R1dXHixAlMnDgRurq6mDBhAgBg586dKCoqEve5d+8eOnbsiHfeeQcAkJOTg8DAQMTGxqJNmzbw8fGBu7u7mPhNmjQJixcvhr6+/mv4ChARqTbO2BE1IMuXL0dAQAACAwNhb2+PyMhImJmZITo6utz49u3bY+TIkXBwcIClpSXef/99eHl5yc3yNW3aFMbGxuInISEBjRo1EhO7GzduwMDAAH5+fnBxcYGHhwcuX74MANiyZQs0NTUxdOjQmh88EVEDwMSOqIEoKirCuXPn4OnpKVfu6emJkydPVqmNpKQknDx5Er17964wJiYmBiNHjoSuri4AwNraGgUFBUhKSkJubi4SExPh5OSE3NxczJ07F6tWrXr5QRERkRwmdkQNRE5ODmQyGYyMjOTKjYyMkJWVVem+pqam0NLSQteuXTF58mQEBgaWG3f27FlcvHhRrt7Q0BBxcXHw9/eHq6sr/P394eXlhZkzZyIkJAQ3b95E586d4ejoiO3bt7/6QImIGrA6m9iNGTOm3Buy09LSKqzr37+/uL+lpSUkEgm2bdum0LaDgwMkEgliY2PFsnXr1sHd3R36+vqQSCR48OCBwn7PHktdXR3m5uYIDQ1FYWFhTXwJiGqERCKR2xYEQaHsecePH8eff/6JNWvWIDIyElu3bi03LiYmBo6OjnB1dZUrHzJkCFJSUpCWlobw8HAcPXoUKSkpGD9+PEaOHInIyEjs2LEDAQEByM7OfrUBEhE1YHX64Yn+/ftjw4YNcmUtWrSosO75966amZlhw4YNGDlypFh2+vRpZGVliZeJyhQUFKB///7o378/wsLCKuzThg0b0L9/fxQXF+Ovv/7C2LFjoauri4ULF77UGIlel+bNm0MqlSrMzmVnZyvM4j3PysoKANChQwfcvXsX4eHhePfdd+ViCgoKsG3bNixYsKDStgoLCxEcHIxNmzYhLS0NJSUl4qVdGxsbnDlzBgMHDqzu8IiICHU8sdPS0oKxsXG168qMGjUKK1aswK1bt2BmZgYAWL9+PUaNGoWNGzfKxU6fPh0AcPTo0UrbbNKkiXhcMzMzDBo0COfPn6/CaIhql6amJpydnZGQkIAhQ4aI5QkJCRg8eHCV2xEEodxZ6h9++AGFhYV4//33K91/4cKF8Pb2RpcuXZCUlISSkhKxrri4GDKZrMp9ISIieXU6sXtVRkZG8PLyQlxcHObMmYOCggLEx8fj2LFjCondy7h+/TqOHDmCMWPGVBpXWFgo94uQ63VRbQkNDcXo0aPRtWtX9OjRA+vWrUNGRgaCgoIAAGFhYbh9+7b4/2Pz5s1wdnaGg4MDAODEiRNYunQpQkJCFNqOiYnB22+/jWbNmlV4/EuXLiE+Ph7JyckAADs7O6ipqSEmJgbGxsa4evUqXFxclDxqIqKGo04ndr/88gsaN24sbnt7e+PHH38stw4APv74Y3z22WdyZePGjcOHH36I2bNnY/v27Wjbti06der00n169913IZVKUVJSgsLCQvj6+lZ66RYAIiIiMH/+/Jc+JpGy+Pn54d69e1iwYAEyMzPh6OiIffv2wcLCAgCQmZmJjIwMMV4QBMyZMwc3b96Euro62rZti8WLF2PixIly7V6/fh0nTpzAwYMHKzy2IAiYMGECVqxYId4KoaOjg9jYWEyePBmFhYVYtWoVWrduXQMjJyJqGOp0Yufh4SG3vtaz98U9Xwc8XU/reT4+Ppg4cSJ+//13rF+/HuPGjXulPq1YsQJ9+/aFTCZDWlqaOANS3kMaZcLCwhAaGipu5+fni5eGiV634OBgBAcHl1v37ANFAPD+++9j/vz5kEqllbZpY2MDQRAqjZFIJPjjjz8Uyn19feHr61t5p4mIqErqdGKnq6uLdu3aVbvuWerq6hg9ejTmzZuHM2fOYNeuXa/UJ2NjY/G4tra2ePjwId599118/vnnFfZHS0tL4cEOIiIiImWrs8udKNO4ceNw7NgxDB48GIaGhkptu2wm4/Hjx0ptl4iIiKi66vSMXWUKCwsVlm1QV1dH8+bNFWLt7e2Rk5ODRo0aVdheVlYWsrKykJaWBgBISUmBnp4ezM3N5S7xPnjwAFlZWSgtLUVqaioWLFgAGxsb2NvbK2lkRERERC+n3iZ2+/fvh4mJiVyZra0trl69Wm58ZU/qAcCaNWvkHnDo1asXgKfr1j371OvYsWMBPL1fyNjYGL169cIXX3wBdfV6+6UkIiIiFVFns5Hnb+J+vq6yegBIT0+vtP75N0uEh4cjPDy80n1edHM4ERERUW1qEPfYERERETUETOyIiIiIVAQTOyIiIiIVwcSOiIiISEUwsSMiIiJSEUzsiIiIiFQEEzsiIiIiFcHEjoiIiEhF1NkFihuCsLAw6OvrK7VNmUyG1NRUWFtbi++xJSIiooaBM3ZEREREKoKJHREREZGKYGJHREREpCKY2BERERGpCCZ2RERERCqCiR0RERGRiuByJ7Vo5y4PNGqk7CVJpJBK3XAh5SQAmZLbrhkj3jlb210gIiJSCZyxIyIiIlIRTOyIiIiIVAQTOyIiIiIVwcSOiIiISEUwsaM6JSoqClZWVtDW1oazszOOHz9eafyxY8fg7OwMbW1ttGnTBmvWrJGrLy4uxoIFC9C2bVtoa2ujY8eO2L9/v1zM5s2bYWZmhqZNm2LWrFlydenp6bCxsUF+fr5yBkhERFSDmNhRnREfH4/p06dj9uzZSEpKwptvvglvb29kZGSUG3/z5k0MGDAAb775JpKSkvDpp59i6tSp2LFjhxgzZ84crF27Ft988w0uX76MoKAgDBkyBElJSQCAnJwcBAYGYunSpThw4ADi4uKwd+9ecf9JkyZh8eLF0NfXr9nBExERKQETO6ozli9fjoCAAAQGBsLe3h6RkZEwMzNDdHR0ufFr1qyBubk5IiMjYW9vj8DAQIwbNw5Lly4VY77//nt8+umnGDBgANq0aYNJkybBy8sLy5YtAwDcuHEDBgYG8PPzg4uLCzw8PHD58mUAwJYtW6CpqYmhQ4fW/OCJiIiUgIkd1QlFRUU4d+4cPD095co9PT1x8uTJcvc5deqUQryXlxf+/PNPFBcXAwAKCwuhra0tF6Ojo4MTJ04AAKytrVFQUICkpCTk5uYiMTERTk5OyM3Nxdy5c7Fq1SplDZGIiKjGMbGjOiEnJwcymQxGRkZy5UZGRsjKyip3n6ysrHLjS0pKkJOTA+Bpord8+XKkpqaitLQUCQkJ+Omnn5CZmQkAMDQ0RFxcHPz9/eHq6gp/f394eXlh5syZCAkJwc2bN9G5c2c4Ojpi+/btNTByIiIi5WmQb54IDw/H7t27kZycXNtdoedIJBK5bUEQFMpeFP9s+ddff43x48fDzs4OEokEbdu2xdixY7FhwwZxnyFDhmDIkCHi9tGjR5GSkoJVq1ahXbt22Lp1K4yNjeHq6opevXqhZcuWrzxOIiKimqByM3bu7u6YPn26Qvnu3bsrTRCqaufOnfDy8kLz5s0hkUiYHCpJ8+bNIZVKFWbnsrOzFWblyhgbG5cbr66ujmbNmgEAWrRogd27d+PRo0f4+++/cfXqVTRu3BhWVlbltllYWIjg4GCsXbsWaWlpKCkpQe/evWFrawsbGxucOXNGCaMlIiKqGSqX2NWUoqIiAMCjR4/Qs2dPLF68uJZ7pFo0NTXh7OyMhIQEufKEhAS4ubmVu0+PHj0U4g8ePIiuXbtCQ0NDrlxbWxutW7dGSUkJduzYgcGDB5fb5sKFC+Ht7Y0uXbpAJpOhpKRErCsuLoZMVj/ev0tERA1Tg7wUW2bt2rX4/PPPce/ePfj4+ODbb79FkyZNAABjxozBgwcP0K1bN3zzzTfQ1NREeno6Ro8eDeDp+makXKGhoRg9ejS6du2KHj16YN26dcjIyEBQUBAAICwsDLdv38bGjRsBAEFBQVi1ahVCQ0Mxfvx4nDp1CjExMdi6davY5pkzZ3D79m106tQJt2/fRnh4OEpLS/HRRx8pHP/SpUuIj48XZ2Ht7OygpqaGmJgYGBsb4+rVq3Bxcan5LwQREdFLarCJXVpaGn744Qf8/PPPyM/PR0BAACZPnozNmzeLMYcPH4a+vj4SEhLEe7deRmFhIQoLC8VtLnZbPj8/P9y7dw8LFixAZmYmHB0dsW/fPlhYWAAAMjMz5da0s7Kywr59+zBjxgysXr0arVq1wsqVKzFs2DAx5smTJ5gzZw5u3LiBxo0bY8CAAfj+++/FBL6MIAiYMGECVqxYAV1dXQBPn56NjY3F5MmTUVhYiFWrVqF169Y1/4UgIiJ6SQ02sXvy5Ani4uJgamoKAPjmm2/g4+ODZcuWwdjYGACgq6uL7777Dpqamq90rIiICMyfP/+V+9wQBAcHIzg4uNy62NhYhbLevXvj/PnzFbbXu3dvcV26ykgkEvzxxx8K5b6+vvD19X3h/kRERHVBg73HztzcXEzqgKf3a5WWluLatWtiWYcOHV45qQOeXkLMy8sTP7du3XrlNomIiIiep3Izdvr6+sjLy1Mof/DgQaWvhSp7YvbZJ2fLLsm9Ki0tLWhpaSmlLSIiIqKKqNyMnZ2dHf7880+F8sTERNja2orbGRkZuHPnjrh96tQpqKmpwcbG5rX0k4iIiEjZVC6xCw4Oxv/+9z9MnjwZf/31F65fv47Vq1cjJiYGs2bNEuO0tbXxwQcf4K+//sLx48cxdepUjBgxQry/riK5ublITk4W79u6du0akpOTK3w7AhEREdHronKJnaWlJY4fP47//e9/8PT0hIuLC2JjYxEbG4t33nlHjGvXrh2GDh2KAQMGwNPTE46OjoiKinph+3v27EHnzp3h4+MDABg5ciQ6d+6MNWvW1NiYiIiIiKpCIrzKOh70UvLz82FgYIANsV3QqJFUya1LIZW6QSY7CaB+LKY74p2ztd0FKodMJkNqaiqsra0hlSr7PKWGhOcSKVNtnk9lv7/z8vIqvW+/NqncjB0RERFRQ8XEjoiIiEhFMLEjIiIiUhFM7IiIiIhUBBM7IiIiIhXBxI6IiIhIRTCxIyIiIlIRKveu2Ppk6JAjSl8H5//W91nC9aKIiIgaGM7YEREREakIJnZEREREKoKJHREREZGKYGJHREREpCKY2BERERGpCCZ2RERERCqCiR0RERGRiuA6drXIbfchSBvpKrVNKQRscbRUaptERERUP3DGjoiIiEhFMLEjIiIiUhFM7IiIiIhUBBM7IiIiIhXBxK4BiIqKgpWVFbS1teHs7Izjx49XGn/s2DE4OztDW1sbbdq0wZo1a+TqY2NjIZFIFD5PnjwRYzZv3gwzMzM0bdoUs2bNkts/PT0dNjY2yM/PV94giYiIiImdqouPj8f06dMxe/ZsJCUl4c0334S3tzcyMjLKjb958yYGDBiAN998E0lJSfj0008xdepU7NixQy5OX18fmZmZch9tbW0AQE5ODgIDA7F06VIcOHAAcXFx2Lt3r7jvpEmTsHjxYujr69fcwImIiBogJnYqbvny5QgICEBgYCDs7e0RGRkJMzMzREdHlxu/Zs0amJubIzIyEvb29ggMDMS4ceOwdOlSuTiJRAJjY2O5T5kbN27AwMAAfn5+cHFxgYeHBy5fvgwA2LJlCzQ1NTF06NCaGzQREVEDxcROhRUVFeHcuXPw9PSUK/f09MTJkyfL3efUqVMK8V5eXvjzzz9RXFwslv3333+wsLCAqakpfH19kZSUJNZZW1ujoKAASUlJyM3NRWJiIpycnJCbm4u5c+di1apVShwlERERlWFip8JycnIgk8lgZGQkV25kZISsrKxy98nKyio3vqSkBDk5OQAAOzs7xMbGYs+ePdi6dSu0tbXRs2dPpKamAgAMDQ0RFxcHf39/uLq6wt/fH15eXpg5cyZCQkJw8+ZNdO7cGY6Ojti+fXsNjJyIiKhh4psnGgCJRCK3LQiCQtmL4p8t7969O7p37y7W9+zZE126dME333yDlStXAgCGDBmCIUOGiDFHjx5FSkoKVq1ahXbt2mHr1q0wNjaGq6srevXqhZYtW77aIImIiKh2Z+zGjBkjPlGprq4Oc3NzTJo0Cffv3xdjLC0tIZFIcPr0abl9p0+fDnd3d3E7PDy83Cc1Dx06BAC4dOkShg0bJrYXGRmp0J/ff/8dAwcORKtWrSCRSLB79+5K+z9x4sQK26oLmjdvDqlUqjA7l52drTArV8bY2LjceHV1dTRr1qzcfdTU1ODi4iLO2D2vsLAQwcHBWLt2LdLS0lBSUoLevXvD1tYWNjY2OHPmzEuMjoiIiJ5X65di+/fvj8zMTKSnp+O7777Dzz//jODgYLkYbW1tfPzxxy9sy8HBQeFJzV69egEACgoK0KZNGyxevFjuRv9nPXr0CB07dqzSPWC7d+/GmTNn0KpVqyqMsnZoamrC2dkZCQkJcuUJCQlwc3Mrd58ePXooxB88eBBdu3aFhoZGufsIgoDk5GSYmJiUW79w4UJ4e3ujS5cukMlkKCkpEeuKi4shk8mqMywiIiKqQK1fitXS0hITLVNTU/j5+SE2NlYuZuLEiYiOjsa+ffswYMCACttSV1evMGlzcXGBi4sLAOCTTz4pN8bb2xve3t4v7PPt27cxZcoUHDhwAD4+Pi+Mr02hoaEYPXo0unbtih49emDdunXIyMhAUFAQACAsLAy3b9/Gxo0bAQBBQUFYtWoVQkNDMX78eJw6dQoxMTHYunWr2Ob8+fPRvXt3WFtbIz8/HytXrkRycjJWr16tcPxLly4hPj4eycnJAJ7en6empoaYmBgYGxvj6tWr4veFiIiIXk2tJ3bPunHjBvbv368wM2RpaYmgoCCEhYWhf//+UFOrvYnG0tJSjB49GrNmzYKDg0OV9iksLERhYaG4/ToX5vXz88O9e/ewYMECZGZmwtHREfv27YOFhQUAIDMzU25NOysrK+zbtw8zZszA6tWr0apVK6xcuRLDhg0TYx48eIAJEyYgKysLBgYG6Ny5M37//Xe4urrKHVsQBEyYMAErVqyArq4uAEBHRwexsbGYPHkyCgsLsWrVKrRu3fo1fCWIiIhUX60ndr/88gsaN24MmUwmvrlg+fLlCnFz5szBhg0bsHnzZowePbrctlJSUtC4cWNxu3379jh79qxS+/vll19CXV0dU6dOrfI+ERERmD9/vlL7UR3BwcEKl7fLPD87CgC9e/fG+fPnK2xvxYoVWLFixQuPK5FI8McffyiU+/r6wtfX94X7ExERUfXUemLn4eGB6OhoFBQU4LvvvsP169cREhKiENeiRQvMnDkTc+fOhZ+fX7lt2draYs+ePeK2lpaWUvt67tw5fP311zh//nylT5U+LywsDKGhoeJ2fn4+zMzMlNo3IiIiolp/eEJXVxft2rWDk5MTVq5cicLCwgpnt0JDQ/H48WNERUWVW6+pqYl27dqJH2UnT8ePH0d2djbMzc2hrq4OdXV1/P333/jwww9haWlZ4X5aWlrQ19eX+xAREREpW60nds+bN28eli5dijt37ijUNW7cGJ999hkWLVpUKy+QHz16NC5cuIDk5GTx06pVK8yaNQsHDhx47f0hIiIieladS+zc3d3h4OCAL774otz6CRMmwMDAQO4pzaooKioSk7GioiLcvn0bycnJSEtLE2P+++8/MQYAbt68ieTkZPHhgmbNmsHR0VHuo6GhAWNjY9ja2r7cgImIiIiUpM4ldsDTS67ffvstbt26pVCnoaGBhQsXig9aVNWdO3fQuXNndO7cGZmZmVi6dCk6d+6MwMBAMebPP/8UY8r60blzZ8ydO/fVBkRERET0GkiEsvdF0WuTn58PAwMDOMTtgLSRrlLblkLAFkdLWFtbQyqVKrVtalhkMhlSU1N5LtEr47lEylSb51PZ7++8vLw6e798nZyxIyIiIqLqY2JHREREpCKY2BERERGpCCZ2RERERCqCiR0RERGRimBiR0RERKQimNgRERERqQj12u5AQ3by7b5KXwenbH0fIiIiang4Y0dERESkIpjYEREREakIXoqtBWVvccvPz1d62zKZDP/99x/y8/P56h56JTyXSFl4LpEy1eb5VPZ7uy6/jZWJXS14+PAhAMDMzKyWe0JERETV9fDhQxgYGNR2N8olEepy2qmiSktLcefOHejp6UEikZQb4+LigsTExArbqKg+Pz8fZmZmuHXrVp19QfHzXjTWunacV2mnOvtWNbYqcZXF8Fyq3eO8bFvV3U9Z59PL1NfHcwmof+cTfzbVPEEQ8PDhQ7Rq1QpqanXzbjbO2NUCNTU1mJqaVhojlUorPWFfVK+vr19vfoC+aCx17Tiv0k519q1qbFXiKovhuVS7x3nZtqq7n7LOp1epr0/nElD/zif+bHo96upMXZm6mW4SJk+e/Er19cnrGouyjvMq7VRn36rGViWushieS7V7nJdtq7r7Ket84s+munsc/mwigJdiVU5+fj4MDAyQl5dXr/4yprqH5xIpC88lUiaeT5XjjJ2K0dLSwrx586ClpVXbXaF6jucSKQvPJVImnk+V44wdERERkYrgjB0RERGRimBiR0RERKQimNgRERERqQgmdkREREQqgokdERERkYpgYteA/PLLL7C1tYW1tTW+++672u4O1WNDhgyBoaEhhg8fXttdoXru1q1bcHd3R/v27eHk5IQff/yxtrtE9dTDhw/h4uKCTp06oUOHDvj2229ru0u1gsudNBAlJSVo3749jhw5An19fXTp0gVnzpxB06ZNa7trVA8dOXIE//33H+Li4rB9+/ba7g7VY5mZmbh79y46deqE7OxsdOnSBdeuXYOurm5td43qGZlMhsLCQjRq1AgFBQVwdHREYmIimjVrVttde604Y9dAnD17Fg4ODmjdujX09PQwYMAAHDhwoLa7RfWUh4cH9PT0arsbpAJMTEzQqVMnAEDLli3RtGlT5Obm1m6nqF6SSqVo1KgRAODJkyeQyWRoiHNXTOzqid9//x0DBw5Eq1atIJFIsHv3boWYqKgoWFlZQVtbG87Ozjh+/LhYd+fOHbRu3VrcNjU1xe3bt19H16mOedVziehZyjyf/vzzT5SWlsLMzKyGe011kTLOpQcPHqBjx44wNTXFRx99hObNm7+m3tcdTOzqiUePHqFjx45YtWpVufXx8fGYPn06Zs+ejaSkJLz55pvw9vZGRkYGAJT7V4tEIqnRPlPd9KrnEtGzlHU+3bt3D/7+/li3bt3r6DbVQco4l5o0aYK//voLN2/exJYtW3D37t3X1f26Q6B6B4Cwa9cuuTJXV1chKChIrszOzk745JNPBEEQhD/++EN4++23xbqpU6cKmzdvrvG+Ut32MudSmSNHjgjDhg2r6S5SPfKy59OTJ0+EN998U9i4cePr6CbVA6/ys6lMUFCQ8MMPP9RUF+ssztipgKKiIpw7dw6enp5y5Z6enjh58iQAwNXVFRcvXsTt27fx8OFD7Nu3D15eXrXRXarDqnIuEVVVVc4nQRAwZswYvPXWWxg9enRtdJPqgaqcS3fv3kV+fj4AID8/H7///jtsbW1fe19rm3ptd4BeXU5ODmQyGYyMjOTKjYyMkJWVBQBQV1fHsmXL4OHhgdLSUnz00UcN7kkherGqnEsA4OXlhfPnz+PRo0cwNTXFrl274OLi8rq7S3VcVc6nP/74A/Hx8XBychLvqfr+++/RoUOH191dqsOqci79888/CAgIgCAIEAQBU6ZMgZOTU210t1YxsVMhz98zJwiCXNmgQYMwaNCg190tqodedC7xiWqqjsrOpzfeeAOlpaW10S2qhyo7l5ydnZGcnFwLvapbeClWBTRv3hxSqVRuRgUAsrOzFf66IaoMzyVSJp5PpCw8l6qOiZ0K0NTUhLOzMxISEuTKExIS4ObmVku9ovqI5xIpE88nUhaeS1XHS7H1xH///Ye0tDRx++bNm0hOTkbTpk1hbm6O0NBQjB49Gl27dkWPHj2wbt06ZGRkICgoqBZ7TXURzyVSJp5PpCw8l5SkFp/IpWo4cuSIAEDh88EHH4gxq1evFiwsLARNTU2hS5cuwrFjx2qvw1Rn8VwiZeL5RMrCc0k5+K5YIiIiIhXBe+yIiIiIVAQTOyIiIiIVwcSOiIiISEUwsSMiIiJSEUzsiIiIiFQEEzsiIiIiFcHEjoiIiEhFMLEjIiIiUhFM7IiIiIhUBBM7IiIiIhXBxI6I6P/LyspCSEgI2rRpAy0tLZiZmWHgwIE4fPjwa+2HRCLB7t27X+sxiUg1qNd2B4iI6oL09HT07NkTTZo0wZIlS+Dk5ITi4mIcOHAAkydPxtWrV2u7i0RELyQRBEGo7U4QEdW2AQMG4MKFC7h27Rp0dXXl6h48eIAmTZogIyMDISEhOHz4MNTU1NC/f3988803MDIyAgCMGTMGDx48kJttmz59OpKTk3H06FEAgLu7O5ycnKCtrY3vvvsOmpqaCAoKQnh4OADA0tISf//9t7i/hYUF0tPTa3LoRKRCeCmWiBq83Nxc7N+/H5MnT1ZI6gCgSZMmEAQBb7/9NnJzc3Hs2DEkJCTgf//7H/z8/Kp9vLi4OOjq6uLMmTNYsmQJFixYgISEBABAYmIiAGDDhg3IzMwUt4mIqoKXYomowUtLS4MgCLCzs6sw5tChQ7hw4QJu3rwJMzMzAMD3338PBwcHJCYmwsXFpcrHc3Jywrx58wAA1tbWWLVqFQ4fPox+/fqhRYsWAJ4mk8bGxq8wKiJqiDhjR0QNXtkdKRKJpMKYK1euwMzMTEzqAKB9+/Zo0qQJrly5Uq3jOTk5yW2bmJggOzu7Wm0QEZWHiR0RNXjW1taQSCSVJmiCIJSb+D1brqamhudvWy4uLlbYR0NDQ25bIpGgtLT0ZbpORCSHiR0RNXhNmzaFl5cXVq9ejUePHinUP3jwAO3bt0dGRgZu3bolll++fBl5eXmwt7cHALRo0QKZmZly+yYnJ1e7PxoaGpDJZNXej4iIiR0REYCoqCjIZDK4urpix44dSE1NxZUrV7By5Ur06NEDffv2hZOTE0aNGoXz58/j7Nmz8Pf3R+/evdG1a1cAwFtvvYU///wTGzduRGpqKubNm4eLFy9Wuy+WlpY4fPgwsrKycP/+fWUPlYhUGBM7IiIAVlZWOH/+PDw8PPDhhx/C0dER/fr1w+HDhxEdHS0uGmxoaIhevXqhb9++aNOmDeLj48U2vLy88Nlnn+Gjjz6Ci4sLHj58CH9//2r3ZdmyZUhISICZmRk6d+6szGESkYrjOnZEREREKoIzdkREREQqgokdERERkYpgYkdERESkIpjYEREREakIJnZEREREKoKJHREREZGKYGJHREREpCKY2BERERGpCCZ2RERERCqCiR0RERGRimBiR0RERKQi/h+rE9FhHe9kVQAAAABJRU5ErkJggg==",
"text/plain": [
"