# PROTAC-Degradation-Predictor Predicting PROTAC protein degradation activity via machine learning. ## Data Curation For data curation code, please refer to the code in the Jupyter notebooks [`data_curation.ipynb`](notebooks/data_curation.ipynb). ## Installing the Package To install the package, run the following command: ```bash pip install . ``` ## Running the Package To run the package after installation, here is an example snippet: ```python import protac_degradation_predictor as pdp protac_smiles = 'CC(C)(C)OC(=O)N1CCN(CC1)C2=CC(=C(C=C2)C(=O)NC3=CC(=C(C=C3)F)Cl)C(=O)NC4=CC=C(C=C4)F' e3_ligase = 'VHL' target_uniprot = 'P04637' cell_line = 'HeLa' active_protac = pdp.is_protac_active( protac_smiles, e3_ligase, target_uniprot, cell_line, device='gpu', # Default to 'cpu' proba_threshold=0.5, # Default value ) print(f'The given PROTAC is: {"active" if active_protac else "inactive"}') ``` > If you're coming from my [thesis repo](https://github.com/ribesstefano/Machine-Learning-for-Predicting-Targeted-Protein-Degradation), I just wanted to create a separate and "less generic" repo for fast prototyping new ideas. > Stefano.