diff --git "a/notebooks/plot_experimental_results.ipynb" "b/notebooks/plot_experimental_results.ipynb"
--- "a/notebooks/plot_experimental_results.ipynb"
+++ "b/notebooks/plot_experimental_results.ipynb"
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
@@ -17,7 +17,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
@@ -26,7 +26,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 65,
"metadata": {},
"outputs": [
{
@@ -474,6 +474,232 @@
"metadata": {},
"output_type": "display_data"
},
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ablation: (84, 23)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " test_loss | \n",
+ " test_acc | \n",
+ " test_f1_score | \n",
+ " test_precision | \n",
+ " test_recall | \n",
+ " test_roc_auc | \n",
+ " train_len | \n",
+ " train_active_perc | \n",
+ " train_inactive_perc | \n",
+ " train_avg_tanimoto_dist | \n",
+ " ... | \n",
+ " test_avg_tanimoto_dist | \n",
+ " num_leaking_uniprot_train_test | \n",
+ " num_leaking_smiles_train_test | \n",
+ " perc_leaking_uniprot_train_test | \n",
+ " perc_leaking_smiles_train_test | \n",
+ " majority_vote | \n",
+ " model_type | \n",
+ " disabled_embeddings | \n",
+ " test_f1 | \n",
+ " split_type | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0.726923 | \n",
+ " 0.604651 | \n",
+ " 0.673077 | \n",
+ " 0.546875 | \n",
+ " 0.875 | \n",
+ " 0.717391 | \n",
+ " 771 | \n",
+ " 0.514916 | \n",
+ " 0.485084 | \n",
+ " 0.376806 | \n",
+ " ... | \n",
+ " 0.381147 | \n",
+ " 34 | \n",
+ " 44 | \n",
+ " 0.832685 | \n",
+ " 0.102464 | \n",
+ " False | \n",
+ " Pytorch | \n",
+ " disabled e3 | \n",
+ " NaN | \n",
+ " random | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0.697167 | \n",
+ " 0.616279 | \n",
+ " 0.535211 | \n",
+ " 0.612903 | \n",
+ " 0.475 | \n",
+ " 0.671739 | \n",
+ " 771 | \n",
+ " 0.514916 | \n",
+ " 0.485084 | \n",
+ " 0.376806 | \n",
+ " ... | \n",
+ " 0.381147 | \n",
+ " 34 | \n",
+ " 44 | \n",
+ " 0.832685 | \n",
+ " 0.102464 | \n",
+ " False | \n",
+ " Pytorch | \n",
+ " disabled e3 | \n",
+ " NaN | \n",
+ " random | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0.654254 | \n",
+ " 0.639535 | \n",
+ " 0.643678 | \n",
+ " 0.595745 | \n",
+ " 0.700 | \n",
+ " 0.714131 | \n",
+ " 771 | \n",
+ " 0.514916 | \n",
+ " 0.485084 | \n",
+ " 0.376806 | \n",
+ " ... | \n",
+ " 0.381147 | \n",
+ " 34 | \n",
+ " 44 | \n",
+ " 0.832685 | \n",
+ " 0.102464 | \n",
+ " False | \n",
+ " Pytorch | \n",
+ " disabled e3 | \n",
+ " NaN | \n",
+ " random | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 0.616279 | \n",
+ " NaN | \n",
+ " 0.629630 | \n",
+ " 0.425 | \n",
+ " 0.689674 | \n",
+ " 771 | \n",
+ " 0.514916 | \n",
+ " 0.485084 | \n",
+ " 0.376806 | \n",
+ " ... | \n",
+ " 0.381147 | \n",
+ " 34 | \n",
+ " 44 | \n",
+ " 0.832685 | \n",
+ " 0.102464 | \n",
+ " True | \n",
+ " Pytorch | \n",
+ " disabled e3 | \n",
+ " 0.507463 | \n",
+ " random | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0.744749 | \n",
+ " 0.593023 | \n",
+ " 0.653465 | \n",
+ " 0.540984 | \n",
+ " 0.825 | \n",
+ " 0.709239 | \n",
+ " 771 | \n",
+ " 0.514916 | \n",
+ " 0.485084 | \n",
+ " 0.376806 | \n",
+ " ... | \n",
+ " 0.381147 | \n",
+ " 34 | \n",
+ " 44 | \n",
+ " 0.832685 | \n",
+ " 0.102464 | \n",
+ " False | \n",
+ " Pytorch | \n",
+ " disabled poi | \n",
+ " NaN | \n",
+ " random | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 23 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " test_loss test_acc test_f1_score test_precision test_recall \\\n",
+ "0 0.726923 0.604651 0.673077 0.546875 0.875 \n",
+ "1 0.697167 0.616279 0.535211 0.612903 0.475 \n",
+ "2 0.654254 0.639535 0.643678 0.595745 0.700 \n",
+ "3 NaN 0.616279 NaN 0.629630 0.425 \n",
+ "4 0.744749 0.593023 0.653465 0.540984 0.825 \n",
+ "\n",
+ " test_roc_auc train_len train_active_perc train_inactive_perc \\\n",
+ "0 0.717391 771 0.514916 0.485084 \n",
+ "1 0.671739 771 0.514916 0.485084 \n",
+ "2 0.714131 771 0.514916 0.485084 \n",
+ "3 0.689674 771 0.514916 0.485084 \n",
+ "4 0.709239 771 0.514916 0.485084 \n",
+ "\n",
+ " train_avg_tanimoto_dist ... test_avg_tanimoto_dist \\\n",
+ "0 0.376806 ... 0.381147 \n",
+ "1 0.376806 ... 0.381147 \n",
+ "2 0.376806 ... 0.381147 \n",
+ "3 0.376806 ... 0.381147 \n",
+ "4 0.376806 ... 0.381147 \n",
+ "\n",
+ " num_leaking_uniprot_train_test num_leaking_smiles_train_test \\\n",
+ "0 34 44 \n",
+ "1 34 44 \n",
+ "2 34 44 \n",
+ "3 34 44 \n",
+ "4 34 44 \n",
+ "\n",
+ " perc_leaking_uniprot_train_test perc_leaking_smiles_train_test \\\n",
+ "0 0.832685 0.102464 \n",
+ "1 0.832685 0.102464 \n",
+ "2 0.832685 0.102464 \n",
+ "3 0.832685 0.102464 \n",
+ "4 0.832685 0.102464 \n",
+ "\n",
+ " majority_vote model_type disabled_embeddings test_f1 split_type \n",
+ "0 False Pytorch disabled e3 NaN random \n",
+ "1 False Pytorch disabled e3 NaN random \n",
+ "2 False Pytorch disabled e3 NaN random \n",
+ "3 True Pytorch disabled e3 0.507463 random \n",
+ "4 False Pytorch disabled poi NaN random \n",
+ "\n",
+ "[5 rows x 23 columns]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
{
"name": "stdout",
"output_type": "stream",
@@ -593,7 +819,7 @@
" test_roc_auc | \n",
" test_precision | \n",
" test_recall | \n",
- " test_f1 | \n",
+ " test_f1_score | \n",
" train_len | \n",
" train_active_perc | \n",
" train_inactive_perc | \n",
@@ -739,26 +965,26 @@
""
],
"text/plain": [
- " test_acc test_roc_auc test_precision test_recall test_f1 train_len \\\n",
- "0 0.825581 0.847826 0.777778 0.875000 0.823529 771 \n",
- "1 0.813953 0.868478 0.815789 0.775000 0.794872 617 \n",
- "0 0.611765 0.614827 0.675676 0.543478 0.602410 772 \n",
- "1 0.411765 0.549610 0.400000 0.173913 0.242424 693 \n",
- "0 0.705882 0.823761 0.772727 0.459459 0.576271 772 \n",
+ " test_acc test_roc_auc test_precision test_recall test_f1_score \\\n",
+ "0 0.825581 0.847826 0.777778 0.875000 0.823529 \n",
+ "1 0.813953 0.868478 0.815789 0.775000 0.794872 \n",
+ "0 0.611765 0.614827 0.675676 0.543478 0.602410 \n",
+ "1 0.411765 0.549610 0.400000 0.173913 0.242424 \n",
+ "0 0.705882 0.823761 0.772727 0.459459 0.576271 \n",
"\n",
- " train_active_perc train_inactive_perc train_avg_tanimoto_dist test_len \\\n",
- "0 0.514916 0.485084 0.376806 86 \n",
- "1 0.515397 0.484603 0.377543 86 \n",
- "0 0.506477 0.493523 0.375305 85 \n",
- "1 0.484848 0.515152 0.377092 85 \n",
- "0 0.518135 0.481865 0.372540 85 \n",
+ " train_len train_active_perc train_inactive_perc train_avg_tanimoto_dist \\\n",
+ "0 771 0.514916 0.485084 0.376806 \n",
+ "1 617 0.515397 0.484603 0.377543 \n",
+ "0 772 0.506477 0.493523 0.375305 \n",
+ "1 693 0.484848 0.515152 0.377092 \n",
+ "0 772 0.518135 0.481865 0.372540 \n",
"\n",
- " ... val_active_perc val_inactive_perc val_avg_tanimoto_dist \\\n",
- "0 ... NaN NaN NaN \n",
- "1 ... 0.512987 0.487013 0.373853 \n",
- "0 ... NaN NaN NaN \n",
- "1 ... 0.696203 0.303797 0.359625 \n",
- "0 ... NaN NaN NaN \n",
+ " test_len ... val_active_perc val_inactive_perc val_avg_tanimoto_dist \\\n",
+ "0 86 ... NaN NaN NaN \n",
+ "1 86 ... 0.512987 0.487013 0.373853 \n",
+ "0 85 ... NaN NaN NaN \n",
+ "1 85 ... 0.696203 0.303797 0.359625 \n",
+ "0 85 ... NaN NaN NaN \n",
"\n",
" num_leaking_uniprot_train_val num_leaking_smiles_train_val \\\n",
"0 NaN NaN \n",
@@ -1349,7 +1575,7 @@
" test_roc_auc | \n",
" test_precision | \n",
" test_recall | \n",
- " test_f1 | \n",
+ " test_f1_score | \n",
" model_type | \n",
" split_type | \n",
" \n",
@@ -1390,15 +1616,15 @@
""
],
"text/plain": [
- " test_acc test_roc_auc test_precision test_recall test_f1 model_type \\\n",
- "0 0.779070 0.880978 0.723404 0.850000 0.781609 XGBoost \n",
- "0 0.447059 0.487179 0.481481 0.282609 0.356164 XGBoost \n",
- "0 0.717647 0.831081 0.842105 0.432432 0.571429 XGBoost \n",
+ " test_acc test_roc_auc test_precision test_recall test_f1_score \\\n",
+ "0 0.779070 0.880978 0.723404 0.850000 0.781609 \n",
+ "0 0.447059 0.487179 0.481481 0.282609 0.356164 \n",
+ "0 0.717647 0.831081 0.842105 0.432432 0.571429 \n",
"\n",
- " split_type \n",
- "0 random \n",
- "0 uniprot \n",
- "0 tanimoto "
+ " model_type split_type \n",
+ "0 XGBoost random \n",
+ "0 XGBoost uniprot \n",
+ "0 XGBoost tanimoto "
]
},
"metadata": {},
@@ -1426,11 +1652,11 @@
" pd.read_csv(f'reports/test_report_{report_base_name}_uniprot.csv'),\n",
" pd.read_csv(f'reports/test_report_{report_base_name}_tanimoto.csv'),\n",
" ]),\n",
- " # 'ablation': pd.concat([\n",
- " # pd.read_csv(f'reports/ablation_report_{report_base_name}_random.csv'),\n",
- " # pd.read_csv(f'reports/ablation_report_{report_base_name}_uniprot.csv'),\n",
- " # pd.read_csv(f'reports/ablation_report_{report_base_name}_tanimoto.csv'),\n",
- " # ]),\n",
+ " 'ablation': pd.concat([\n",
+ " pd.read_csv(f'reports/ablation_zero_vectors_report_{report_base_name}_random.csv'),\n",
+ " pd.read_csv(f'reports/ablation_zero_vectors_report_{report_base_name}_uniprot.csv'),\n",
+ " pd.read_csv(f'reports/ablation_zero_vectors_report_{report_base_name}_tanimoto.csv'),\n",
+ " ]),\n",
" 'hparam': pd.concat([\n",
" pd.read_csv(f'reports/hparam_report_{report_base_name}_random.csv'),\n",
" pd.read_csv(f'reports/hparam_report_{report_base_name}_uniprot.csv'),\n",
@@ -1469,122 +1695,958 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 93,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "| fold | split_type | train_len | val_len | test_len | train_active_perc | val_active_perc | test_active_perc | perc_leaking_uniprot_train_test | perc_leaking_smiles_train_test | test_avg_tanimoto_dist |\n",
- "|-------:|:-------------|------------:|----------:|-----------:|--------------------:|------------------:|-------------------:|:----------------------------------|:---------------------------------|-------------------------:|\n",
- "| 0 | random | 616 | 155 | 86 | 0.51461 | 0.516129 | 0.465116 | 82.5% | 11.2% | 0.381 |\n",
- "| 1 | random | 617 | 154 | 86 | 0.513776 | 0.519481 | 0.465116 | 84.0% | 10.2% | 0.381 |\n",
- "| 2 | random | 617 | 154 | 86 | 0.515397 | 0.512987 | 0.465116 | 83.8% | 9.4% | 0.381 |\n",
- "| 3 | random | 617 | 154 | 86 | 0.515397 | 0.512987 | 0.465116 | 82.3% | 10.4% | 0.381 |\n",
- "| 4 | random | 617 | 154 | 86 | 0.515397 | 0.512987 | 0.465116 | 83.8% | 10.0% | 0.381 |\n",
- "| 0 | uniprot | 560 | 212 | 85 | 0.544643 | 0.40566 | 0.541176 | 0.0% | 1.1% | 0.395 |\n",
- "| 1 | uniprot | 627 | 145 | 85 | 0.516746 | 0.462069 | 0.541176 | 0.0% | 0.8% | 0.395 |\n",
- "| 2 | uniprot | 662 | 110 | 85 | 0.506042 | 0.509091 | 0.541176 | 0.0% | 1.2% | 0.395 |\n",
- "| 3 | uniprot | 546 | 226 | 85 | 0.483516 | 0.561947 | 0.541176 | 0.0% | 1.5% | 0.395 |\n",
- "| 4 | uniprot | 693 | 79 | 85 | 0.484848 | 0.696203 | 0.541176 | 0.0% | 1.3% | 0.395 |\n",
- "| 0 | tanimoto | 660 | 112 | 85 | 0.515152 | 0.535714 | 0.435294 | 57.7% | 0.0% | 0.42 |\n",
- "| 1 | tanimoto | 589 | 183 | 85 | 0.497453 | 0.584699 | 0.435294 | 56.4% | 0.0% | 0.42 |\n",
- "| 2 | tanimoto | 616 | 156 | 85 | 0.542208 | 0.423077 | 0.435294 | 57.3% | 0.0% | 0.42 |\n",
- "| 3 | tanimoto | 598 | 174 | 85 | 0.528428 | 0.482759 | 0.435294 | 56.5% | 0.0% | 0.42 |\n",
- "| 4 | tanimoto | 625 | 147 | 85 | 0.5072 | 0.564626 | 0.435294 | 57.0% | 0.0% | 0.42 |\n"
+ "\\begin{tabular}{rlrrrllllll}\n",
+ "\\toprule\n",
+ " \\textbf{Fold} & \\textbf{Study split} & \\textbf{Train size} & \\textbf{Val size} & \\textbf{Test size} & \\textbf{Train active \\%} & \\textbf{Val active \\%} & \\textbf{Test active \\%} & \\textbf{Leaking Uniprot \\%} & \\textbf{Leaking SMILES \\%} & \\textbf{Avg Tanimoto distance} \\\\\n",
+ "\\midrule\n",
+ " 0 & Standard & 616 & 155 & 86 & 51.5\\% & 51.6\\% & 46.5\\% & 82.5\\% & 11.2\\% & 0.381 \\\\\n",
+ " 1 & Standard & 617 & 154 & 86 & 51.4\\% & 51.9\\% & 46.5\\% & 84.0\\% & 10.2\\% & 0.381 \\\\\n",
+ " 2 & Standard & 617 & 154 & 86 & 51.5\\% & 51.3\\% & 46.5\\% & 83.8\\% & 9.4\\% & 0.381 \\\\\n",
+ " 3 & Standard & 617 & 154 & 86 & 51.5\\% & 51.3\\% & 46.5\\% & 82.3\\% & 10.4\\% & 0.381 \\\\\n",
+ " 4 & Standard & 617 & 154 & 86 & 51.5\\% & 51.3\\% & 46.5\\% & 83.8\\% & 10.0\\% & 0.381 \\\\\n",
+ " 0 & Target & 560 & 212 & 85 & 54.5\\% & 40.6\\% & 54.1\\% & 0.0\\% & 1.1\\% & 0.395 \\\\\n",
+ " 1 & Target & 627 & 145 & 85 & 51.7\\% & 46.2\\% & 54.1\\% & 0.0\\% & 0.8\\% & 0.395 \\\\\n",
+ " 2 & Target & 662 & 110 & 85 & 50.6\\% & 50.9\\% & 54.1\\% & 0.0\\% & 1.2\\% & 0.395 \\\\\n",
+ " 3 & Target & 546 & 226 & 85 & 48.4\\% & 56.2\\% & 54.1\\% & 0.0\\% & 1.5\\% & 0.395 \\\\\n",
+ " 4 & Target & 693 & 79 & 85 & 48.5\\% & 69.6\\% & 54.1\\% & 0.0\\% & 1.3\\% & 0.395 \\\\\n",
+ " 0 & Similarity & 660 & 112 & 85 & 51.5\\% & 53.6\\% & 43.5\\% & 57.7\\% & 0.0\\% & 0.420 \\\\\n",
+ " 1 & Similarity & 589 & 183 & 85 & 49.7\\% & 58.5\\% & 43.5\\% & 56.4\\% & 0.0\\% & 0.420 \\\\\n",
+ " 2 & Similarity & 616 & 156 & 85 & 54.2\\% & 42.3\\% & 43.5\\% & 57.3\\% & 0.0\\% & 0.420 \\\\\n",
+ " 3 & Similarity & 598 & 174 & 85 & 52.8\\% & 48.3\\% & 43.5\\% & 56.5\\% & 0.0\\% & 0.420 \\\\\n",
+ " 4 & Similarity & 625 & 147 & 85 & 50.7\\% & 56.5\\% & 43.5\\% & 57.0\\% & 0.0\\% & 0.420 \\\\\n",
+ "\\bottomrule\n",
+ "\\end{tabular}\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/tmp/ipykernel_3069606/2599982738.py:35: FutureWarning: In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `Styler.to_latex` for formatting and rendering. The arguments signature may therefore change. It is recommended instead to use `DataFrame.style.to_latex` which also contains additional functionality.\n",
+ " print(tmp.to_latex(index=False, escape=False))\n"
]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " train_active_perc | \n",
+ " val_active_perc | \n",
+ " test_active_perc | \n",
+ " perc_leaking_uniprot_train_test | \n",
+ " perc_leaking_smiles_train_test | \n",
+ "
\n",
+ " \n",
+ " split_type | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " random | \n",
+ " 51.491559 | \n",
+ " 51.491412 | \n",
+ " 46.511628 | \n",
+ " 83.268223 | \n",
+ " 10.246743 | \n",
+ "
\n",
+ " \n",
+ " tanimoto | \n",
+ " 51.808814 | \n",
+ " 51.817503 | \n",
+ " 43.529412 | \n",
+ " 56.976186 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " uniprot | \n",
+ " 50.715931 | \n",
+ " 52.699394 | \n",
+ " 54.117647 | \n",
+ " 0.000000 | \n",
+ " 1.168248 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " train_active_perc val_active_perc test_active_perc \\\n",
+ "split_type \n",
+ "random 51.491559 51.491412 46.511628 \n",
+ "tanimoto 51.808814 51.817503 43.529412 \n",
+ "uniprot 50.715931 52.699394 54.117647 \n",
+ "\n",
+ " perc_leaking_uniprot_train_test perc_leaking_smiles_train_test \n",
+ "split_type \n",
+ "random 83.268223 10.246743 \n",
+ "tanimoto 56.976186 0.000000 \n",
+ "uniprot 0.000000 1.168248 "
+ ]
+ },
+ "execution_count": 93,
+ "metadata": {},
+ "output_type": "execute_result"
}
],
"source": [
- "cols_to_show = [\n",
- " 'fold',\n",
- " 'split_type',\n",
- " 'train_len',\n",
- " 'val_len',\n",
- " 'test_len',\n",
- " 'train_active_perc',\n",
- " 'val_active_perc',\n",
- " 'test_active_perc',\n",
- " # 'train_unique_groups',\n",
- " # 'val_unique_groups',\n",
- " 'perc_leaking_uniprot_train_test',\n",
- " 'perc_leaking_smiles_train_test',\n",
- " 'test_avg_tanimoto_dist',\n",
- "]\n",
+ "cols_to_show = {\n",
+ " 'fold': 'Fold',\n",
+ " 'split_type': 'Study split',\n",
+ " 'train_len': 'Train size',\n",
+ " 'val_len': 'Val size',\n",
+ " 'test_len': 'Test size',\n",
+ " 'train_active_perc': 'Train active %',\n",
+ " 'val_active_perc': 'Val active %',\n",
+ " 'test_active_perc': 'Test active %',\n",
+ " # 'train_unique_groups': '',\n",
+ " # 'val_unique_groups': '',\n",
+ " 'perc_leaking_uniprot_train_test': 'Leaking Uniprot %',\n",
+ " 'perc_leaking_smiles_train_test': 'Leaking SMILES %',\n",
+ " 'test_avg_tanimoto_dist': 'Avg Tanimoto distance',\n",
+ "}\n",
"# print(reports['cv_train'][cols_to_show].to_markdown(index=False))\n",
"# Print a subset of columns (that contain the string \"perc_\") as percentages in format: .1%\n",
- "tmp = reports['cv_train'][cols_to_show].copy()\n",
+ "tmp = reports['cv_train'][list(cols_to_show.keys())].copy()\n",
"for col in tmp.columns:\n",
- " if 'perc_' in col:\n",
- " tmp[col] = tmp[col].apply(lambda x: f'{x:.1%}')\n",
+ " if 'perc' in col:\n",
+ " tmp[col] = tmp[col].apply(lambda x: f'{x*100:.1f}\\\\%')\n",
" if 'dist' in col:\n",
" tmp[col] = tmp[col].apply(lambda x: f'{x:.3f}')\n",
- "print(tmp[cols_to_show].to_markdown(index=False))"
+ "# Rename columns\n",
+ "tmp.rename(columns=cols_to_show, inplace=True)\n",
+ "# Rename studies\n",
+ "tmp['Study split'] = tmp['Study split'].replace({\n",
+ " 'random': 'Standard',\n",
+ " 'uniprot': 'Target',\n",
+ " 'tanimoto': 'Similarity',\n",
+ "})\n",
+ "tmp = tmp[list(cols_to_show.values())]\n",
+ "tmp.columns = [f\"\\\\textbf{{{col}}}\".replace('%', '\\\\%') for col in tmp.columns]\n",
+ "# Print to LaTeX\n",
+ "print(tmp.to_latex(index=False, escape=False))\n",
+ "\n",
+ "# Print the average active % for each study split (for train val and test sets)\n",
+ "tmp = reports['cv_train'].groupby(['split_type'])[['train_active_perc', 'val_active_perc', 'test_active_perc', 'perc_leaking_uniprot_train_test', 'perc_leaking_smiles_train_test']].mean()\n",
+ "tmp = tmp * 100\n",
+ "tmp"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plot (Raw) Datasets Information"
]
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": 43,
"metadata": {},
"outputs": [
{
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+cAAAIsCAYAAACQpth/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACusklEQVR4nOzdd3gUZdfH8d+m94QkpNJCh9B77x0UBEGsqAiKKCIoigUV24M+KoqAgoCiIOgDChZ6BwFpoffeW0hCCqnz/pGXhRhacCdD+X6uK5fOTjmzy71n50y5b5thGIYAAAAAAIBlnKzeAQAAAAAA7nYU5wAAAAAAWIziHAAAAAAAi1GcAwAAAABgMYpzAAAAAAAsRnEOAAAAAIDFKM4BAAAAALAYxTkAAAAAABajOAcAAAAAwGIU5wAAAAAAWCzPxfnSpUt1zz33KCIiQjabTb/++muO+YZhaMiQIQoPD5enp6datGih3bt351gmNjZWDz/8sPz8/BQQEKCePXsqMTHRPv/AgQNq1KiRvL291ahRIx04cCDH+h06dNC0adPyuusAAAAAANyS8lycJyUlqXLlyho5cuQV53/00Uf64osv9NVXX2n16tXy9vZW69atdeHCBfsyDz/8sLZu3ap58+bp999/19KlS9W7d2/7/IEDByoyMlIxMTEKDw/XSy+9ZJ83depUOTk5qUuXLnnddQAAAAAAbkk2wzCMm17ZZtMvv/yiTp06Scq+ah4REaGBAwfaC+r4+HiFhobq22+/Vffu3bV9+3aVL19ea9asUY0aNSRJs2fPVrt27XTkyBFFRESofPny+vTTT9WmTRvNmjVLL730krZu3aq4uDjVrFlTCxcuVOHChf/9uwcAAAAA4Bbg4siN7d+/XydOnFCLFi3sr/n7+6t27dpauXKlunfvrpUrVyogIMBemEtSixYt5OTkpNWrV+u+++5T5cqVNX/+fLVq1Upz585VpUqVJEkvv/yy+vbte0OFeWpqqlJTU+3TWVlZio2NVVBQkGw2mwPfNQAAAAAAuRmGofPnzysiIkJOTte+cd2hxfmJEyckSaGhoTleDw0Ntc87ceKEQkJCcu6Ei4sCAwPty/z3v//V008/rWLFiqlSpUr6+uuvtXTpUsXExGjYsGHq1q2b1q5dq1atWumLL76Qm5tbrn358MMP9c477zjy7QEAAAAAkGeHDx9WoUKFrrmMQ4tzR4mMjNTvv/9un05NTVXr1q313Xff6b333pOvr6927typNm3a6Ouvv9bzzz+faxuDBw/WgAED7NPx8fEqUqSIDh8+LD8/v3x5HwAAAACAu1dCQoIKFy4sX1/f6y7r0OI8LCxMknTy5EmFh4fbXz958qSqVKliX+bUqVM51svIyFBsbKx9/X/64IMP1KpVK1WvXl29evXSe++9J1dXV3Xu3FkLFy68YnHu7u4ud3f3XK/7+flRnAMAAAAA8s2NPFrt0HHOo6KiFBYWpgULFthfS0hI0OrVq1W3bl1JUt26dRUXF6d169bZl1m4cKGysrJUu3btXNvcvn27Jk+erHfffVeSlJmZqfT0dElSenq6MjMzHfkWAAAAAADId3m+cp6YmKg9e/bYp/fv36+YmBgFBgaqSJEi6t+/v9577z2VKlVKUVFRevPNNxUREWHv0b1cuXJq06aNevXqpa+++krp6el67rnn1L17d0VEROSIZRiGevfurc8++0ze3t6SpPr162vs2LEqXbq0Jk6cqAcffPBfvH0AAAAAAKyX5yvna9euVdWqVVW1alVJ0oABA1S1alUNGTJEkjRo0CA9//zz6t27t2rWrKnExETNnj1bHh4e9m1MmjRJZcuWVfPmzdWuXTs1aNBAY8aMyRVrzJgxCg0NVYcOHeyvvf3227pw4YJq166tkiVLqm/fvnl+0wAAAAAA3Er+1Tjnt5OEhAT5+/srPj6eZ84BAAAAAKbLSx3q0GfOAQAAAABA3lGcAwAAAABgMYpzAAAAAAAsRnEOAAAAAIDFKM4BAAAAALAYxTkAAAAAABajOAcAAAAAwGIU5wAAAAAAWIziHAAAAAAAi1GcAwAAAABgMYpzAAAAAAAsRnEOAAAAAIDFKM4BAAAAALAYxTkAAAAAABajOAcAAAAAwGIU5wAAAAAAWIziHAAAAAAAi1GcAwAAAABgMYpzAAAAAAAsRnEOAAAAAIDFKM4BAAAAALAYxTkAAAAAABZzsXoHADiGYRhKSkqyT3t7e8tms1m4RwAAAABuFMU5cIdISkpSx44d7dMzZsyQj4+PhXsEAAAA4EZxWzsAAAAAABajOAcAAAAAwGIU5wAAAAAAWIxnzgHc1ugIDwAAAHcCinMAtzU6wgMAAMCdgOIcuAWNmBeX53XSLiTlmP56UbzcPDLyvJ3nWwbkeR0AAAAA/w7PnAMAAAAAYDGKcwAAAAAALEZxDgAAAACAxSjOAQAAAACwGMU5AAAAAAAWozgHAAAAAMBiDKUG3CFc3b3Urv/EHNMAAAAAbg8U58Adwmazyc3D2+rdAAAAAHATuK0dAAAAAACLUZwDAAAAAGAxinMAAAAAACzGM+cA/jXDMJSUlGSf9vb2ls1ms3CPAAAAgNsLxTmAfy0pKUkdO3a0T8+YMUM+Pj4W7hEAAABwe+G2dgAAAAAALEZxDgAAAACAxSjOAQAAAACwGMU5AAAAAAAWozgHAAAAAMBiFOcAAAAAAFiM4hwAAAAAAItRnAMAAAAAYDEXq3fgTmcYhpKSkuzT3t7estlsFu4RAAAAAOBWQ3FusqSkJHXs2NE+PWPGDPn4+Fi4RwAAAACAWw23tQMAAAAAYDGunAO4ZYzdOzjP66QlZ+SY/m7/O3Lzyntq61XiwzyvAwAAADgKV84BAAAAALAYxTkAAAAAABajOAcAAAAAwGIU5wAAAAAAWIwO4fJgxLy4PK+TdiEpx/TXi+Ll5pFxlaWv7vmWAXleBwAAAABwe6A4hykMw1BS0qUTE97e3rLZbBbuEQAAAADcuijO72BWFshJSUnq2LGjfXrGjBny8fHJl9gAAAAAcLuhOL+DUSADAHD74e4zALg7UZwDAADcQji5DtwebqY/KkehP6o7E8U5AAC4JXEFGQBwN6E4BwAAtySuIAMA7iaMcw4AAAAAgMW4cm4yV3cvtes/Mcc0AAB3m5t5NjPtQlKO6a8XxcvNIyPP2+HZTADA7YDi3GQ2m01uHt5W7wYAAAAA4BbGbe0AAAAAAFiMK+cAAOCWxKNhAIC7CcU5AAC4JfFoGADgbkJxDgDIE8aeBgAAcDyKcwBAnjD2NAAAgONRnAMAAOCOcTPD9jkKw/bhbjB272DLYvcq8aFlsfMDxTkAAIBJbuYgNi0551ju3+1/R25eeT9ku9MPYgHgTsNQagAAAAAAWIziHAAAAAAAi1GcAwAAAABgMYpzAAAAAAAsRnEOAAAAAIDFHF6cZ2Zm6s0331RUVJQ8PT1VokQJvfvuuzIMw76MYRgaMmSIwsPD5enpqRYtWmj37t32+ampqXr00Ufl5+en0qVLa/78+TlifPzxx3r++ecdvesAAAAAAFjC4UOpDRs2TKNHj9Z3332n6OhorV27Vk888YT8/f3Vr18/SdJHH32kL774Qt99952ioqL05ptvqnXr1tq2bZs8PDw0ZswYrVu3TitXrtSsWbP00EMP6eTJk7LZbNq/f7/Gjh2rtWvXOnrXAdyGXD2d1Xl4tRzTAAAAwO3G4VfO//rrL3Xs2FHt27dXsWLFdP/996tVq1b6+++/JWVfNR8+fLjeeOMNdezYUZUqVdLEiRN17Ngx/frrr5Kk7du3695771V0dLT69u2r06dP68yZM5KkPn36aNiwYfLz83P0rgO4DdlsNrl5udj/bDab1bsEAAAA5JnDi/N69eppwYIF2rVrlyRp48aNWr58udq2bStJ2r9/v06cOKEWLVrY1/H391ft2rW1cuVKSVLlypW1fPlypaSkaM6cOQoPD1dwcLAmTZokDw8P3Xfffdfdj9TUVCUkJOT4AwAAAADgVuTw29pfffVVJSQkqGzZsnJ2dlZmZqbef/99Pfzww5KkEydOSJJCQ0NzrBcaGmqf9+STT2rTpk0qX768goOD9dNPP+ncuXMaMmSIFi9erDfeeENTpkxRiRIlNH78eEVGRubajw8//FDvvPNOrtePHj1604W6V0byTa3nCEeOJOZ5naSkpBzTR48elbe3t6N26ZaNfSe4W9uae1xQntdxlCNHjlgW+3bD9xs343bLa45yM3nNlpKecxvxgXJLc83zdu7WvHa3tjXkv7u1rXG8ljfnz5+/4WUdXpz/9NNPmjRpkiZPnqzo6GjFxMSof//+ioiIUI8ePW5oG66urho5cmSO15544gn169dPGzZs0K+//qqNGzfqo48+Ur9+/TRt2rRc2xg8eLAGDBhgn05ISFDhwoUVGRl507fEJ2+Pu6n1HKFQoYA8r5OYmPNLGxkZKR8fHwft0a0b+05wt7a11NSzeV7HUQoVKmRZ7NsN32/cjNstrznKzeS1NLeMnNvwj5XhlfdDtrs1r92tbQ35725taxyv5U1eLgw7/Lb2l19+Wa+++qq6d++uihUr6tFHH9WLL76oDz/8UJIUFhYmSTp58mSO9U6ePGmf90+LFi3S1q1b9dxzz2nx4sVq166dvL291a1bNy1evPiK67i7u8vPzy/HHwAAAAAAtyKHXzlPTk6Wk1POmt/Z2VlZWVmSpKioKIWFhWnBggWqUqWKpOyzCatXr1afPn1ybe/ChQvq27evJk2aZL9N/uKwbOnp6crMzHT0WwAAALAMo1AAwN3J4VfO77nnHr3//vv6448/dODAAf3yyy/69NNP7Z242Ww29e/fX++9955mzpypzZs367HHHlNERIQ6deqUa3vvvvuu2rVrp6pVq0qS6tevr+nTp2vTpk368ssvVb9+fUe/BQAAAMswCgUA3J0cfuV8xIgRevPNN/Xss8/q1KlTioiI0NNPP60hQ4bYlxk0aJCSkpLUu3dvxcXFqUGDBpo9e7Y8PDxybGvLli366aefFBMTY3/t/vvv1+LFi9WwYUOVKVNGkydPdvRbwD+M3Ts4z+ukJed8Xu67/e/I7Sael+tV4sM8rwPgxo2YF5fnddIu5OwQ7utF8XLzyLjK0lf3fMuAPK8DAABwp3J4ce7r66vhw4dr+PDhV13GZrNp6NChGjp06DW3VaFCBe3evTvHa05OTho1apRGjRrliN0FAOCGGIaRo6d6b29vrmgCAACHcXhxDgDAnSgpKUkdO3a0T8+YMYNe6gEAgMM4/JlzAAAAAACQNxTnAAAAAABYjOIcAAAAAACLUZwDAAAAAGAxinMAAAAAACxGcQ4AAAAAgMUozgEAAAAAsBjFOQAAAAAAFqM4BwAAAADAYhTnAAAAAABYjOIcAAAAAACLUZwDAAAAAGAxinMAAAAAACxGcQ4AAAAAgMUozgEAAAAAsJiL1TsAALi9uLp7qV3/iTmmAQAA8O9QnAMA8sRms8nNw9vq3fhXxu4dnOd10pIzckx/t/8duXnl/We0V4kP87wOAAC481GcA8jh1OSeeV4nKTUzx/Tpn59Tsrtz3oPXDsn7OgAAAMAdgGfOAQAAAACwGMU5AAAAAAAWozgHAAAAAMBiFOcAAAAAAFiM4hwAAAAAAItRnAMAAAAAYDGKcwAAAAAALEZxDgAAAACAxVys3gHcmVw9ndV5eLUc0wAAAACAK6M4hylsNpvcvGheAAAAAHAjuK0dAAAAAACLUZwDAAAAAGAxinMAAAAAACxGcQ4AAAAAgMUozgEAAAAAsBjFOQAAAAAAFmOsKwAAboCrp7M6D6+WYxoAAMBRKM4BALgBNptNbl78bAIAAHNwlHGbODW5Z57XSUrNzDF9+ufnlOx+E1d6aofkfR0AAADkm7F7B1sWu1eJDy2LDdxJeOYcAAAAAACLUZwDAAAAAGAxinMAAAAAACxGcQ4AAAAAgMUozgEAAAAAsBjFOQAAAAAAFqM4BwAAAADAYhTnAAAAAABYjOIcAAAAAACLUZwDAAAAAGAxinMAAAAAACxGcQ4AAAAAgMUozgEAAAAAsBjFOQAAAAAAFqM4BwAAAADAYhTnAAAAAABYjOIcAAAAAACLUZwDAAAAAGAxinMAAAAAACxGcQ4AAAAAgMUozgEAAAAAsBjFOQAAAAAAFqM4BwAAAADAYhTnAAAAAABYjOIcAAAAAACLUZwDAAAAAGAxinMAAAAAACxGcQ4AAAAAgMVcrN4BAACAW41hGEpKSrJPe3t7y2azWbhHAIA7HcU5AADAPyQlJaljx4726RkzZsjHx8fCPQIA3Om4rR0AAAAAAItRnAMAAAAAYDFuawcA3DZ4DhgAANypKM4BALcNngMGAAB3Km5rBwAAAADAYhTnAAAAAABYjOIcAAAAAACLUZwDAAAAAGAxinMAAAAAACxGcQ4AAAAAgMUozgEAAAAAsBjjnAMAAADAbeTU5J7WBa8dYl3sOxzFOQAAAOAAFEwA/g1uawcAAAAAwGKmFOdHjx7VI488oqCgIHl6eqpixYpau3atfb5hGBoyZIjCw8Pl6empFi1aaPfu3fb5qampevTRR+Xn56fSpUtr/vz5Obb/8ccf6/nnnzdj1wEAAAAAyHcOL87PnTun+vXry9XVVbNmzdK2bdv0ySefqECBAvZlPvroI33xxRf66quvtHr1anl7e6t169a6cOGCJGnMmDFat26dVq5cqd69e+uhhx6SYRiSpP3792vs2LF6//33Hb3rAAAAAABYwuHPnA8bNkyFCxfWhAkT7K9FRUXZ/98wDA0fPlxvvPGGOnbsKEmaOHGiQkND9euvv6p79+7avn277r33XkVHR6t48eJ6+eWXdebMGRUsWFB9+vTRsGHD5Ofn5+hdBwAAd6CbeQ44KTUzx/Tpn59Tsrtz3oPzHDAA4AY5/Mr5zJkzVaNGDXXt2lUhISGqWrWqxo4da5+/f/9+nThxQi1atLC/5u/vr9q1a2vlypWSpMqVK2v58uVKSUnRnDlzFB4eruDgYE2aNEkeHh667777rrsfqampSkhIyPEHAAAAAMCtyOFXzvft26fRo0drwIABeu2117RmzRr169dPbm5u6tGjh06cOCFJCg0NzbFeaGiofd6TTz6pTZs2qXz58goODtZPP/2kc+fOaciQIVq8eLHeeOMNTZkyRSVKlND48eMVGRmZaz8+/PBDvfPOO7leP3r06E0X6l4ZyTe1niOccc79Hq8n2TlD0mH79FnnCKU45/2f3D3OursUjhw5YllsK9HW8h9tLf8dOZKY53WSkpJyTB89elTe3t553o57XFCe13EU2lr+I6/dXW63tuYotLX8R1vLf7djWzt//vwNL+vw4jwrK0s1atTQBx98IEmqWrWqtmzZoq+++ko9evS4oW24urpq5MiROV574okn1K9fP23YsEG//vqrNm7cqI8++kj9+vXTtGnTcm1j8ODBGjBggH06ISFBhQsXVmRk5E3fEp+8Pe6m1nOE4MyjeV4nKTPnLXlBmcfknZn3W/JSA9LzvI6jFCpUyLLYVqKt5T/aWv4rVCggz+skJuYs6CMjI+Xj45Pn7aSmns3zOo5CW8t/5LW7y+3W1hyFtpb/aGv573Zsa3m5MOzw4jw8PFzly5fP8Vq5cuXsBXRYWJgk6eTJkwoPD7cvc/LkSVWpUuWK21y0aJG2bt2qb775Ri+//LLatWsnb29vdevWTV9++eUV13F3d5e7u7sD3hGA6/Fyc9I3jxTOMQ0AAADgxjn8CLp+/frauXNnjtd27dqlokWLSsruHC4sLEwLFiywz09ISNDq1atVt27dXNu7cOGC+vbtq6+//lrOzs7KzMxUenr22Zr09HRl/uPMNoD8Z7PZ5O3ubP+z2WxW7xIAAABwW3F4cf7iiy9q1apV+uCDD7Rnzx5NnjxZY8aMUd++fSVlH8T3799f7733nmbOnKnNmzfrscceU0REhDp16pRre++++67atWunqlWrSsou/qdPn65Nmzbpyy+/VP369R39FgAAAAAAyFcOv629Zs2a+uWXXzR48GANHTpUUVFRGj58uB5++GH7MoMGDVJSUpJ69+6tuLg4NWjQQLNnz5aHh0eObW3ZskU//fSTYmJi7K/df//9Wrx4sRo2bKgyZcpo8uTJjn4LAIB8wPBWAAAAlzi8OJekDh06qEOHDledb7PZNHToUA0dOvSa26lQoYJ2796d4zUnJyeNGjVKo0aNcsi+AgAAAABgNXptAgAAAADAYhTnAAAAAABYjOIcAAAAAACLUZwDAAAAAGAxinMAAAAAACxGcQ4AAAAAgMUozgEAAAAAsBjFOQAAAAAAFnOxegcAAMC1GYahpKQk+7S3t7dsNpuFe3Tn83Jz0jePFM4xDcBxyGtAbhTnAADc4pKSktSxY0f79IwZM+Tj42PhHt35bDabvN2drd4N4I5FXgNy4zQwAAAAAAAWozgHAAAAAMBiFOcAAAAAAFiMZ87vYHRmAwAAAAC3B4rzOxid2QAAAADA7YFLqQAAAAAAWIziHAAAAAAAi3FbOwAA+ShueFye10lKT8oxHT86XhmuGXneTkD/gDyvAwDXQ14DHIMr5wAAAAAAWIziHAAAAAAAi3FbOwDgtsEQkQAA4E5FcQ4AuG0wRCQAALhTcckBAAAAAACLUZwDAAAAAGAxinMAAAAAACzGM+e44xiGoaSkS2Nnent7y2azWbhHAAAAAHBtFOe44yQlJaljx4726RkzZsjHx8fCPQIAAACAa6M4BwDgFufl4qWJbSbmmAaA2xl5DciN4hwAgFuczWaTt6u31bsBAA5DXgNyo0M4AAAAAAAsxpVz3NLihsfleZ2k9KQc0/Gj45XhmpHn7QT0D8jzOgAAAABwM7hyDgAAAACAxSjOAQAAAACwGMU5AAAAAAAWozgHAAAAAMBidAiHOw7jZgIAAAC43VCc447DuJkAAAAAbjfc1g4AAAAAgMUozgEAAAAAsBi3tQOApLjhcZbFDugfYFlsAHcu8hqAO82dnte4cg4AAAAAgMUozgEAAAAAsBjFOQAAAAAAFqM4BwAAAADAYhTnAAAAAABYjOIcAAAAAACLUZwDAAAAAGAxinMAAAAAACxGcQ4AAAAAgMUozgEAAAAAsBjFOQAAAAAAFqM4BwAAAADAYhTnAAAAAABYjOIcAAAAAACLUZwDAAAAAGAxinMAAAAAACxGcQ4AAAAAgMUozgEAAAAAsBjFOQAAAAAAFqM4BwAAAADAYhTnAAAAAABYjOIcAAAAAACLUZwDAAAAAGAxinMAAAAAACxGcQ4AAAAAgMUozgEAAAAAsJiL1Ttwt0hLTZGRlSV3T2+rdwUAAAD/kJmZodiTh2UYWQoMKSwXV7d8i52RmaUjZxKVZRgqFOwjNxfnfIsN4NZBcW6yM8cP6M+JH+rU4d2SzabgsKJq8+grCitSxupdM11mRpbOHo2XYRgKivCXixs/NMCd4m4+iE27kC4jy5C7V/69ZwDmOrxnk34fP1RZmZnKysqUk5Oz2j72qopH1zY99uYDZ/XB1LXKyDKUmWXI2cmmQV2qqmbpUNNjX0ReA24NFOcmm/vjp6raqJPKVm+qzIx0rVv4P/058T968o0Jpsc+e/6CRv2+WRv3n1GWIUUXCdSz7SsoPND8q/eHtp7QL58sVVZmlrIys+Tk7KR7X2igEtUKmR77bOJZfbHoC208vFFZRpYqRFTQc02fU0RAhOmxrZCVlSUnp9xPqGRlZSkx7rT8As3/cU9MSdfSLUd1Kj5FIQFealwhQt4erqbHtUpsUqy2H9+u2ORYSVKgV6DKhZdToHegxXuWP+7Wg9jTh+I08/NlOrHvrGw2m4ILB+ie5+srvGSw6bHvtrx2K3l53Aq91LmqQgt4mR4rK8uQk5Ptiq+fP5sk/4I+psW+2/LaP387F/3vS7V//A0VKV1FkrRx+W+aP3W4eg/90YTYOf+dR/+5Ra92q67KUdm55I81B/TFb5v0/cCWDo/9T+Q15Lcf3pytDs83UECIefnsotsxr1GcO9gvX7+hFt1ekG+BgpKklMR4laxUT65uHnJ181BUdG1tWDYjX/blk+kxKls4QI82L6OMDEMzV+/Xhz+t0xfPNHJ4rH/+0Mwbt0adBjRS0QphkqT1c3Zq1ler9NyY+x0e+58+mvuRyoWV0xN1n1B6Vrp+jflV7/35nkY9NMr02PkpNSVJcyZ/rL2bV8rNw1uVG3RQvbY95OScfRUxJTFOY956SC+NWODw2O9M/ltNKxVSowoROnAyQS+NWyGbzabwAl46GZeiiQt2aNgT9VQ0xNfhsVf9ukVl6xXLl6T+TylpKfp0/qdatHORbDabfN2z39/51PMyDEPNyjbTgBYD5OHqke/7ZiYOYrPNGv2XarQrq/INopSZnqnVv23TzM+X6+kRnUyPfbfktetJSUrQvi0rFV27tcO3vXL7iSu+vvngWa3aeUIh/tnFed1yYQ6PnZqcpj++/Eu71x6Wm6erqrUuo4YPVJaTc/b3Ljn+gkY+PU2vTe/h8Nh3a16b9N9n1ar7AIUWKS1JysrMkF9giH2+b4EQZWSkmxK739dL9ULHyioVESAp+26gEH9P+/wQf0+lZ2SZEvufyGv549SRPTp5eJcKl6qigOAInT62XzFLf5VhGCpVuYGiytfKl/0wDEMb95/VsbOJCvT1UI1SIXJxNqcLsl1/H7ri64e2ndSeNYflVzD7YmHpWkUcHvt2zmsU5w5WvmYL/TRioKo07KhqTTqrauNOmvB+TxUuWUlZmRk6uGuDajbrZkrsUX9s1hMty8nTLfuf9Vhsot56qKbcXbOLtfvqFteAb5abEvvbQb+rbZ96Ci8RJEnKzMySX/ClK/T+Bb2VmZ5pSuwRi0boqfpPydMt+4ftaNxRDb13qNxd3CVJXap20Qs/vWBKbCst/328Th/dp3Y9XlNqcqJWzv5eJw/vVqdeQ+Xs8v9XrQ3DlNgb95/VEy3LSZLGztmm6iVD9FLnqnJ1cVJGZpa+mLlJX/25RR8+XtfhsRd8t1YLv1+nYhXCVblFKZWpU0QurvlzW/OXi7/UjhM79MF9H6h6kepydsqOm5mVqfWH1mvEohH6ctGXeqnVS/myP/nlbj2I/fmDBWr9dB35BWXnsuSEVJWqVViu7i5ydXdRyeqFtG7WDlNi36157XrOnzulWT98ZEpx/vbkv686b9QfW+z/P+fdex0ee8nkDTp5MFb39m+oC0lpWvHTRp3Yd1ZdXmlqz2+GSfn8bs1rzbv205zJ/1WhkpXV4J4nVbddD00c9rQCQworKzNDsScPqXm3fqbE7tuhkj77daMqFQtSjxZl9UjTMnp21BIVDvZRRpahw6fPq2+HSqbEJq/lv10bluq38UPl7uWjzPQ0der9rmaMe1thRcrIyclJ00e/praPvaryNVs4PPbrE1fptW7V5e3hqoTkNL0xcZV2Ho2Tn5ebEpLTVCjIR5/0qq8Ab3eHx/75w4Wy2WxXzF1zvlktSbLZbKacdLyd8xrFuYOVqdZExcrV0JJfx2jSf/uqZfcX1bXvRzq8O0ZZWZmq1fJBhRcrZ0rsYD8PPTdqqZ5qXV51y4WpScVIPf/VUtUqHaqMrCyt2HZczSubc1t569519OfIv1QkOlSNH66qhg9U1riBvyko0k9ZGYbOHI1X617m3PJa0Kegnpn0jHo36q36JeqraZmm6jO5j+oUq6OMrAwt27NMLco6PuFZbc+m5Wr76GD71cuSlRto+ujBmv7Va7rv6fezF7Llvj3SEdIzMuXy/1dS9x6P13uP1pGrS/a0i7OTujYoqX5fLzUltiS1f7aedq0+pJnDl8nd21UVGhVXlZalFVK0gGkxJWnp7qX6oNMHqhhZMcfrzk7Oqlmspl5u9bJe+/W1WzLZ/xt360FsdOMSmjRkjqq3Laua7cupRruyGttvhopEhykzM0sHNh1XnY7RpsS+W/NaakrSNeenpaaYFrt6yRA5OUkD76uqAj6XDlTbDvlNo59rrGIhfqbF3rn6kO59oaH9brMytYto6nvz9dP7C9TtteaSsg9izXC35rWIqPJ65OXR+nv+FH0/7Bk17tRbPd+cqOMHtskwDIUVKWO/C9LRyhUuoBHPNNRPy/bYj9vG92+uHYfPKcswVDoyQAUvOwnpSOS1/Ldqzg+q1/5x1W3ziLavXagZ495WjWZdVa/tY5KkNfOnas38qaYU52t3n1JaRpa8JX07f7tS0jL07YvNFR7orVPxKXpn0t/6bv4OvdCxssNjl6gaKZuTTR2eqy/vgEvt+cMuE/XUZ/eqYJEAh8e86HbOaxTnJnD39FGrBwfoyN7NmjXxQxUtW0MN7nlSrm7m3jrRrWEpNYyO0IjfNmvuhkN6tn1FlYksoI0HzsjIMvRU6/JqFG3OczyRpQvqiY/ba+UvWzR+4O9q1qO6+oy8T0d3nZaRZSi8VLD9LK2jda/ZXY1KNdLnCz/X7K2z1a9pP5UNK2t/hunphk+rcenGpsS2UkpifI6rl14+/ur63Mf636hXNG30q2r9kHkJJyrUTzH7TisiyFuBvh46GZeskhH+9vmn4pPtd2yYoWT1QqrcvJSS4lK0adEebZy/R2v/3KHwEkGq0rKUyjeIMqVTG8Mw5Op89WfpXZxcTLu6ZaW79SC2fP1iKl4lQosmrtO3r/yhts/U1YNvtdLBrSeUlZmlevdVUERpc9733ZrXRrx8z7VPKhqGaScdP+hRR9NW7NVzo5fq+Xsqqk5Zx9++fjXJCak57jbz8vPQQ2+30o9D52nqe/PV7tl6psW+W/OaJDk5O6tO64dVploTzZvymdxXz1Gzrv3kG2D+89bOTk56sHFpNa4QqS9mbtS8Da56tkMFBfuZk88uIq/lv9hTh1W+ZvZJtrLVm+rPiR+qVKUG9vmlqjTUX39+Z/p+bNx3Vk+1Lm/veyrE31M9W5fX8F83mhKv+5CWWj1zq8a//Lva9K6jUjULmxLnSm7nvEZxboKUpHjFnz2hghFRevTVMVo1+wdN/E9vNe3yrIpH1zE1dnigtz7oUUcLYg7rpXErdF/d4nq6TbRpZ9wv5+TspPr3V1L5+sU066tV2rRor1o/VVu+QeZ3ohMREKFhnYdp3vZ56v9Tf3Wp1kV9GvfJl/dtFd8CoYo9eUgBwZdOuLh7eqtr34/088hBmjF2iGmxH25aWh9N2yBnZyd1rBOlr2ZtUUJymooU9NHhM0n6fuFO0+7SuJx3gKfq3ldRde+rqENbTyhm/m7NG79G88av0aApjzg8Xp3idfTp/E/1cquXVSqkVI55u0/t1vAFw1W3uONv5b8V3I0HsZLk4e2mtn3q6vC2k5r5+XJFVQ5Xk4erydXd/J/PuzGvuXl4qU7rRxRWtOwV58edPqq5Uz41LX6X+iVUOSpYw/63Tqt2ntQzbc25gvhP/sHeOns0XgXCLvXT4e7lpgffaqUf35mracMWmRb7bs5rp4/t17mThxUcUUzdnv+vtqyarSmfvaAazbuqaqNOpsY+cDJBh88kqliIn/7zRD3NXX9IA79ZoS71S+je2lGmxiav5S83D2+lJCXIPyhcF5LPy8jKVEpSgn1+SmK8XD3MO1a++NGeT0lTeGDOOJGB3jp7/oJpsWvfG62iFcI047Nl2r3msFr2zJ9n62/nvEZx7mDb1szX3Mn/lZuHtzLSU9XuscGq3/5xla3eTPOmfKotq2aredd+8vYzr5fAhOQ0Na9SWLVKh2rM7K164etl6t+psoqH+V9/5X/h1MFzij0Wr4JFCuihd1pp08I9mvj6LNW+N1o12l35QMuR4lPi1bJcS9WOqq2vlnylvj/21cCWA1WiYAnTY1uhWNnq2rxyVq4TPm4eXrr/2WH6+cuXTYtdu0yY+nesrK/+3KIzCdlJffiM7DOvrs5O6lCrmJ5sZc7jG1f7AS8SHaYi0WFq3au2ti3fb0rsfs366f0/39fTPzwtXw9fBXgGSJLiUuKUmJqomkVrql8zc27vttrdehCbfP6C4k8mqmDRAur5yT1a8b9N+mbATLV8spZKVjf/BNTdltdCCpWUJPvjOv/k4eVjWl8aF5WM8NeXfRrrqz+3qM/IJTJk/tWVqCoR2rhgd6425e7pqgeHtNTkt+eaFvtuzWtrFvykFb+PV3BEccWdPqqG9/ZS5QYdVLxCXS2ePkrb/p6nVg8OVMHI4g6P/b8Ve/Xd/O2KCvXT0dgk9WxZTu1qFlPtMqH6etZWLYg5ov4dKysqzJxHKchr+atomWqaP/VzVWt8n3asX6xi5Wpo2cyxavPIK7LZpCW/fq3I4uadCPx42ga5uTgpI8vQiXPJKhZ6qV3FJqbKx+TRdcKKB+nJ/3bQ/PFr9M2LM/Mlp97OeY3i3MGWzRyr1g8PUrkazXTi0E7N/uEjlaxUX0FhRdS9/3BtXP67Jn3ynHq/M9nhsdfvPa3//LRO8clpCvL10Ovda2hg56qK2XdGH/60TrVKh+qx5mVNud149YytWjx5g0KKBujc8fNq+mg1VW1VRiVrFNL88Wv07ZK9atennkKKOf6Z4HUH1+n9P99XXEqcgnyC9FaHtzSo9SBtOLRB7/3xnuoUr6PH6z1u73DkTlGv/eNKjD97xXnunt7q+tzHOnl4t2nxG0ZHqF65MO0+Fq8TsckyZCjQ10Mlw/1NHUbterchuXu5qWqrMqbE9vPw07DOw3Tw7EFtPb5V55LOSZIKeBdQhYgKKhLo+B5HbwV360HsliX79Meov+Tu6aqMtAzd27+hGnWvovIN/v/uoAV71KpXbfkUcPwV/Ls1r5Wr0UIZ6alXne/tF6i6//+cppncXZ31QsfKWrn9hDbuPyN/L3M/50bdq+h8bPKV98XLTQ+93Uon9sWaEvuuzWvzp6pznw9VpHRVxZ89of+NfEWVG3SQl4+/2j02WAe2r9XMce+o5xDH327887I9evfROqpSPFgnzyXrte9WqV3NYvL3dteg+6tp3Z5Tem/KWo3r38zhsclr+a/Jfc/oj+8+0LwpnymyRAXd8+QQLf9tvCa897hksykgOEKtHzbngkrLKpduJa9XNkyp/+icefnWYyoebl5/Ghe5uruobZ+62vX3IR3cfEJefub+G9/OeY3i3MHSUy8oMDT7ixAQHKGMtJwHGZUbdFDJSvVNiT3yt83q1rCk7qkdpbW7T+nrP7foi2caqUrxYI18trEmLdqlPiMXa3z/5g6PvfKXLXrgjeYqVjFccacSNeWdearaqoy8/Dx0b/+G2hdzTNM/XqxnRt7n8NhfLPxCD9R8QJ2qdNKaA2s0avEojXpolKoWqaqvH/laE1dNVK/ve2niExMdHttKnt5+8vS+ekJ19/S+6tUnR3F2clLZQgVUtpC5HbFd7vVfHs+3WFdTNKioigYVtXo38s3dehC76Id16vBcfUU3jNLxPWf0+5crVLpWEQUXCtCj77XRhrk79d2rf6jv144fIvJuzWuVG3S45nxvv0DVb/94/uyMsodNM2PotH/y9HWXp+/VD1bdvdzsncWZ5W7La9knerPvxLI55R5Kqli5Gnrs1TGmxb54E5jtCuPaVy8ZolF9zXn2mryW/7z9AtXt+f/meK15t36q1rSLMtLTFBRaxD4MrqO91KXqNec/0qyMnPLxkYLStYqYMnTa1dyOeY3i3MGia7fWtNGDVaRUZZ04tEvla+Uee9fbz5xCJjbxgmqVCZW7q7NqlArR17O22ue5uTjriZbl1LRSpCmxs39osr/cTlf4oSleJUI9P73HlNhnk86qbvG6cndxV81iNTVqyaXxMd1c3PRUg6fUvKzjT0jcCtLTUnXy8C55ePkqOLxYrnm7Niw2Zcihq3nsk/n6oEcdFQrO/zHI80t6ZrqW71mubce3KTYp+0pWoHegosOjVb9k/Wt2QHK7ulsPYtMvZCgoMvsEWIEwX6WnZuSYX7VVGdMOMu7mvHYll//GmCk+KVVz1h/StkPndC4x++R6AR93lS9SQK2qFTFluKGL0lMzdGLvWXn4uOfqxTg9NUPb/zqgSk1LmhP7LsxrNVt00/TRr6pgoZI6d+qIGt7TM9cyrm7m/Ht3bVBSb0xcpeLh/jp6JtE+NOnlzOpUlbx26wgIjrD8WfuLwy+bhbyWdxTnDta0y7MqXKqyYk8eVnSdNooqVzPfYtcpG6Z3f1yrumVDteVgrGqVDsm1zOXPmTg0dqcKmvLufIVGFVDssQQ1ebharmXM6mikXol6evu3t1W3RF1tObpFtYvlHrItKtjc51KtEHvykH7+cpDOnzsl2WwqVLyiOjz5pnz8s8eaT7uQZNp4wL+s3HfF10/FJ2vu+kMq4Js9MsF9dR1/m/PxvWfl4e1m7zhp8+K9Wj97p+LPJCmgoLeqtyun6Ibm/HsfOXdEr0x/RWcSz6hceDkV8Mo+0bb71G7N3DhTBX0L6j/3/UeFCpj/zF5+ulsPYis2LaGp785XkQphOrH3rCo2zv085OXDwzjS3ZrXrubTF1rp8cHfKCjcvCsgO46c02vfrZKHq7Oqlgi2n2Q8l3hBM1bt19Rle/TBY3VUxoQ7hc4ejdePb89V/Jkk2Ww2FS4Xok4DG8v3/ztvSk1O1+8jVphyEHu35rVaLborqlwtxZ48pOCI4goKy7+reV0bllSNUiE6dOa8okL9VKSg7/VXchDy2q0jP/La9ZyKT9H3C3ZoYOdrX2G/GeS1m0NxbgKzblu/ngGdquiPNQd0+EyimlcppDbV8++Hpu59FVSiaqTOHI1XSNEABRcKyLfYL7d6Wb9t+k2HYg+pRbkWalehXb7FttLSGWMVHBGlR1/5WqnJ57Vw2khN/vR5dX/hM/kFhpoa+6s/tyjYzyPXXRKGIc2POSJnZ5tssplSnP8+YrlaPFFTBcJ8tWHeLs395m9VbVlKFZoUV+zRBP05aoXSUzNUpUWp628sj4YvGK6o4CiNeWSMvN1zDg2YlJqkD2d/qM8Xfq6Pu3zs8NhWsvogtnqpgjp8JjHfD2JbPllLRSuE6ezReFVuVlLFq5pz59GV3K15bdG0UVd83TCytHreZHl6Z3ds2rTLsw6PPer3zWpUIUIv3Fsp19UswzD0+cxNGvXHFn3+dEOHx144cZ0KFi2gJz+5RxcS0zRv/N+aOPhPPfJeG/kXNPdOpLs1r0lSwcjipvSVcSOiwvxM6/DtWshr+c/KvHY955PTNHfDYVOKc/LazaE4d7AFP32h0tWaqHDJSvke29XFSZ1MKIZuVEixAqZ0+HY9rs6u6ly1c77HtdrRfVvV7fn/ysvHX14+/ur8THZnIz9+1k8PvPCZXN08TIvdrkZR7ThyTq92ra6iIZeKpbZDftMHj9dRsRDzDjhij59Xgf/vvGT9rJ1q1bNmjg7gwksGa8X/NplSnG85tkWjHxqdK9FLkre7t56s96Se/TH/f1zzg5UHscXD/E0fbeJq8vPZuMvdrXlt3aL/qWBkCbl7/uM7ZhiKPXFILm7upt0Guu9Egl7qUvWK27fZbOpcr7ieHbnElNhHdpzSw++0lpefh7z8PNTt9eaa/dUqTXxtlh55t42pQ1zdrXnt5KFdcvfysQ9HuvXvudq47DclnDspv8AwVW3USeVqOL4vi4vOnr+gDXtPy8/TTVVLFJSry6VHhlLSMvS/5Xv1aDNzOjclr+UvK/Payu0nrjn/WGySKXEl8trNMr04/89//qPBgwfrhRde0PDhwyVJFy5c0MCBAzVlyhSlpqaqdevWGjVqlEJDs6/2xcbGqkePHlq0aJFKlSql8ePHq2rVS2d0+vbtq+LFi2vgwIFm736ebVj6qzYsm6GA4AhVrNtOFeq0NnXYtGsxDEMb95/VsbOJCvT1UI1SIXJxzv28aH5IOJOkpT9uUIfnG5iy/dv1uZJ/IyM9VU5Ol27ntdlsavXgAM3/6XNNGd5f7R9/w7TYL3SsrOVbj+u171apW8MS6lgn/4o2V3dnpSRcUECIjxLOJimiVMEc8yNLByvuVKIpsX3cfXQ8/vhVb7s7nnBcPu537vP2V5Nw7pRW/PGt2j4yyJTtz1i1TzuPxKlW6VA1qRSp+TGHNWXJbhmGVL98mHq0KCvnKzwL7wjpqRnaumy/jmw/qcRzKZJNKhDmp9K1CiuqcoQpMSVp6tqpalyqscL8ze+M7FbS8N6ntHHF72rSuY+Klrn0eNQn/VqqzaOv5Opbw5EK+Lpr55G4q96dsfNInAJ8zHl8IyMtU07Olw7ObTab2vapq9ljVun7N2ar04uOv1p/0d2a12b9MExNOz+rgOAIbVrxhxb+b4Qq1muv8rVaKvbkYc2d/F9lpF9QxbqOv7q748g5Df52pSQpIzNLQX4eevuhWvZHD1NSM/TDop2mFOcJZ5Lk4uYsL7/sE/iHtp7Q+jm7lHA6Uf4hPqretqwKlc39WKQjkNfyP6+9Pflv07Z9PeS1m2Nqcb5mzRp9/fXXqlQp51XkF198UX/88Yd+/vln+fv767nnnlPnzp21YsUKSdL777+v8+fPa/369Ro9erR69eqltWvXSpJWrVql1atX64svvjBz1/+Vrn0/0t4tK7VmwVQt/328ikfXVqV67RQVXUdOJh1AStLrE1fptW7V5e3hqoTkNL0xcZV2Ho2Tn5ebEpLTVCjIR5/0qm9qhzZXk3I+VZsW7TWlOL+dnyv5N4JCi+jE4Z25nlVq0e0FSdIvX79uavwG0eEqUyhAH0/boNU7T+mlzlVMjXdRiWqRWjd7pzo8F6yi0WHa/tcBhUZdOgG2bcUB+/PojtauQjv9Z/Z/9GidR1WtSDV7WzuXfE7rD63XD6t/0H1VHD8iwa3uQlKCtq6eY0pxPmnxLv28bI+qlyyor2Zt0cm4ZP28fI861yshm02a/tc+uTg76bHmZR0eO/ZYgia/NUfpaZlycXNWwpkklaxeSMd2n9a62TtUtnZRdRrYSE4mnPT8eunXGrtsrKoUrqJ2FdqpYamGd+RJxn+q3eohFSldVX9O/FDFK9RVo4695OycPzf53V+/hIbP2Kjdx+JUtXhBeyEel5iqDftOa9bag+rVxpyxiIML+ev43rMKLhyQ4/U2vetIkn76YKEpcaW7N6/FnT6qgILZt3THLJuhpl2eyzFaQFjRMlo1Z5Ipxfm387arQflwvdipilLSMjRu7ja9NG6F/vN4PZWMMPcuoWkfLVKDrpVVqmZh7Vx9SNOGLVKpGoVUqFyIYo8l6PvXZ+v+V5uqVM3C199YHpHX8j+vBfq46/l7K6leufArzt9zLF59R5tzRxB57eaY1jISExP18MMPa+zYsXrvvffsr8fHx2vcuHGaPHmymjXLvl1owoQJKleunFatWqU6depo+/bt6t69u0qXLq3evXtrzJjsXoDT09P1zDPP6JtvvpGzSUMOOEJwRHEVLVtdje97RrtjlmnLqln6dcwQefkGqEKdNqpQp40KhDi+UFy7+5TSMrLkLenb+duVkpahb19srvBAb52KT9E7k/7Wd/N36IWOlR0ee9ffh645/9yJ8w6PedHt/FzJv1GycgPtWLtQ0bVa5ZrXotsLMrKytHH5b6buQ0F/Tw17oq6mLN2tZ0ctkaFrj0HuCM0eraHvBv+p71+fpbASQVo9c5sObTmhoMIBij0ar6M7T+v+webcivhk/Sfl6eqpqWunavSS0fbb0AzDUKB3oB6s+aC61+xuSmwr7dm04prz484cMy323PWHNLBzFTWMjtDe49kHES93rqrm/z92a+FgX30zd6spxfnccatVolohtXmmjmw2m/6avlmHtp7QEx910Nlj8frx7Xla/vMmNepexeGxJWlgy4FasXeFPpz9ob5Y+IValGuh9hXb3/EdJoUXK6dHB32l+T99ru+HPW3qXUCX61inuPy93DX9r736bfUBZRnZ+czJZlOpCH+91LmqGlc05/nc0rWLaOuyfarYJHfnXG1615GRZWj9nJ2mxL5b85qLm4dSkuLlHxSm83FnFF4sZw4JL1ZOCWePmxJ717F49e1QSU5ONnl7uKrfvZUV4u+lQRP+0gc96ijE35wO2STp9KE4e7H017RNavJINdXrXNE+f+0f27X0xxhTinOJvJbfea1UZIB2H42/anFuZmfx5LWbY1px3rdvX7Vv314tWrTIUZyvW7dO6enpatGihf21smXLqkiRIlq5cqXq1KmjypUra+HChXrqqac0Z84c+5X3jz76SE2aNFGNGjWuGz81NVWpqZfGGE9ISHDgu7sxzs4uKlu9qcpWb6qE2JPavHKWtqyardXzftRLIxaYGnvjvrN6qnV5hQdmF6sh/p7q2bq8hv+60ZR4P3+4UDab7f+HXLoys56nuZ2fK/k36rR++JrzW3Z/US27v2j6fthsNj3YuLSqlwzRloNnFeRj3rPukuQb5KWnPr1Hf03frN1rjkiGoWO7zyjhTJIKlQvVYx/WVESpYNPiP1jrQT1Y60Edizum2OT/f4TCK1ARAebd4my1X8e8mf0Lfo3vt1m/8LHnL6hMZIAkqUS4v2yyqUT4pStLpSL8dTbhgimxD245qac+q2XPXbXuKa8lkzYo+fwFBUX4q2XPWpo37m/TivM6UXXUtkJbnUs6pznb5mjWlln6JeYXlQ4prfYV26tpmaZXzHt3AjcPL7V7bLC2r12on0e8JMPIype4TSpFqkmlSGVkZik+OU2S5O/lZvojYfXvv3Y/NW2fqau2z9Q1Lf7dmNeiytdSzNKZavPIyypcqpJ2bliikEKXeo3euX6x/Xl0M6RnZuaY7t64lJydbBr87UoNvM/xnXNd5ORkU9qFdElS3MlElaiW84RTiWqRWjBxnWnxyWv5m9e6NiipC2kZV50fEeStj56sZ0ps8trNMaU4nzJlitavX681a9bkmnfixAm5ubkpICAgx+uhoaE6cSK704JXX31Vffr0UYkSJVSsWDGNGzdOu3fv1nfffaeVK1fqmWee0dy5c1WjRg2NHTtW/v65bwH68MMP9c477+R6/ejRozddqHtlJF93GScjXZ6Zp+WVkZ5zXT+bwlq3U4tWbbV/5yZ5ZZzKU+wzztc/W58uV8U6hyvT2VOxF5zkHhylM86Xbvf1LOink+c33NC2Luced/3Ovfx8/dWhR1OVrZ777JgkHT9wSl8PmSL3uKA8xT7lff3PydXLVdvTtsvb+8rJfPvR7XL1cr2hbV0u8Yg5zy3fiBtpa2bJa/u4KLBIpBoVkVKV/XczbqStSZK7pLb3RqjtvVdZIC7vsfPaPly8XRSiS8/lnVLe1r/crd7W/Hx91LZbb5WpWOuK808c2adv/jvIlLzm7RugjWc8VDUoUsfOxCtNrtp81l0+Ednrbjx7WF6+/qbkNS93b+mUj9y9svNWVtIFKd1JXokF5Z7ppkIFXJR8ZoUpeS3dKV2nvU8r3Ttd8paahTRTsybNtO3QNi2IWaDhy4Zr+LLhmjxocp5i3+pt7Z+qV6mgkkXf1Ykj+xTqa5N7HtvYRXnOa86S3LL/92xW1r/q0+BG89rV/Jsx3slrV9emQ2d9O/w1/e/TpxVWuITWL5is4ztXKTiskGJPHdORA7vUtac5eS0sLEyrjtjkF5lz2aZNIpXgFKB3f16vDJubKXmteKko7ZxzSkUeKKXIyEgdW52kIgGXOlA9uvq4AvwCyGs36FbPa+Elspc5c7UFPKXIkkWvPv8qyGt5c/78jd9B7PDi/PDhw3rhhRc0b948eXjc3BU0f39/TZ6c84vZrFkzffzxx5o0aZL27dunnTt3qlevXho6dKg++eSTXNsYPHiwBgwYYJ9OSEhQ4cKFFRkZKT+/m2tQydvjrruMT1AhpbqFysnl6s8MhVVoqbx+lYMzj153GVela/zPf8rNxUm2zBSlnd2v4IIp9vmn488pwMO4oW1dLjUg/brLhJbx06GT+xX1j5MuF6X7xyvLOV2pAWfzFDsk6fqdktxX7j599ctX13yupEuVLje0rcsF5ONwcP90I21Nkk4d2aO1C3/Wkb2blRR/VjabTQHBESpRqb5qteieu2fQG3Aj7ePN71erccUINYyOcOgY0zfS1q7l3yT7vLYPSTqTeEa/bfpNR+OOKsg7SO0rtleRwLz3gnurt7XgohV18OgpFa565c/ogkuCsuSiZJe8fYY30tbaVArSmJ/nqm7ZMMXsO6OHGhTRlD+WypZ4XDabNHnxbjWtEG5KXitaPVh//m+e2j5TR84uzlr843qFlPSXws8rVdKZIyfkGeRiSl5zM9xUMKmgCijnCBghQSFq0ryJkhokadHORXdkXvsn14IhKlywvDIMQ5k3+f2+kfaxZtdJBft5KirMT1lZhiYv2aU//j6g2MRUBfl66N7aUXqgUck855gbaWsZaZlaPGm9ju0+o5I1Cqle54pa/tNG/TV9sySpVM3Catenrty93PIUm7x2dc5BIXp48HdaPfdH7dqyUply0ZHDB3Uu/rwii1fQA11eVHjRsqYcr3WoHKjNB/YouEbu49Ge9YPlkxml39ccMCWvNXqqvCa+PktxKacVUcVP839ZokPH9yso0l+xRxO0bcUBtX2mDnntBt3qee1qMv/lSUfyWt7k5cKww4vzdevW6dSpU6pW7VJvhJmZmVq6dKm+/PJLzZkzR2lpaYqLi8tx9fzkyZMKC7ty740TJkxQQECAOnbsqM6dO6tTp05ydXVV165dNWTIkCuu4+7uLnf3/O/4rPfQH/M95kUtq1x6Pqhe2TClpue8ZWr51mMqHm7OEFd1OkUrPfXqt80UCPfVI++2MSX27fxcyb+xf9vfmjF2iKKiayuyeAXtjlmqinXbycXNQzvXLdKOtQv10MARpowW8Peuk1q7+5RG/r5ZTSpGqm2Noir9/7cem82sZH8j2nzRRlOemqIArwAdOHNAz015TgFeASpZsKRW7VulGRtnaOSDI1Wi4JXvILld1WzxgNJTU646P6BgpLr1+9SU2I81Kys3F2dtP3xObWsUUfdGpVQizF9j52xTanqG6pQJUw8TnjeXpOY9aujnDxfq6+d/lc1mk1+QV47+DJITLqhOpwqmxL7WI0JS9iM7HSp1uOYyt6OM9DQt+22cThzcoeLRdVS71YNaOet7rZ6XfcK+ZMV6atl9wE2deLyer/7cqv6dsvtkmbpst35duU8PNi6tIgV9dPhMoqYu3SObTXqgkeOHaVz0wzptW35A0Q2jtGnhHiWcTtLutYfVtk9dOdlsWvLjBi2etEGte9V2eOy7Na9JkoeXrxp36q3GnXrna9x2NYqqXY2iV53/QKNSprQzSQouHKAnhrXX4skbtPKXLUq7kKEtS/bJyclJEaWCdd/ARipT5+r79m+Q1/I/r5l10vFGkNdujsOL8+bNm2vz5s05XnviiSdUtmxZvfLKKypcuLBcXV21YMECdenSRZK0c+dOHTp0SHXr5n7u4PTp0xo6dKiWL18uKbvQT0/PPluTnp6uzH88s3M3e6nLtZ9ReqRZGTmZ9FxokehrD4vh5uGqohXMGzrjdn2u5N9YOmOsmnR+VlUaZt/bfaBWKy34eYR6DvlODe55UtNGvqKlM8aq7aOvmBJ/9HONtW73ac1Zf0h/rj2oqFA/ta1RRM0qFZKvCYXxRVYm+7SMNPvBxTcrvlHlQpU19N6hcnZyVlZWlt6f9b7GLR+nD+77wOGxrVS45LWfG3Nz91SR0lVMie3kZNNDTUrneO3ic8Fm8w7w1OPD2uvssXhlpmcpuJB/jp7Zy9UrZlrshQPM68X2VrZs5jfasW6hytZorq2r5yjh3Ent27JSrboPkM3JSSt+n6Dlv41T8279HB77RFyyQgOyO+JatOmonr+3khpXyG5nNUuHKjLIW6P/3GJK0bRj5UHd+0IDRVWOUPW2ZTX62enq8kpTlamdfWXH089Df45cQV6DQxQI99N9AxvLMAwlxV2QYRjy8vOQs4u5fSuQ1/I/r1l50pG8dnMcXpz7+vqqQoWcVxK8vb0VFBRkf71nz54aMGCAAgMD5efnp+eff15169ZVnTp1cm2vf//+GjhwoCL//7mc+vXr6/vvv1erVq00ZswY1a9f39FvwVQblv6qlMR41WvXI99je7rlz7ANVooIiLijC/LLxZ48pKjyNe3TRctWV9yZY0qMPysf/yDVbddDM8e+ZVp8fy93dalfQl3ql9COI+c0e90hfTt/h76Zs011y4WpbfWiqlqi4PU3lEdWJvvL7T61W6+3fV3O/z/WvJOTk7rX7K7Bvww2NS7yX5DJQxvhkl0xS9TuscEqWra6qjbqqG/eeVQdew1VqUrZv/We3v6aM/m/phzE+nq66kzCBYUEeCk+KU2RgTnHwI0M8jGt88HkhFQFRmTf2VYgzFc2my3HkJCB4b5KSrjZ3jxuHHntEiuP18bP3aZziaka2Nm8juGk7A5dfQqY1zM8slmZ16w86UheuznmniK7is8++0wdOnRQly5d1KhRI4WFhWn69Om5lpszZ4727NmjZ5+91NP2c889p+LFi6t27dpKS0vTW2+ZV3yYYVfMUm1ZPceS2H9tP655Gw5bEnvtnzu0bEqMJbFX7FmhOVut+czN5OMfrNiTl/49404flQxDnt7ZidA3IFjpaVe/FdmRyhYqoP4dK+vHQa303D2VdDr+gl79dqUpsaxM9jabzX7rl022XD3Kert56/wF84YNvFVtWPqr/vrzO0tiz1y9X98vNGcoluvZufqQNi3aY0nsOzWvpSTG24caDQiOkM3mlKPH7AIhkUpJjDMldv3y4fpxyW5lZmWpbrkwzVy9P8dtuDNW7VfxcHNO1PgHe+vIjtOSpGO7Tstmk47tvtRF09FdZ+QX5GVKbPLalVl5vHYm4YJOnLOmY1jymuNZmdcunnSUlO8nHclrNydfLqUuXrw4x7SHh4dGjhypkSNHXnO91q1bq3Xr1jle8/Ly0k8//eToXcw3D5j0XOaNGDdnu46cTVTLquaMXXktO1cdVNzJ82po0pBD1zJm2RgdiTui1tGtr7/wbSS6divNmfxf1Wn9iJxdXLRu4f9UomJdObu4SpJOHdkrv6Arj2tpFg83F7WuVkStqxXR4dPm9J56Mdn7F/TJkexDimZ3MGNmsjcMQ49OeFQ22ZSSnqK9p/fmeF7pWPwxBXo7/hn/W92umKWKP3vCkitMy7ce14lzyXq0WZl8j71o4jrFHk9QpaYlr7+wg92pec23QKiO7tsqv8BQHT+wXTabTScOblfBiOwxkI/t3y6fAMffkSNJT7Ysp1cm/KWeny9U+cKBWrrlmNbvPa1CQd46Fpus8ylp+qCHOcP+VG1dWr+PWK6N83fr+N4zav5ETS2ZtF6xx+Il2bR+9g7V7mhe/wbktdysPF4bdH+16y9kEvKa41mZ1y6edHz74Zr2k44vdqpsL1zNPOlIXrs5d/59zrAb17/Z9RcyycNDrUu03z1hzRU9s9Vp/YjS01K1ctZEZWZmqFjZGmrW9Xn7fN+AYLV8oL8psSsWC5Lrdcb9LVzQ55rzb5aVyX5Q60E5piMDcj73vO34NjUs2dCU2LcyKw9izRqf9UY8M/I+y2LfqXmtcoMOmv3DMG1e+adOHtqlJvc9o2W/jVfsySOy2aSYZTNVo3k3U2J7e7hqeO+Gmr3ukFbuOKHQAC8ZMpSRZahppUi1r1VMIf7m3AJc+95oeft76uiu06rcvKSiGxVXSNECWjJ5g9JTM1Tr3mjV73rtvh9uFnkNlyOvOZ6Vec3Kk47ktZtDcW4ywzB0eHeMzp06Kh//QBUrX0vOznzs+PecnJ2v2ctseLFypsX+b0/r+nqwMtm3ib72iAOP1XnMlLjA3aJGs67y8i2g4/u3qWLdtipXo7mCI4prxR8TlJ52QdWb3q86rR8xLb6Ls5M61CqmDrWKmRbjaio0Lq4KjYvbp4tWCNNjH7Q1Pe7dntcSzp2Sh6eP3Dxy3nGVmZmhY/u2qnCpyvm+T7HnL+iPNQctuSMIjmdlXrPypKNEXrsZVIkONm3Uq+rwxBty9/RRSlK8po0arBMHd8jT218pyQkqULCQHnzxc3n5Bpi2DzuOnNO2Q7E6l5j93G0BH3eVLxKosoUKXGfNf+/ApuM6vO2kEs+lyOZkU0Coj0rVKpwvHSplZWXJ6QpjNmZlZel04mmF+oWavg/IH1Yl+7vdwZ3rdXTvZiXGn5XNyUkBQeEqUameAkPMfVRm7/F47T4Wr8pRQQoP9NaBkwn//zywVK98uGqWyvuYp//GD2/OVofnGyggxJy7Q67lxZ9e1CutX1GYv3mjX1itfM0WKl+zhX26SOkqKlL6cwv3CHeixPiz+vXrN3Ti8C7ZZFO5ms3VotsL9iL9QlKCpn4xQC+NWJDv+3YuMVU/LNppanF+bNdpHdl5Wonnsvum8SngqUJlCiqitDm3V18Lec1cVp50RN5RnDvY/m1/KyM9Xe6e0vLfxistNUVPvf2DAoIjlHDulH4d86aW/z5erR4c4PDY5xJTNfTHNdp2KFYF/T0V6JM9zntsYqq+nrVV5YsEasiDNVXAx/HjvyfFpeinDxbo+J6zstlsMgxDoVGB2rnqoBZ+v061741W8x41HB5XkpJSk/Tx3I+1ct9Kebtlj5HZo24Pe6+McSlxemjcQ1rwYv7/wFpp6cyxSko4p7aPDLr+wg6WXz3N3mrGLh+rc0nnct1OdbtLSjinX75+XScO7ZTN5iTDyFJIoZLavXG5ls4YqxrNuqrxfU+bEnvZ1mN6f+pa+Xi4Kj0jS289XEvv/rhGZSIDZHOy6c3vV2lQl2pqVrmQw2Pv+vvQFV8/tO2k9qw5LL+C2R3MlK5VxOGxV+xdccXXNx/drJX7VirEL/uERP0St9eIJbczK/Paou/XKSkuRR2eb5Dvse/UvLZ0xhjJZtPDL41UWkqSlswYo6lfDND9fT+yd6yq64zLfbP2nYi/5vwjZ8zps0XKPl6bNmyRDu84Jf9gb3n/f2/tSedSNO9MkgqXDVGXV5rKO8DxV1PJa7gcee3KKM5NdGhXjBp36m3vkdGvQIgad+ytOT9+Ykq8L3/bpCzD0Df9muV63vfw6UR98ssGffnbJr35YM2rbOHmzf3mb/kU8NLAH1rJ2cVZC75bq9SkNPX85B4d2HRc0/+7WL6BXqp1T3mHxx7/13jtO7NPr7V9TYmpifp+1ffafWq3ht47VK7O2Z2jGSb9wN7KEuPO6Py5U5bEPpNwQafj86en+H+yMtmfOX9Gp85b85mbaeH/RsjHP0jPfzRTzi6uWvLLV0q9kKTHXvlaB3eu12/jh8onIEjVm97v8Ng/Ltmtx5qV1UNNSmvxpqN698c16lK/hB5pmn1F6X/L9+jn5XtMKc5//nCh/WTjP835ZrWk7B5hX5vu+I7w3pzx5lVjj1g0wh6bk475x8q8dv5sshLOJlkS+07Nawd3rFOn3u8qvGhZSdJDJUZo5rh39NMXA9Wt33+zF/r/TrMcrc/IJaZs90bMHrNKWYahZ768T0GROe9qPHs0Xr+PWKHZY1apy6CmDo9NXruyu/ViCnntyijOTXCxB8QLyeflH5xzzO2AgpFKjD9zpdX+tbW7T+mTpxpcsSOuwgV99Gz7inp53JXPWv5be9cf0WMftpO7l5skqemj1fTJwz+qde/aKlYpXC2frKUVP28ypThfvme5BrcZrCqFq0iSGpRsoMG/DNZrv76m9zu+L+nSv8ndpN1j1o3faGVPs1Ym+8Ftb80xM/+t/dv+1oMDRsjdM/tKccOOvTTi5XvVvGs/FS1TTU27PKtVsyeZUpwfOZNoL7wbV4zQsP+tV/1yl0YhqF8+3LSh1EpUjZTNyaYOz9XPcRXpwy4T9dRn96pgkQBT4kpSzWI15WRz0qBWg1TA+9IjSS2Ht9TYR8aqWHAx02Lfyqw86WhlXru3v3UdF92peS31QpLcvS4dL7m4uqlTr6GaOe5tTf18gNr3eN202L6ernqqdbSqFg++4vyDp87rzR9WmxJ734ajevT9trkKc0kKivRXq6dq6Yc3Z5sSm7x2ZXfrxRTy2pVRnJtg1vf/kbOLq7IyM5Rw9rh9qARJSkqIlYen7zXWvnmuLk5KSk2/6vyUtAy5upgztL2zq3OOAvjimdHMzCxJUqGyIYo7Zc5tWvEp8QrxvfTMqb+nvz7u8rFemf6KXv3lVb3U8iVT4t4KkhPjtWXlLB3bv1VJCbGSJG+/QEVERatCnTam9m0Qn5SqOesPaduhc//o36CAWlUrogBvxz8+cSPMTvbxKfGatWWWth7bqtjk7M880CtQ0RHRahPdRgFeAabGt4Kzs+s/vt/Zt7ZnZWVIkiKLV1B87HFTYnu5uyghOU1hBbyUmJKuLMNQQkqafX58cpo83c35Kes+pKVWz9yq8S//rja966hUzfwbhnJY52H6ed3PembyM3qh2QuqV8K6XulvJWafdLQyryUnXNDGBbt1ZMdpJcVlHyx7B3iqUNmCqtSslLz9PUyLfTfmtYCgcJ05uj9HnxlOzs66t+fbmjnubU3/yry2VioiQGfPX1BogSsP+5l44erHcv+Ws6uzUpOvvv20CxlydnU2JTZ57cru5Isp5LW8ozh3sOjal4YMK1mpvtLTUnPM3x2zTCGFSvxzNYdoXDFSH0/boGfaVlDVEsHy9si+pTvpQro27D2jr2dvUdNKjr/1U5IKlwvR0ikbdE+/BnJ2cdbiH9YrINRHXr7ZX7rkhAvy9HEzJXaob6gOxR5SRMCluxS83b31UZePNGjaIA35bYgpca12/MB2/W/kK3J1c1eRMtVV4P8PMJISYrV+yXT9Pe9Hdek7zH7LniPtOHJOr323Sh6uzqpaIliFgrOvPpxLvKAZq/Zr6rI9+uCxOipjUieEViX77ce365Xpr8jd1V3Vi1RX4QLZn3lscqymb5iuH9f8qGGdh6lsmOM/cytFlqigFX9MUNtHX5Wzi6uWzfxGAUHh8vTOvvKSfD5OHl5+psSuWqKgvvxtkzrWidKSLcdUrWRBjZ+7XQM7V5FNNn0zZ5uii5g3Vmnte6NVtEKYZny2TLvXHFbLnrVMi/VPXat3VZXCVfTBnx9o5b6V6tukb77FtpJVJx2tzGvHdp3Wj0PnydXdRcUqhSsoMvv7lHguRWv+2KGV07eo+5CWiih15Sut/8bdmteiouto44rfVLpqoxyvXyzQZ3zzls7HmXOnY/uaxXQhPeOq80P8PTXwviqmxC5fP0q/fb5MLZ6spajK4fY7HlOT07R/43HNn7BG0Q2LX2crN4+8dvdcTCGv3RyKcwdr++gr15xft91jstnMuXr9dNtoZWUZ+uCntcrMMuzjUKdnZsnZyaY21YuoVxvH31YuSc0fr6nJb8/VJw//KEly9XBRl0FN7PPPHI5TxaYlTYldvWh1zdo6S3WK18nxupebl4Z1HqaXp71sSlyrLfh5hMpUa6yW3Qfkum3fMAzNm/KpFv48Qg+/NNLhsUf9vlmNKkTohXsrXTH25zM3adQfW/T5046/im1lsh+xaIQal26sAS2u/Jl/Ov9TjVg0QiMfdPxnbqUmnfvo5xEva8TL90qSXN091LHn2/b5Z08cVIXarUyJ3at1eX30v/X6YuYmlS8aqDceqKFv5+9Qry8WSZIiAr01oFMVU2JfFFY8SE/+t4Pmj1+jb16cKUP514dFqZBS+uqRrzRy8Uj1+r7XHd9/hpUnHa3Ma3O+Wa1y9YqpbZ+6V4w9a/RKzf1mtR4f1t7hse/WvNbwnp5KT7twxXlOzs7q+NQ7Oh932pTYDaLDrznf18tNrao5vqNJSWrxRE0ZWYZ+/WSJsrIMOf//HZWZGVlycrKpcotSpnXgexF57e64mEJeuzkU5/nMzd28sQTdXJz1QsfKeqp1ee06Gqe4pItnxzxUKsLffiXdDAXCfNX78446vO2kMjOyFFmmoLz8Ll29rNy8lGmxH6/3uM4mnr3iPG93b33c5WPtPrXbtPhWOX10r9o++uoVn6e32Wyq3rSrJv6nlymx951I0Etdql41dud6xfWsSR3eWJns957eq1fbXP0z71q9q3p9b85nbqWA4Ag9/vo4Hdm7WVkZ6QqPipaXz6XnFSvWNW8Yu0BfD/3niZy3PvbtUFGd6xVXanqmChf0kfMVhlB0NFd3F7XtU1e7/j6kg5tPyMsv/x7bcHdx14AWA7Ri7wrFHI6Rv6f5Q1NaxcqTjlbmtVMHzumefg2uGrvWveU1bsBvpsS+W/Oak7OzvR+Nq833D7rzhvZycXNW2z511axHdR3fc/bS3WcFPBVeIsh+Jd1s5LVsd/LFFPLazaE4N8H6Jb/oxMEdiipfW+VqNNPWv+dq9ZzJMgxDpao0UIP2T8rJ2fHP84z8/y9gxWJBqloif8epnDN2tcrVK6riVSPzNa4k+Xn4yc/j0i21KWkpWrRrkY7FHVOQd5CalW1m7yzuTuLtF6gTB7crKOzKZ9dPHNwuL19zbisv4OuunUfiVKTglftP2HkkTgEmDNknWZvsA70Dtf34dhUJvPJnvv34dhXwMuczt9KCn75Q6WpNFFXO8SM95FVKWoaWbD6m47FJCvR1V6Cvh/xMOpi8mNeKRF86QC9dq4gpQ6ddT0paiuJT4uXu4q7FuxarWdlmd+TBrJUnHa3Ma94Bnjq2+4yCCwVccf6x3WdMe1znbs1rknXHa7uPxcnHw1XhgdknB+bHHNbvfx/Q6fgUhQR4qWPtKDWpZM7x1OV5rVila1/BNxt57c6+mEJeuzkU5w62ctb3+nv+FBUrV0OLpo9SQuxJrVkwVdWb3i+bzaZ1C/8nZycX1e/whMNjz1y9XzNX71dEoLfaVC+illULK9DXvI4WLrf2z+1aN2uHCoT5qnKLUqrUtKR8Cph3l8DlHv/2cX3+wOfy9/TXqfOn9MLUF3T+wnkVLlBYx+KP6ftV3+vLB7/M8Uz6naBG826a8+MnOnFol4qWqWYvxJPPn9PBneu1+a8/1Pi+Z0yJfX/9Eho+Y6N2H4tT1eIF7QescYmp2rDvtGatPahebaJNiW1lsu9WvZs+mf+Jdp3apWpFqtkT+7nkc1p/aL3+2PyHnmlkzmdupQ1Lf9WGZTMUEByhinXbqUKd1vL2M+8578s99flCfdqrgfy83HQqPkUDxi5X0oV0FQr20bHYJE1atEufP93QfpDrSLdSXus3pZ8SUxPv+Lxm5UlHK/NanY7R+nPUSp3Ye1bFKoXbRwdIikvRgU3HtWHebtNuNb5b85qVx2v/nb5BT7etoPBAb/259qBG/7FZbWsUVYsqhXXkTKI++zVGF9Iz1aa6408Ektfy3916MYW8dnMozh1sy6rZavvIKypdtZFOHdmj74c9o7aPvqLytVpKkgJDi2jpr1+bkuwl6cPH62r1jhP6efkefTt/h2qVDlHbGkVVq3SonJzMHU7swbdaaveaw1r16xYtmbRBJatHqkrL0ipRvZCpsQ/FHlJWVnav8GOXjVWwT7DGPjpWPu4+Sk5L1pCZQzRuxTi92f5N0/bBCtUa3ydPb3+tW/Q/xSybKSMrU5Jkc3JWaOFSavPIKypb3fHjlEpSxzrF5e/lrul/7dVvqw8o6/+fF3Oy2VQqwl8vda6qxhXNOetvZbK/r+p98vf01//W/08zN85U5v9/5s5OzioVUkqvtH5FTcuY85lbrWvfj7R3y0qtWTBVy38fr+LRtVWpXjtFRdeRk4m3lR8+k6jMrOz2NX7uNgX7eejr55rI28NVyakZGjr5b02Yv12vdTPn3/xWyWsFfQvqm8e+uePzmpUnHa3MazXal5Onn4f+/m2r1s3aaf+3d3JyUliJQN3zfH2VbxB1na3cnLs1r1l5vHbsbJIi//+E4u9/H1CfdhXUrmYx+/zSkQH6cckuU4pzibyW3+7WiynktZtDce5gSQlnFVa0jCQppFBJyWZTwUKXOkILLVzKtHHOJSkq1E/VShRUrzbRWrHtuGavP6S3J/+tAt7ualWtiFpVK6zIoNzjoDtCSNECiqocoeaP19TOVQe1ccFu/fyfhfL291TlZiVVqVlJBUaY06PzRduOb9OLLV6Uj3v2e/Ry81KPuj303p/vmRrXKuVqNFO5Gs2UmZmhlMR4SZKnj7+cnc3/ajepFKkmlSKVkZml+OTsoa38vdzk4mzu879WJntJala2mZqVbaaMzAzFp2R/5v6e/nLJh8/cSsERxVW0bHU1vu8Z7Y5Zpi2rZunXMUPk5RugCnXaqEKdNioQYs5oEBdtP3xO/e6tZO8/w8vdRY82K6MPflpvWkzyWv6y8qSjZF1ek6TohlGKbhilzIwsJSdkd1Tm5edh77DLTHdjXrPyeM3d1VnxyWkKLeClM/EpuTrjKluogE6cSzYltkRey29368UUibx2M27tvbsNefkF6szxA/ILDFXsqcMyjCzFnjhoH+v87IkDpt26cjkXZyc1rhipxhUjdSouWbPXH9Lc9Yc1ZeluzXn3XlNjO7s4qXyDKJVvEKX404nauGCPNi3Yrb+mb9Zr03uYEvPiszSpGakK8g7KMa+gT0HFJceZEvdW4ezsIh//oOsvaAIXZycF5dPjExdZmewvcnF2UZCPNZ+5lZydXVS2elOVrd5UCbEntXnlLG1ZNVur5/2ol0YsMCXmxUfl0tIzc7W1YD9PxSelXmEtxyKv5R8rTzpeZEVeu8jZxUm+gVce/9psd1Nes/J4rWbpUP3+9wENuK+KKkYFadnWYyoRfulZ6yVbjpryqM4/kdfyz914MeVy5LUbR3HuYOVqNNesif9RyUr1dXDXetVq8YAW/zJaKUkJstlsWjXnB5Wu0jhf9ykkwEuPNSurR5uW0fq95gwLcjX+BX3UqHsVNXygsvZvPG5anAH/GyAXJxclpyXr8LnDigq+dOX0ZMJJ+XmaewYY1rAy2UPyCwxV/faPq167Hjq4Y51pcQaN/0suzk5KTs3Q4TOJKhZ66ft8Mi7ZtA7hroa8lj+sPOmIO5+Vx2s9W5XTi2OXa+A3y1UqMkDTVuzVxv1nVaSgj46cSdT2w+f09kO1TIl9NeS1/HG3XUxB3lGcO1j99k/IxdVdx/dvU6V67VW71UMqGFlSS2d8rfS0VJWoUNe0581DAjzlfI1nhWw2m6qXDDEltn9BH9mcrx27eBVzOvh4rM5jOaY9XHMmnpX7VqpSZCVTYgN3A7/AUDld4wy7zWZTsXLmPPP9cNPSl02FysMt58/Wqp0nVaGYOZ3TkdeAO5eVx2vBfp4a/WwTTVm6W6t3npBhSDuPnNPp+BRFFwnUZ72iTRl3WiKvAbc6inMHc3JyUt02j+R47eKtLGb7fmBL02NczXNj7rcs9uP1Hr/m/Gca35q9MQK3i95Df7Qs9mPNyl5zfm+TOrKRyGvAnczK4zVJ8vF01VOty+up1uXzJd5F5DXg1pZ/DxsAAAAAAIArojgHAAAAAMBiFOcAAAAAAFiM4hwAAAAAAItRnAMAAAAAYDGKcwAAAAAALEZxDgAAAACAxSjOAQAAAACwGMU5AAAAAAAWozgHAAAAAMBiFOcAAAAAAFiM4hwAAAAAAItRnAMAAAAAYDGKcwAAAAAALEZxDgAAAACAxSjOAQAAAACwGMU5AAAAAAAWozgHAAAAAMBiFOcAAAAAAFiM4hwAAAAAAItRnAMAAAAAYDGKcwAAAAAALEZxDgAAAACAxSjOAQAAAACwGMU5AAAAAAAWozgHAAAAAMBiFOcAAAAAAFiM4hwAAAAAAItRnAMAAAAAYDGKcwAAAAAALEZxDgAAAACAxSjOAQAAAACwGMU5AAAAAAAWozgHAAAAAMBiFOcAAAAAAFiM4hwAAAAAAItRnAMAAAAAYDGKcwAAAAAALEZxDgAAAACAxSjOAQAAAACwGMU5AAAAAAAWozgHAAAAAMBiFOcAAAAAAFiM4hwAAAAAAItRnAMAAAAAYDGKcwAAAAAALEZxDgAAAACAxSjOAQAAAACwGMU5AAAAAAAWozgHAAAAAMBiFOcAAAAAAFiM4hwAAAAAAItRnAMAAAAAYDGKcwAAAAAALEZxDgAAAACAxSjOAQAAAACwGMU5AAAAAAAWozgHAAAAAMBiFOcAAAAAAFiM4hwAAAAAAItRnAMAAAAAYDGKcwAAAAAALEZxDgAAAACAxSjOAQAAAACwmMOL8w8//FA1a9aUr6+vQkJC1KlTJ+3cuTPHMhcuXFDfvn0VFBQkHx8fdenSRSdPnrTPj42N1T333CMfHx9VrVpVGzZsyLF+37599cknnzh61wEAAAAAsITDi/MlS5aob9++WrVqlebNm6f09HS1atVKSUlJ9mVefPFF/fbbb/r555+1ZMkSHTt2TJ07d7bPf//993X+/HmtX79eTZo0Ua9evezzVq1apdWrV6t///6O3nUAAAAAACzh4ugNzp49O8f0t99+q5CQEK1bt06NGjVSfHy8xo0bp8mTJ6tZs2aSpAkTJqhcuXJatWqV6tSpo+3bt6t79+4qXbq0evfurTFjxkiS0tPT9cwzz+ibb76Rs7Ozo3cdAAAAAABLmP7MeXx8vCQpMDBQkrRu3Tqlp6erRYsW9mXKli2rIkWKaOXKlZKkypUra+HChcrIyNCcOXNUqVIlSdJHH32kJk2aqEaNGteNm5qaqoSEhBx/AAAAAADcihx+5fxyWVlZ6t+/v+rXr68KFSpIkk6cOCE3NzcFBATkWDY0NFQnTpyQJL366qvq06ePSpQooWLFimncuHHavXu3vvvuO61cuVLPPPOM5s6dqxo1amjs2LHy9/fPFfvDDz/UO++8k+v1o0eP3nSh7pWRfFPrOcIZ50jLYrvH+VkW+5T3KctiJx5JtCw2bS3/0dbyH20t/9HW8h9tLf/R1vIfbS3/0dby3822tfPnz9/wsqYW53379tWWLVu0fPnyPK3n7++vyZMn53itWbNm+vjjjzVp0iTt27dPO3fuVK9evTR06NArdg43ePBgDRgwwD6dkJCgwoULKzIyUn5+N9egkrfH3dR6jhCcedSy2KkB6ZbFDkkKsSx2QKEAy2LT1vIfbS3/0dbyH20t/9HW8h9tLf/R1vIfbS3/3Wxby8uFYdNua3/uuef0+++/a9GiRSpUqJD99bCwMKWlpSkuLi7H8idPnlRYWNgVtzVhwgQFBASoY8eOWrx4sTp16iRXV1d17dpVixcvvuI67u7u8vPzy/EHAAAAAMCtyOHFuWEYeu655/TLL79o4cKFioqKyjG/evXqcnV11YIFC+yv7dy5U4cOHVLdunVzbe/06dMaOnSoRowYIUnKzMxUenr22Zr09HRlZmY6+i0AAAAAAJCvHH5be9++fTV58mTNmDFDvr6+9ufI/f395enpKX9/f/Xs2VMDBgxQYGCg/Pz89Pzzz6tu3bqqU6dOru31799fAwcOVGRk9nMV9evX1/fff69WrVppzJgxql+/vqPfAgAAAAAA+crhV85Hjx6t+Ph4NWnSROHh4fa/qVOn2pf57LPP1KFDB3Xp0kWNGjVSWFiYpk+fnmtbc+bM0Z49e/Tss8/aX3vuuedUvHhx1a5dW2lpaXrrrbcc/RYAAAAAAMhXDr9ybhjGdZfx8PDQyJEjNXLkyGsu17p1a7Vu3TrHa15eXvrpp5/+1T4CAAAAAHArMX2ccwAAAAAAcG0U5wAAAAAAWIziHAAAAAAAi1GcAwAAAABgMYpzAAAAAAAsRnEOAAAAAIDFKM4BAAAAALAYxTkAAAAAABajOAcAAAAAwGIU5wAAAAAAWIziHAAAAAAAi1GcAwAAAABgMYpzAAAAAAAsRnEOAAAAAIDFKM4BAAAAALAYxTkAAAAAABajOAcAAAAAwGIU5wAAAAAAWIziHAAAAAAAi1GcAwAAAABgMYpzAAAAAAAsRnEOAAAAAIDFKM4BAAAAALAYxTkAAAAAABajOAcAAAAAwGIU5wAAAAAAWIziHAAAAAAAi1GcAwAAAABgMYpzAAAAAAAsRnEOAAAAAIDFKM4BAAAAALAYxTkAAAAAABajOAcAAAAAwGIU5wAAAAAAWIziHAAAAAAAi1GcAwAAAABgMYpzAAAAAAAsRnEOAAAAAIDFKM4BAAAAALAYxTkAAAAAABajOAcAAAAAwGIU5wAAAAAAWIziHAAAAAAAi1GcAwAAAABgMYpzAAAAAAAsRnEOAAAAAIDFKM4BAAAAALAYxTkAAAAAABajOAcAAAAAwGIU5wAAAAAAWIziHAAAAAAAi1GcAwAAAABgMYpzAAAAAAAsRnEOAAAAAIDFKM4BAAAAALAYxTkAAAAAABajOAcAAAAAwGIU5wAAAAAAWIziHAAAAAAAi1GcAwAAAABgMYpzAAAAAAAsRnEOAAAAAIDFKM4BAAAAALAYxTkAAAAAABajOAcAAAAAwGIU5wAAAAAAWIziHAAAAAAAi1GcAwAAAABgMYpzAAAAAAAsRnEOAAAAAIDFKM4BAAAAALAYxTkAAAAAABajOAcAAAAAwGIU5wAAAAAAWIziHAAAAAAAi1GcAwAAAABgMYpzAAAAAAAsRnEOAAAAAIDFKM4BAAAAALAYxTkAAAAAABajOAcAAAAAwGKWFucjR45UsWLF5OHhodq1a+vvv/+2zxswYIACAwNVuHBhTZo0Kcd6P//8s+6555783l0AAAAAAEzhYlXgqVOnasCAAfrqq69Uu3ZtDR8+XK1bt9bOnTu1evVqTZ48WXPnztXu3bv15JNPqnXr1goODlZ8fLxef/11zZ8/36pdBwAAAADAoSy7cv7pp5+qV69eeuKJJ1S+fHl99dVX8vLy0vjx47V9+3Y1adJENWrU0IMPPig/Pz/t379fkjRo0CD16dNHRYoUsWrXAQAAAABwKEuunKelpWndunUaPHiw/TUnJye1aNFCK1eu1LPPPqsxY8bo3Llz2rdvn1JSUlSyZEktX75c69ev16hRo64bIzU1Vampqfbp+Ph4SVJCQsJN73dK0s2v+2+dT06zLHbK+dTrL2SShAvWfeZOCdY99UFby3+0tfxHW8t/tLX8R1vLf7S1/Edby3+0tfx3s23tYv1pGMb1FzYscPToUUOS8ddff+V4/eWXXzZq1aplGIZhvPXWW0aJEiWMChUqGNOnTzdSU1ONChUqGGvXrjVGjBhhlC5d2qhXr56xZcuWK8Z46623DEn88ccff/zxxx9//PHHH3/88Wfp3+HDh69bJ9sM40ZKeMc6duyYIiMj9ddff6lu3br21wcNGqQlS5Zo9erVudZ55513FBcXpyeeeEKtWrXS5s2b9fvvv+vLL7/UunXrci3/zyvnWVlZio2NVVBQkGw2mzlv7A6UkJCgwoUL6/Dhw/Lz87N6d3AHo60hv9DWkF9oa8gvtDXkF9pa3hmGofPnzysiIkJOTte++m7Jbe3BwcFydnbWyZMnc7x+8uRJhYWF5Vp+x44d+uGHH7RhwwaNHz9ejRo1UsGCBdWtWzc9+eSTOn/+vHx9fXOs4+7uLnd39xyvBQQEOPy93C38/Pz4AiJf0NaQX2hryC+0NeQX2hryC20tb/z9/W9oOUse0nBzc1P16tW1YMEC+2tZWVlasGBBjivpUvaZhqefflqffvqpfHx8lJmZqfT0dEmy/zczMzP/dh4AAAAAAAezbCi1AQMGqEePHqpRo4Zq1aql4cOHKykpSU888USO5b755hsVLFjQPq55/fr19fbbb2vVqlWaNWuWypcvzxVxAAAAAMBtzbLi/IEHHtDp06c1ZMgQnThxQlWqVNHs2bMVGhpqX+bkyZN6//339ddff9lfq1WrlgYOHKj27dsrJCRE3333nRW7f9dwd3fXW2+9lesRAcDRaGvIL7Q15BfaGvILbQ35hbZmLks6hAMAAAAAAJdYNzAgAAAAAACQRHEOAAAAAIDlKM4BAAAAALAYxblJmjRpov79+9unixUrpuHDh19zHZvNpl9//fVfx3bUdnB7oK0BAAAAtz+K83+455571KZNmyvOW7ZsmWw2mzZt2pTn7a5Zs0a9e/f+t7uXw9tvv60qVarkev348eNq27atQ2NdTUpKigIDAxUcHKzU1NR8iXmnoK3dmG+//VY2m002m01OTk4KDw/XAw88oEOHDuVaduvWrerWrZsKFiwod3d3lS5dWkOGDFFycnKuZTds2KCuXbsqNDRUHh4eKlWqlHr16qVdu3Zdd59+/PFHOTs7q2/fvlfc36sN73ilkxnTpk1TkyZN5O/vLx8fH1WqVElDhw5VbGzsdffDShf/Ta729/bbb/+rbeflpM/TTz8tZ2dn/fzzzzcdE7euW6GtXR7Pz89PNWvW1IwZM3Itl5KSorfeekulS5eWu7u7goOD1bVrV23dujXXsgkJCXr99ddVtmxZeXh4KCwsTC1atND06dN1vb56r/fbe7X39fjjj6tTp045XtuzZ4+eeOIJFSpUSO7u7oqKitKDDz6otWvXXvtDuQPdCm3tIvLane1WaGvktVsTxfk/9OzZU/PmzdORI0dyzZswYYJq1KihSpUq5Xm7BQsWlJeXlyN28brCwsLybXiDadOmKTo6WmXLlrX8CqphGMrIyLB0H/KCtnbj/Pz8dPz4cR09elTTpk3Tzp071bVr1xzLrFq1SrVr11ZaWpr++OMP7dq1S++//76+/fZbtWzZUmlpafZlf//9d9WpU0epqamaNGmStm/frh9++EH+/v568803r7s/48aN06BBg/Tjjz/qwoULN/2+Xn/9dT3wwAOqWbOmZs2apS1btuiTTz7Rxo0b9f3339/0dvPD8ePH7X/Dhw+3/xtd/HvppZfyZT+Sk5M1ZcoUDRo0SOPHj8+XmNdyeTuDY9wqbW3ChAk6fvy41q5dq/r16+v+++/X5s2b7fNTU1PVokULjR8/Xu+995527dqlP//8UxkZGapdu7ZWrVplXzYuLk716tXTxIkTNXjwYK1fv15Lly7VAw88oEGDBik+Pv6a++Ko3961a9eqevXq2rVrl77++mtt27ZNv/zyi8qWLauBAwfe9HZvV7dKWyOv3flulbZGXrsFGcghPT3dCA0NNd59990cr58/f97w8fExRo8ebZw5c8bo3r27ERERYXh6ehoVKlQwJk+enGP5xo0bGy+88IJ9umjRosZnn31mn961a5fRsGFDw93d3ShXrpwxd+5cQ5Lxyy+/2JcZNGiQUapUKcPT09OIiooy3njjDSMtLc0wDMOYMGGCISnH34QJEwzDMHJtZ9OmTUbTpk0NDw8PIzAw0OjVq5dx/vx5+/wePXoYHTt2ND7++GMjLCzMCAwMNJ599ll7rGtp0qSJ8dVXXxmjR482WrZsmWv+li1bjPbt2xu+vr6Gj4+P0aBBA2PPnj32+ePGjTPKly9vuLm5GWFhYUbfvn0NwzCM/fv3G5KMDRs22Jc9d+6cIclYtGiRYRiGsWjRIkOS8eeffxrVqlUzXF1djUWLFhl79uwx7r33XiMkJMTw9vY2atSoYcybNy/Hfl24cMEYNGiQUahQIcPNzc0oUaKE8c033xhZWVlGiRIljI8//jjH8hs2bDAkGbt3777uZ3KjaGs31tYmTJhg+Pv753jtiy++MCQZ8fHxhmEYRlZWllG+fHmjRo0aRmZmZo5lY2JiDJvNZvznP/8xDMMwkpKSjODgYKNTp05XjHfu3Lmr7othGMa+ffsMT09PIy4uzqhdu7YxadKk6+7vRZd/XqtXrzYkGcOHD7+p/biVXOk9jx071ihbtqzh7u5ulClTxhg5cqR9XmpqqtG3b18jLCzMcHd3N4oUKWJ88MEHhmFkt9/L21rRokWvGfvbb7816tSpY8TFxRleXl7GoUOHcsy/2nf9omvlqH9+twzDMDp27Gj06NHDPl20aFFj6NChxqOPPmr4+vra513rO3XRzJkzjRo1ahju7u5GUFCQvU2+8847RnR0dK73WrlyZeONN9645udxp7Oqrf0z1yUkJBiSjM8//9z+2n/+8x/DZrMZMTExOdbNzMw0atSoYZQvX97IysoyDMMw+vTpY3h7extHjx7NFev8+fNGenr6NT+H6/32/nN/L7qYgw0jO29GR0cb1atXz5U3DeP2ykFmIK+R1/ILeS0beS0bxfkVvPzyy0aJEiXsjc0wDGP8+PH2A/IjR44YH3/8sbFhwwZj7969xhdffGE4Ozsbq1evti9/rYIpMzPTqFChgtG8eXMjJibGWLJkiVG1atVcje7dd981VqxYYezfv9+YOXOmERoaagwbNswwDMNITk42Bg4caERHRxvHjx83jh8/biQnJxuGkbPxJiYmGuHh4Ubnzp2NzZs3GwsWLDCioqJyJOEePXoYfn5+xjPPPGNs377d+O233wwvLy9jzJgx1/yc9uzZY7i7uxuxsbHG2bNnDQ8PD+PAgQP2+UeOHDECAwONzp07G2vWrDF27txpjB8/3tixY4dhGIYxatQow8PDwxg+fLixc+dO4++//7Z/RnkpzitVqmTMnTvX2LNnj3H27FkjJibG+Oqrr4zNmzcbu3btMt544w3Dw8PDOHjwoH1b3bp1MwoXLmxMnz7d2Lt3rzF//nxjypQphmEYxvvvv2+UL18+x3vt16+f0ahRo2t+HjeDtnb9tvbPH62TJ08aTZs2NZydnY3ExETDMAxj/fr1hqRcJy4uatmypVG5cmXDMAxj+vTphiTjr7/+umrMa3nzzTeN+++/3zAMwxgxYoTRrFmza+7v5S7/vPr162f4+Pjc0EmwW90/3/MPP/xghIeHG9OmTTP27dtnTJs2zQgMDDS+/fZbwzAM4+OPPzYKFy5sLF261Dhw4ICxbNky+7/dqVOn7CeAjh8/bpw6deqasRs2bGh8+eWXhmEYRpcuXYyhQ4fmmH+t7/r1ctSNHsT6+fkZ//3vf409e/bYD4Cv9Z0yDMP4/fffDWdnZ2PIkCHGtm3bjJiYGPvB1eHDhw0nJyfj77//ti+/fv16w2azGXv37r3m53Gns6qtXf7dTU9PNz777DNDkjF69Gj7MpUqVTJatWp1xfUnTZpk/03LzMw0ChQoYPTu3fumPoPr/fb+c38vd/lB7PXy5t2OvEZeyy/kNfLa5SjOr2D79u05ikDDyE6UjzzyyFXXad++vTFw4ED79LUKpjlz5hguLi45zizNmjXrqo3uoo8//tioXr26ffqtt96yFxyXu3w7Y8aMMQoUKGAvYgzDMP744w/DycnJOHHihGEY2Y26aNGiRkZGhn2Zrl27Gg888MBV98UwDOO1117LcfWxY8eOxltvvWWfHjx4sBEVFXXV4iMiIsJ4/fXXrzgvL8X5r7/+es39NAzDiI6ONkaMGGEYhmHs3LnTkJTravpFR48ezVEAp6WlGcHBwfak6Ei0teu3tYtX7r29vQ0vLy/72eB+/frZl5kyZUqu9nK5fv36GZ6enoZhGMawYcMMSUZsbOxVY15NZmamUbhwYXubO336tOHm5mbs27cvx/7eSHHetm1bo1KlSnneh1vRP99ziRIlcv0wvvvuu0bdunUNwzCM559/3mjWrFmOk1KXu177vGjXrl2Gq6urcfr0acMwDOOXX34xoqKi7Nu93nf9ejnqRg9ir3YXxuX++Z2qW7eu8fDDD191+bZt2xp9+vSxTz///PNGkyZNrhvnTmdVW5NkeHh4GN7e3oaTk5MhyShWrJhx9uxZ+zIeHh652stFFw8Yp06dapw8edKQZHz66afXjXsl1/vtvbi/1zuInTp1qiHJWL9+/U3tx52OvEZeyy/kNfLa5Xjm/ArKli2revXq2Z/z2bNnj5YtW6aePXtKkjIzM/Xuu++qYsWKCgwMlI+Pj+bMmXPFDqquZPv27SpcuLAiIiLsr9WtWzfXclOnTlX9+vUVFhYmHx8fvfHGGzcc4/JYlStXlre3t/21+vXrKysrSzt37rS/Fh0dLWdnZ/t0eHi4Tp06ddXtZmZm6rvvvtMjjzxif+2RRx7Rt99+q6ysLElSTEyMGjZsKFdX11zrnzp1SseOHVPz5s3z9H6upEaNGjmmExMT9dJLL6lcuXIKCAiQj4+Ptm/fbv/sYmJi5OzsrMaNG19xexEREWrfvr393/+3335TampqrmecHYG2dv22Jkm+vr6KiYnR2rVr9cknn6hatWp6//33cy1nXKezkRtd5mrmzZunpKQktWvXTpIUHBysli1b3tQzgf9mP25lSUlJ2rt3r3r27CkfHx/733vvvae9e/dKyu68JSYmRmXKlFG/fv00d+7cm4o1fvx4tW7dWsHBwZKkdu3aKT4+XgsXLpR0/e/6tXJUXvwzB0nX/07FxMRcM//16tXL3qdBWlqaJk+erCeffPJf7eedJj/bmiR99tlniomJ0axZs1S+fHl98803CgwMzLGM2TnoRn57b9SdmoPMQF7LRl4zH3kt292c1yjOr6Jnz56aNm2azp8/rwkTJqhEiRL2RPjxxx/r888/1yuvvKJFixYpJiZGrVu3dmiHGStXrtTDDz+sdu3a6ffff9eGDRv0+uuvm9Ypxz+TuM1mu+YXYs6cOTp69KgeeOABubi4yMXFRd27d9fBgwe1YMECSZKnp+dV17/WPElycspumpd/ydLT06+47OXFoCS99NJL+uWXX/TBBx9o2bJliomJUcWKFe2f3fViS9JTTz2lKVOmKCUlRRMmTNADDzxgWidrtLVrtzUpuz2ULFlS5cqV04ABA1SnTh316dPHPr906dKSsk8QXMn27dvty1z8744dO/K87+PGjVNsbKw8PT3t7f7PP//Ud999Z38Pfn5+SkpKyvWe4uLiJEn+/v72/di3b99V2/XtKjExUZI0duxYxcTE2P+2bNli7zimWrVq2r9/v959912lpKSoW7duuv/++/MU5+KP+R9//GH/t/Dy8lJsbKz9ZMn1vus3kof++UN/pX+vf+agG/lOXS/2PffcI3d3d/3yyy/67bfflJ6enufP6E6XX23torCwMJUsWVKtWrWy/y5cfmKxdOnS18xBF5cpWLCgAgICbioH3chvr5R9QvNKnS/FxcXlyEHSzeXCuw15jbyWX8hr5DWK86vo1q2bnJycNHnyZE2cOFFPPvmkbDabJGnFihXq2LGjHnnkEVWuXFnFixe/oeGXLipXrpwOHz6s48eP21+7vLdDSfrrr79UtGhRvf7666pRo4ZKlSqlgwcP5ljGzc1NmZmZ1421ceNGJSUl2V9bsWKFnJycVKZMmRve538aN26cunfvniNxxMTEqHv37ho3bpwkqVKlSlq2bNkVk76vr6+KFSuW40t3uYIFC0pSjs8oJibmhvZtxYoVevzxx3XfffepYsWKCgsL04EDB+zzK1asqKysLC1ZsuSq22jXrp28vb01evRozZ4929Qzu7S1vHv11Vc1depUrV+/XpJUpUoVlS1bVp999lmuonjjxo2aP3++HnzwQUlSq1atFBwcrI8++uiK275YRP/T2bNnNWPGDE2ZMiVHm9+wYYPOnTtnP3NdpkwZZWRk5GqvF/f14g/HQw89pMTERI0aNSpP+3GrCw0NVUREhPbt26eSJUvm+IuKirIv5+fnpwceeEBjx47V1KlTNW3aNPvwca6urtdtb3/++afOnz+vDRs25Pj3+PHHHzV9+nTFxcVd97t+rRwlZeehy787mZmZ2rJly3U/gxv5TlWqVOmq+U+SXFxc1KNHD02YMEETJkxQ9+7db+jE4t0kv9raldSqVUvVq1fPcQdP9+7dNX/+fG3cuDHHsllZWfrss89Uvnx5Va5cWU5OTurevbsmTZqkY8eO5dp2YmLiVUceuZHfXik7D61bty7HupmZmdq4caM9B1WpUkXly5fXJ598csUTpLdrDjIDeY28ll/Ia+Q1njm/hp49exoFChQwnJ2dczyz++KLLxqFCxc2VqxYYWzbts146qmnDD8/P/vzDoZx/U66ypcvb7Rs2dKIiYkxli5dalSvXj3HsxQzZswwXFxcjB9//NHYs2eP8fnnnxuBgYE5nkmZNGmS4e3tbWzYsME4ffq0ceHCBcMwcj6TkZSUZISHhxtdunQxNv9fe/ce19P9xwH8leqrb9dvKko1UemCVYq5LCwLszUjl2EjpU3RcgljodyZ3E2YbpvLXJvfLHMZlgyhMqRIueYWzZJIvX9/eHR0+n6rr6Kvy/v5eHg8nHM+5/P5nPN9n9P38z2f8/n88w/9+eef1KxZM7lBusrXnYgoODiYOnfurPC83Lp1izQ1NSkhIUFu2++//07169envLw8unPnDhkZGQmDkmRmZlJcXJwwKElMTAxpaWnRkiVLKDMzk06cOEFLly4V8mrXrh25u7vT2bNn6cCBA9S2bVuF75xXHHmxd+/e5OzsTCkpKZSamkpeXl6kp6cn+jx8fHzI0tKStm/fThcvXqT9+/fTL7/8Ispn8uTJJJFIyMHBQeF5eJE41jpXem4qe4e7f//+9PHHHwvLSUlJpK2tTZ999hkdPXqULl26RJs2bSJLS0vq0KGDUGciovj4eNLU1CQvLy/as2cPZWdnU3JyMo0fP77S998XLVpEZmZmCt/x6t+/vzBIHBFRt27dyMnJifbu3UsXL16khIQEsrOzk8t7woQJpK6uTuPHj6fDhw9TTk4O7d27l/r27VvpKO6vooqf0Zo1a0gqldKSJUsoIyODTp06RVFRURQREUFERBEREbR+/XpKT0+njIwM8vPzI1NTU2FkVVtbWwoICKDc3NxKxwbo1auXws+qpKSETE1NhcGUqrrWq7tHRUZGkra2Nv3222+Unp5O/v7+pK+vL/duZvnZEYiUu6b2799P9erVEwZOOnXqlDCjQJnMzExSV1cndXV1OnLkSPUfxFtAFbFGpPhdx7K/d1evXiUioocPH9J7771HlpaWtGnTJrp06RIdO3aMPvvsM9LR0aG///5b2DcvL4/s7e3JwsKCYmNj6cyZM5SZmUlr164lGxsbhSMKK/u3l4ho/fr1JJVKacWKFZSZmUkpKSnk6+tLBgYGwhggRE9njdDT06MOHTrQzp07KSsri9LS0mjmzJkvZRDU1wnf1xaJ6sD3tZeH72t8XyuPG+dVOHz4MAGgnj17itbn5eVRr169SFdXlxo2bEihoaE0ZMgQpRtMRE8H9Hj//fdJIpFQ8+bNadeuXXIXyfjx48nIyIh0dXVpwIABtGjRItHFW1RURN7e3iSTyV7I9FblVdVgWrBgAclkMoWDjTx69IhkMpkwDUNaWhp169aNtLW1SU9Pj9zd3UWjckZGRpKdnR1pamqSmZkZBQUFCdvOnj1L7du3J6lUSs7OzsIUYNU1zrOzs+mDDz4gqVRKlpaWtHz5crnP4+HDhzRmzBgyMzMjiURCNjY2FBUVJconKyuLAND8+fMVnocXiWOtc6XnprLG+d9//00ARCPXnzp1iry9valBgwakqalJ1tbWFBoaSg8ePJDbPzk5mfr06UMmJiZUv359srGxoa+++qrS6fJatWpFgYGBCrf98ssvJJFIhAF87t27R9988w1ZW1uTVColW1tbmjBhguhclN+3U6dOpKenRzo6OvTuu+/S9OnTX4vpPsoo+ozWrVtHzs7OJJFIyNDQkDp16kTbtm0joqeDBzo7O5OOjg7p6+tT165dRYO37Nixg2xsbEhDQ0PhNDA3btwgDQ0N2rRpk8L6BAQEkIuLCxFVf61XdY96/PgxBQQEUIMGDahhw4Y0Z84chQMnVfwSS1T9NUVEtHXrVuEcGRsbU58+feTycXd3Vzj90NuqrmOtjKIvsaWlpWRvby8a4OrBgwf03XffkY2NDWlqalKDBg2EHywrys/Pp2+//ZZsbW1JIpFQo0aN6MMPP6Tt27cr/BHwef72lp0XV1dX0tPTo0aNGlHPnj0pLS1Nbt+MjAwaMmQINW7cmCQSCTVp0oQGDhz4Wg+o9CLwfW2RXB34vvZy8H2N72vlqRG9AW/OM/YSJCYmomvXrrhy5QoaNWqk6uowxt4yRARbW1sEBgZi7Nixqq4OY4zVGt/XGKuahqorwNir5tGjR7h9+zbCwsLQr18/bpgzxurc7du3sXHjRty4cQPDhg1TdXUYY6zW+L7GWPW4cc5YBRs2bICfnx+cnZ0RFxen6uowxt5CDRs2hLGxMVavXg1DQ0NVV4cxxmqN72uMVY+7tTPGGGOMMcYYYyrGU6kxxhhjjDHGGGMqxo1zxhhjlcrLy0PDhg2Rk5Oj6qqwSnz++eeIiIhQdTVqjWPt1femxFpFdRF7YWFhcHZ2rnU+MTExkMlktc7nVRIZGQkvLy9VV6NOcKyp1usQa9w4Z4wxVqlZs2ahV69esLKyktvWvXt3qKurIzk5ue4rVscKCwsxadIkWFtbQ0tLCyYmJujcuTN+/fVXVVcNoaGhmDVrFv79919VV6VWONae4lirexVjLycnB2pqalBXV8e1a9dEaXNzc6GhoQE1NbXnamCFhIRg3759ta7rgAEDkJmZKSy/iIbY1q1bFR5rGVtbW6VGVq9pXXx9fXHy5EkkJiY+976vG441jrXqcOOcMcaYQoWFhVi7di38/Pzktl2+fBmHDx/GqFGjEBUV9dLr8vjx45deRlVGjBiBbdu2YdmyZTh37hx27dqFvn37Ii8v76WVqewxt2zZEtbW1vj5559fWl1eNo61ZzjW6lZVsWdubi43MGxsbCzMzc2fuxxdXV0YGRnVuJ4AUFxcDKlUioYNG9Yqn4o+/fRTGBkZITY2Vm7bX3/9hQsXLig8Py+KRCLBoEGDsHTp0pdWxquAY41jTSmqnGSdMcbYq2vz5s1kYmKicFtYWBh9/vnnlJ6eTgYGBlRYWEhERBkZGQSA0tPTRekXLlxIzZo1E5b/+ecf6tGjB+no6FDDhg3piy++oNu3bwvbO3fuTCNHjqTg4GAyMjKiLl26EBFRREQEtWzZkrS1tcnCwoICAgLov//+E5W1evVqsrCwIKlUSp999hlFRESQgYGBKE18fDy5uLhQ/fr1qWnTphQWFkbFxcWVngsDAwOKiYmp8nwVFRXRhAkTyMLCgiQSCVlbW9OPP/4obD9w4AC1adOGJBIJmZqa0sSJE0VlVnbM1Z0rIqLw8HB6//33q6zfq4xj7RmOtbqlKPays7MJAIWGhpKtra1oW/PmzWnKlCkEgLKzs4mI6MmTJ+Tr60tWVlakpaVFzZs3p8WLF4v2mzZtGjk5OQnLJSUlFB4eTubm5iSRSMjJyYkSEhLk6rBx40bq1KkT1a9fn6Kjoyk6OlqIsejoaAIg+hcdHU3Dhg2jjz/+WFT+48ePycTERBQn5Y0dO1buWImIhg4dSu+99x4REV26dIk+/fRT0tHRIT09PerXrx/duHGjyroQEd27d4/8/PzI2NiY9PT06IMPPqDU1FRROQcPHiSJRCJc328ijrWnONaqxo1zxhhjCn3zzTfUo0cPufWlpaXUpEkT+u2334iIyNXVleLi4oTtbm5uFBoaKtrH1dVVWHfv3j0yMTGhSZMmUXp6Op08eZI8PT3pgw8+ENJ37tyZdHV1afz48XTu3Dk6d+4cEREtWrSI/vzzT8rOzqZ9+/aRnZ0dBQQECPsdOnSI6tWrR99//z1lZGTQihUrqEGDBqIG019//UX6+voUExNDWVlZtHv3brKysqKwsLBKz4WdnR3179+f7t+/X2ma/v37k6WlJW3bto2ysrJo7969tHHjRiIiunr1Kmlra1NgYCClp6fT9u3bydjYmKZNm1blMStzroiIEhISSCKRUFFRUaX1e5VxrD3DsVa3FMVeWWPl2LFjZGxsTImJiURElJiYSCYmJnTs2DFRg+nx48c0depUSk5OposXL9LPP/9M2tra9Msvvwh5VmwwLVy4kPT19WnDhg107tw5mjBhAmlqalJmZqaoDlZWVrR161a6ePEiXb9+XdRgKiwspHHjxlGLFi0oNzeXcnNzqbCwkJKSkkhdXZ2uX78ulLdt2zbS0dGR+4GpzJkzZwgAHTx4UFj333//kY6ODq1evZpKSkrI2dmZ3n//fTp+/DgdOXKEXF1dqXPnzlXWhYjoww8/JC8vL0pOTqbMzEwaN24cGRkZUV5enlDWgwcPqF69erR//37lP7zXDMfaUxxrVePGOWOMMYV69epFvr6+cut3795NJiYmwpO4RYsWCX80y5atra2F5YpPOGfMmEHdunUT5XnlyhUCQBkZGUT0tPHg4uJSbR03b95MRkZGwvKAAQPkfsUfPHiwqMHUtWtXmj17tijNTz/9RGZmZpWWc/DgQbKwsCBNTU1yc3Oj0aNH06FDh+SOcc+ePQr3nzx5MtnZ2VFpaamwbsWKFaSrq0slJSWVHrMy54qIKC0tjQBQTk5OpcfwKuNYe4ZjrW4pir2yxkpKSgqNHj2ahg0bRkREw4YNozFjxlBKSoqowaTIyJEjydvbW1iu2GBq3LgxzZo1S7RPmzZtKDAwUFSHik9FyzeYFOVbxtHRkebNmycse3l5kY+PT6X1JSJq164dDR06VFheu3YtaWtr0/3792n37t2krq5Oly9fFraXNbKOHTtWaV0SExNJX19f7scca2trWrVqlWidoaFhtb1GXmcca89wrFWO3zlnjDGm0MOHD6GlpSW3PioqCgMGDICGhgYAYODAgUhKSkJWVhaApyM65+Tk4MiRIwCAdevWoXXr1rC3twcApKWlYf/+/dDV1RX+lW0rywMAXF1d5creu3cvunbtCnNzc+jp6eHLL79EXl4eCgsLAQAZGRlo27ataJ+Ky2lpaZg+fbqofH9/f+Tm5gr5VNSpUydcvHgR+/btQ9++fXHmzBm4u7tjxowZAIDU1FSoq6ujc+fOCvdPT09H+/btoaamJqzr2LEjCgoKcPXq1UqPWdlzJZVKAaDS+r/qONae4VirW5XFXhlfX19s3rwZN27cwObNm+Hr66sw3YoVK+Dq6goTExPo6upi9erVuHz5ssK09+/fx/Xr19GxY0fR+o4dOyI9PV20zs3N7TmP6Knhw4cjOjoaAHDz5k0kJCRUWvcyvr6+2LJlC/777z8AT6+/fv36QU9PD+np6bC0tISlpaWQ3tHRETKZTK7O5aWlpaGgoABGRkai2MrOzhbFFfA0tt6UuFKEY+0ZjrXKaai6Aowxxl5NxsbGuHfvnmjd3bt3sX37dhQXF2PlypXC+pKSEkRFRWHWrFkwNTWFh4cH1q9fj3bt2mH9+vUICAgQ0hYUFMDLywvz5s2TK9PMzEz4v46OjmhbTk4OPvnkEwQEBGDWrFlo0KABDh06BD8/Pzx+/Bja2tpKHVdBQQHCw8PRp08fuW1VfXHS1NSEu7s73N3dMXHiRMycORPTp0/HxIkThQZLbVU8ZmXP1d27dwEAJiYmL6QedY1jTYxjre4oir3yWrVqBXt7ewwcOBAODg5o2bIlUlNTRWk2btyIkJAQREREoH379tDT08P333+Po0eP1rp+FT8nZQ0ZMgTffvst/v77bxw+fBhNmzaFu7t7lft8/vnnGDNmDDZt2oROnTohKSkJc+bMqVH5ZQoKCmBmZoYDBw7Ibas4Tdfdu3ffmLhShGPtGY61ynHjnDHGmEIuLi5yozKvW7cOFhYWiI+PF63fvXs3IiIiMH36dKirq2Pw4MGYMGECBg4ciIsXL+Lzzz8X0rZu3Rpbt26FlZWV8ERUGSdOnEBpaSkiIiJQr97Tjl+bNm0SpbGzs5ObbqvicuvWrZGRkQEbGxuly1bE0dERT548QVFREVq1aoXS0lIcPHgQH374oVxaBwcHbN26FUQkPNFMSkqCnp4eLCwsKi1D2XN1+vRpWFhYwNjYuFbHpCoca1XjWHt5FMVeRb6+vggMDBT9SFReUlISOnTogMDAQGFdxSd15enr66Nx48ZISkoS9YBISkqS631RHYlEgpKSErn1RkZG+OyzzxAdHY2///4bw4YNqzYvPT099OvXD1FRUcjKykLz5s2FRpaDgwOuXLmCK1euCE80z549i/z8fDg6OlZal9atW+PGjRvQ0NBQOE1imaysLBQVFcHFxUXZQ3/tcKw9w7FWBVX3q2eMMfZqOnXqFGloaNDdu3eFdU5OTjRx4kS5tPn5+SSRSISBu+7fv09SqZScnJyoa9euorTXrl0jExMT6tu3Lx07dowuXLhAu3btIh8fH3ry5AkRPX0nNjg4WLRfamqq8F5cVlYWxcXFkbm5OQGge/fuEdGzQboiIiIoMzOTIiMjycjIiGQymZDPrl27SENDg8LCwuj06dN09uxZ2rBhA3333XeVnovOnTtTZGQkHT9+nLKzs2nnzp1kZ2dHHh4eQhofHx+ytLSk7du308WLF2n//v3CID1lg3SNHDmS0tPTKT4+XuEgXRWPWZlzRfR0lFtF72y/LjjWnuFYq1uKYq/8e8BERMXFxXT79m1h7IOK7wEvWbKE9PX1adeuXZSRkUGhoaGkr68veie24juyixYtIn19fdq4cSOdO3eOJk6cqHCQrrI6lKn4HvC6detIR0eHUlJS6Pbt26L3bXfv3k0SiYTU1dXp2rVrSp2PxMREAkCGhoY0d+5cYX1paSk5OzuTu7s7nThxgo4ePSoapKuyupSWltL7779PTk5O9Mcff1B2djYlJSXR5MmTKTk5WXRc5WdZeBNxrIlxrCnGjXPGGGOVatu2LUVGRhIR0fHjx0UDslT00UcfUe/evYXl/v37EwCKioqSS5uZmUm9e/cmmUxGUqmU7O3tafTo0cIgVooaD0RPR501MzMjqVRK3bt3p7i4OFGDiejp9Fbm5ubC9FYzZ84kU1NTUT67du2iDh06kFQqJX19fWrbti2tXr260vMwe/Zsat++PTVo0IC0tLSoWbNm9M0339CdO3eENA8fPqQxY8aQmZkZSSQSsrGxER27MtNbKTrm6s7Vw4cPycDAgP7+++9K6/864Fh7imOt7pWPPaLKGytlKjaYioqKyMfHhwwMDEgmk1FAQAB9++23VTaYSkpKKCwsjMzNzUlTU7PS6a2qazAVFRWRt7c3yWQy0ZRSRM9mO+jZs+dznQ87Ozu5EbiJqp7eqqq63L9/n4KCgqhx48akqalJlpaWNHjwYNGAX926daM5c+Y8Vz1fRxxrYhxr8tSIiOrmGT1jjLHXzc6dOzF+/HicPn1a6N77uvH398e5c+eQmJio6qq8FCtXrsT27duxe/duVVelVjjWXn1vSqxVVBexN2nSJCQmJuLQoUMvJX9FCgoKYG5ujujoaIXjHrwqzpw5Aw8PD2RmZsLAwEDV1XmpONZU63WINX7nnDHGWKU+/vhjnD9/HteuXRONnPoqW7BgATw9PaGjo4OEhATExsbihx9+UHW1XhpNTU0sW7ZM1dWoNY61V9+bEmsVvczYIyJh9P26ese1tLQUd+7cQUREBGQyGT799NM6KbemcnNzERcX98o2ll4kjjXVeh1ijZ+cM8YYe6P0798fBw4cwH///YdmzZohKCgII0aMUHW12BuIY41VJz8/H40aNUKbNm2wbt06NGnS5KWXmZOTg6ZNm8LCwgIxMTHo2rXrSy+TqR7H2puBG+eMMcYYY4wxxpiKvZ4vdTHGGGOMMcYYY28QbpwzxhhjjDHGGGMqxgPCMfaClJSUoLi4WNXVYIwxxhhjNaCpqQl1dXVVV4O9xbhxzlgtERFu3LiB/Px8VVeFMcYYY4zVgkwmg6mpKdTU1FRdFfYW4sY5Y7VU1jBv2LAhtLW1+WbOGGOMMfaaISIUFhbi1q1bAAAzMzMV14i9jbhxzlgtlJSUCA1zIyMjVVeHMcYYY4zVkFQqBQDcunULDRs25C7urM7xgHCM1ULZO+ba2toqrgljjDHGGKutsu90PI4QUwVunDP2AnBXdsYYY4yx1x9/p2OqxI1zxhhjjDHGGGNMxbhxzhhTuZycHKipqSE1NfW1yru8AwcOQE1NTRi1PyYmBjKZ7KWWyd48YWFhcHZ2FpZ9fHzw2Wefqaw+byI1NTXEx8fXKo+Kn0uXLl0wevToWuUJyH/+rxorKyssXrxYWH4R55Kx2nre+2TFv9eMvUp4QDjGXoJle/LrtLwgT9lzpb99+zamTp2KnTt34ubNmzA0NISTkxOmTp2Kjh07Anj6pWv79u1vRcMgOzsb3333HQ4cOIC7d+/C2NgYrq6umDdvHuzt7WuU54ABA9CzZ09hOSwsDPHx8S/9R4Kq3FrvV6flNRy0Vum01XUjnDZtGsLCwmpZo5pR9lo4ePAgwsPDkZqaiqKiIpibm6NDhw5Ys2YNJBJJjcpesmQJiEhY7tKlC5ydnUUNpLq0JmtSnZbnbz3nudIrc2/Lzc2FoaFhrepV8XN5UUJCQhAUFCQs+/j4ID8/v9YN4JKSEnz//feIiYnBpUuXIJVKYWtrC39/fwwfPrzG+ZY/lzk5OWjatClSUlJU9gND/uL8Oi1PNlr2XOl9fHwQGxsLANDQ0ECDBg3w7rvvYuDAgfDx8UG9evzMjLG3HTfOGXsLeXt74/Hjx4iNjUWzZs1w8+ZN7Nu3D3l5eaquWo09fvy4Rg2g4uJieHp6ws7ODtu2bYOZmRmuXr2KhISEWv2qLpVKhVFfWfVyc3OF///yyy+YOnUqMjIyhHW6urrPlV9N46Gmzp49ix49eiAoKAhLly6FVCrF+fPnsXXrVpSUlNQ4XwMDgxdYyzefMvc2U1PTWpfzoj8XIkJJSQl0dXWfO9aVER4ejlWrVmH58uVwc3PD/fv3cfz4cdy7d69W+b6Ic/m26dGjB6Kjo1FSUoKbN29i165dCA4OxpYtW7Bjxw5oaPBXc8beZvwTHWNvmfz8fCQmJmLevHn44IMP0KRJE7Rt2xaTJk3Cp59+CuBp10UA6N27N9TU1ITlrKws9OrVC40aNYKuri7atGmDvXv3ivK3srLC7Nmz4evrCz09PbzzzjtYvXq1KM2xY8fg4uICLS0tuLm5ISUlRbS9pKQEfn5+aNq0KaRSKezs7LBkyRJRmrJubLNmzULjxo1hZ2enVN4VnTlzBllZWfjhhx/Qrl07NGnSBB07dsTMmTPRrl07AM+6xm/cuBEdOnSAlpYWWrZsiYMHD1aab/lu7TExMQgPD0daWhrU1NSgpqaGmJiYKuv1tjE1NRX+GRgYQE1NTVh+8OABBg8eXG3czZgxA0OGDIG+vj6++uorAMCaNWtgaWkJbW1t9O7dGwsXLpR73eDXX39F69atoaWlhWbNmiE8PBxPnjwR8gXkr4WKdu/eDVNTU8yfPx8tW7aEtbU1evTogTVr1gg/0pTFRHx8PGxtbaGlpYXu3bvjypUrlZ6X8t01fXx8cPDgQSxZskSIo5ycnOc70W8wZe5tgLgrdtm1vWnTJri7u0MqlaJNmzbIzMxEcnIy3NzcoKuri48++gi3b98W8qiuG+1PP/0ENzc36OnpwdTUFIMGDRLmTgaedatNSEiAq6sr6tevj0OHDom6tYeFhSE2Nha//vqr8HkfOHAAHh4eGDVqlKi827dvQyKRYN++fQrrs2PHDgQGBqJfv35o2rQpnJyc4Ofnh5CQECFNly5dMGrUKIwaNQoGBgYwNjbGlClTquwhUP5cNm3aFADg4uICNTU1dOnSpdL93mb169eHqakpzM3N0bp1a0yePBm//vorEhIShL8Lil7Hys/PF2IAeBZDf/zxB1xcXCCVSuHh4YFbt24hISEBDg4O0NfXx6BBg1BYWCjk06VLFwQFBWH06NEwNDREo0aNsGbNGjx48ADDhg2Dnp4ebGxskJCQAODpD0c2NjZYsGCB6DhSU1OhpqaGCxcuKDzOsmtk9uzZaNSoEWQyGaZPn44nT55g/PjxaNCgASwsLBAdHS3a759//oGHhwekUimMjIzw1VdfoaCgQNheUlKCsWPHQiaTwcjICBMmTJCL0dLSUsyZM0f4DuHk5IQtW7Y81+fEmKpw45yxt0zZk5n4+Hg8evRIYZrk5GQAQHR0NHJzc4XlgoIC9OzZE/v27UNKSgp69OgBLy8vXL58WbR/RESE0DAODAxEQECA8BS0oKAAn3zyCRwdHXHixAmEhYWJviACT/+wWlhYYPPmzTh79iymTp2KyZMnY9OmTaJ0+/btQ0ZGBvbs2YPffvtNqbwrMjExQb169bBly5Zqn3COHz8e48aNQ0pKCtq3bw8vLy+lehsMGDAA48aNQ4sWLZCbm4vc3FwMGDCg2v3YU8rG3YIFC+Dk5ISUlBRMmTIFSUlJGDFiBIKDg5GamgpPT0/MmjVLtE9iYiKGDBmC4OBgnD17FqtWrUJMTIyQrrJroSJTU1Pk5ubir7/+qvJYCgsLMWvWLMTFxSEpKQn5+fn4/PPPlToPS5YsQfv27eHv7y/EkaWlpVL7vg2UubdVZtq0aQgNDcXJkyehoaGBQYMGYcKECViyZAkSExNx4cIFTJ06Ven8iouLMWPGDKSlpSE+Ph45OTnw8fGRS/ftt99i7ty5SE9Px7vvvivaFhISgv79+6NHjx7C592hQwcMHz4c69evFx3jzz//DHNzc3h4eCisj6mpKf7880/RDwyKxMbGQkNDA8eOHcOSJUuwcOFC/Pjjj0od87FjxwAAe/fuRW5uLrZt26bUfgzw8PCAk5NTjc5ZWFgYli9fjsOHD+PKlSvo378/Fi9ejPXr12Pnzp3YvXs3li1bJtonNjYWxsbGOHbsGIKCghAQEIB+/fqhQ4cOOHnyJLp164Yvv/wShYWFUFNTg6+vr1wjOjo6Gp06dYKNjU2ldfvzzz9x/fp1/PXXX1i4cCGmTZuGTz75BIaGhjh69ChGjBiBr7/+GlevXgUAPHjwAN27d4ehoSGSk5OxefNm7N27V/RjVEREBGJiYhAVFYVDhw7h7t272L59u6jcOXPmIC4uDpGRkThz5gzGjBmDL774osof1Bl7VXDjnLG3jIaGBmJiYhAbGwuZTIaOHTti8uTJOHXqlJDGxMQEACCTyWBqaiosOzk54euvv0bLli1ha2uLGTNmwNraGjt27BCV0bNnTwQGBsLGxgYTJ06EsbEx9u/fDwBYv349SktLsXbtWrRo0QKffPIJxo8fL9pfU1MT4eHhcHNzQ9OmTTF48GAMGzZMrnGuo6ODH3/8ES1atECLFi2Uyrsic3NzLF26FFOnToWhoSE8PDwwY8YMXLx4US7tqFGj4O3tDQcHB6xcuRIGBgZYu7b696qlUil0dXWhoaEhPA3mLu/KUzbuPDw8MG7cOFhbW8Pa2hrLli3DRx99hJCQEDRv3hyBgYH46KOPRPuEh4fj22+/xdChQ9GsWTN4enpixowZWLVqFYDKr4WK+vXrh4EDB6Jz584wMzND7969sXz5cty/f1+Urri4GMuXL0f79u3h6uqK2NhYHD58WGjYVMXAwAASiQTa2tpCHKmrqyt9Ht90ytzbKhMSEoLu3bvDwcEBwcHBOHHiBKZMmYKOHTvCxcUFfn5+wj1MGb6+vvjoo4/QrFkztGvXDkuXLkVCQoLoCSAATJ8+HZ6enrC2tkaDBg1E23R1dSGVSoUnraamppBIJOjTpw+Apz0+ysTExMDHx6fSsRsWLlyI27dvw9TUFO+++y5GjBghPBktz9LSEosWLYKdnR0GDx6MoKAgLFq0SKljLrs2jIyMYGpqKnc8rGr29vY16gkzc+ZMUZwePHgQK1euhIuLC9zd3dG3b1+52HVyckJoaChsbW0xadIkaGlpwdjYGP7+/rC1tcXUqVORl5cnXDs+Pj7IyMgQ7lPFxcVYv349fH19q6xbgwYNsHTpUtjZ2cHX1xd2dnYoLCzE5MmThbIlEgkOHToE4On3g6KiIsTFxaFly5bw8PDA8uXL8dNPP+HmzZsAgMWLF2PSpEno06cPHBwcEBkZKXrN5NGjR5g9ezaioqLQvXt3NGvWDD4+Pvjiiy+E+zpjrzJunDP2FvL29sb169exY8cO9OjRAwcOHEDr1q2r7WpdUFCAkJAQODg4QCaTQVdXF+np6XJPMMs/ASrrnlzWpbPsCZGWlpaQpn379nJlrVixAq6urjAxMYGuri5Wr14tV06rVq1E7xUrm3dFI0eOxI0bN7Bu3Tq0b98emzdvRosWLbBnzx5RuvJ5aWhowM3NDenp6dXmz2pH2bhzc3MTLWdkZKBt27aidRWX09LSMH36dOGpq66urvBkunxX0Oqoq6sjOjoaV69exfz582Fubo7Zs2cLvSXKaGhooE2bNsKyvb09ZDIZx9ELUtN7W/l7VqNGjQA8vb+UX1e+W3p1Tpw4AS8vL7zzzjvQ09ND586dAaDamFWGlpYWvvzyS0RFRQEATp48idOnTyt8Ml/G0dERp0+fxpEjR+Dr64tbt27By8tLbjC4du3aiRr47du3x/nz52s1bgJTDhHVaH7tirGrra2NZs2aidZVjN3y+6irq8PIyEgu3gEI+zVu3Bgff/yxEHP/+9//8OjRI/Tr16/KurVo0UI0yF2jRo1E5ZSVXf77gZOTE3R0dIQ0HTt2RGlpKTIyMvDvv/8iNzcX7733nrC97G9xmQsXLqCwsBCenp6i+3pcXByysrKqrC9jrwJunDP2ltLS0oKnpyemTJmCw4cPw8fHB9OmTatyn5CQEGzfvh2zZ89GYmIiUlNT0apVKzx+/FiUTlNTU7SspqaG0tJSpeu2ceNGhISEwM/PD7t370ZqaiqGDRsmV075P+C1paenBy8vL8yaNQtpaWlwd3fHzJkzX1j+rOaUjbuaxENBQYEwwnrZv3/++Qfnz58X/cijLHNzc3z55ZdYvnw5zpw5g6KiIkRGRj53PqzmanJvK3/PKmsgVVyn7D2srGuuvr4+1q1bh+TkZKHb7Yu6hw0fPhx79uzB1atXER0dDQ8PDzRp0qTKferVq4c2bdpg9OjR2LZtG2JiYrB27VpkZ2fXqA7sxUpPTxfe2y9r0JZ/l7q4uFjhfhXjVJm/v4rSKLoGyu83fPhwbNy4EQ8fPkR0dDQGDBgAbW3tKo+punIqq19tlPVO2blzp+i+fvbsWX7vnL0WuHHOGAPw9MnKgwcPhGVNTU25pyVJSUnw8fFB79690apVK5iamj53NzwHBwecOnUKRUVFwrojR47IldOhQwcEBgbCxcUFNjY2Sv3irUzeylBTU4O9vb3ofFTM68mTJzhx4gQcHByUylMikfDTpxqqadzZ2dnJvSNecbl169bIyMiAjY2N3L+yL8iKrgVlGBoawszMTBRHT548wfHjx4XljIwM5Ofncxy9RBXvbS/buXPnkJeXh7lz58Ld3R329vbP9dS9vMo+71atWsHNzQ1r1qxRqnuxIo6OjgAgOjdHjx4VpTly5AhsbW2Ven2irBcTx+fz+/PPP/HPP//A29sbwLNXBMr3ulHlNJzA09fVdHR0sHLlSuzatatGMVcdBwcHpKWliWIyKSkJ9erVg52dHQwMDGBmZiaK07K/xWUcHR1Rv359XL58We6ezmN0sNcBN84Ze8vk5eXBw8MDP//8M06dOoXs7Gxs3rwZ8+fPR69evYR0VlZW2LdvH27cuCFMt2Nra4tt27YhNTUVaWlpGDRo0HP/4j1o0CCoqanB398fZ8+exe+//y43CqytrS2OHz+OP/74A5mZmZgyZUqlA3E9b94VpaamolevXtiyZQvOnj2LCxcuYO3atYiKihKdD+BpV/vt27fj3LlzGDlyJO7du6f0FxQrKytkZ2cjNTUVd+7cee4Bq95mNY27oKAg/P7771i4cCHOnz+PVatWISEhQdR1dOrUqYiLi0N4eDjOnDmD9PR0bNy4EaGhoUIaRddCRatWrUJAQAB2796NrKwsnDlzBhMnTsSZM2fg5eUlpNPU1ERQUBCOHj2KEydOwMfHB+3atZPrbl8ZKysrHD16FDk5Obhz584LfeL0ulP23vayvfPOO5BIJFi2bBkuXryIHTt2YMaMGTXKy8rKCqdOnUJGRgbu3Lkjeno6fPhwzJ07F0SE3r17V5lP3759sWjRIhw9ehSXLl3CgQMHMHLkSDRv3hz29vZCusuXL2Ps2LHIyMjAhg0bsGzZMgQHBytV14YNG0IqlWLXrl24efMm/v333xod85vu0aNHuHHjBq5du4aTJ09i9uzZ6NWrFz755BMMGTIEwNNxStq1aycMFnjw4EHRPUkV1NXV4ePjg0mTJsHW1lapV8ae1+DBg6GlpYWhQ4fi9OnT2L9/P4KCgvDll18KXe2Dg4Mxd+5cxMfH49y5cwgMDBRNe6qnp4eQkBCMGTMGsbGxyMrKwsmTJ7Fs2TJhjnnGXmU8mSJjL0GQp0zVVaiUrq4u3nvvPSxatAhZWVkoLi6GpaUl/P39MXnyZCFdREQExo4dizVr1sDc3Bw5OTlYuHAhfH190aFDBxgbG2PixIlyA14pU/7//vc/jBgxAi4uLnB0dMS8efOEJwYA8PXXXyMlJQUDBgyAmpoaBg4ciMDAQIUDGD1v3hVZWFjAysoK4eHhwvQ1ZctjxowRpZ07dy7mzp2L1NRU2NjYYMeOHTA2NlbquL29vbFt2zZ88MEHyM/PR3R0dJXviL4MDQdVP3jdq6imcdexY0dERkYiPDwcoaGh6N69O8aMGYPly5cLabp3747ffvsN06dPx7x586CpqQl7e3vRu7iKroWK2rZti0OHDmHEiBG4fv06dHV10aJFC8THxwvvGwOAtrY2Jk6ciEGDBuHatWtwd3dXalDBMiEhIRg6dCgcHR3x8OFDZGdnVzq928vgbz2nzsp6Xsre2142ExMTxMTEYPLkyVi6dClat26NBQsWiKZzU5a/vz8OHDgANzc3FBQUYP/+/cIUZQMHDsTo0aMxcODAal/B6N69OzZs2IA5c+bg33//hampKTw8PBAWFiaaV3vIkCF4+PAh2rZtC3V1dQQHBwvTElZHQ0MDS5cuxfTp0zF16lS4u7sL037VFdloWZ2WVxO7du2CmZkZNDQ0YGhoCCcnJyxduhRDhw4VvZ8dFRUFPz8/uLq6ws7ODvPnz0e3bt1UWHPAz88Ps2fPxrBhw15K/tra2vjjjz8QHByMNm3aQFtbG97e3li4cKGQZty4ccjNzRXOl6+vL3r37i36MWjGjBkwMTHBnDlzcPHiRchkMmHaOsZedWpU1QSWjLEqFRUVITs7G02bNq3R+6ns9ZCTk4OmTZsiJSVFmIOYvZ78/f1x7tw5JCYm1nnZMTExGD16tOgpD2M1lZOTA2trayQnJ6N169a1zq9Lly5wdnbG4sWLa1859kZKTExE165dceXKFeFJ9puIv9sxVeIn54wxxt5YCxYsgKenJ3R0dJCQkIDY2Fj88MMPqq4WYzVWXFyMvLw8hIaGol27di+kYc5YVR49eoTbt28jLCwM/fr1e6Mb5oypGr9zzhhj7I117NgxeHp6olWrVoiMjMTSpUvlpo9i7HWSlJQEMzMzJCcn80wArE5s2LABTZo0QX5+PubPn6/q6jD2RuNu7YzVAnd9Yowxxhh7c/B3O6ZK/OScMcYYY4wxxhhTMW6cM/YCcAcUxhhjjLHXH3+nY6rEjXPGakFTUxMAUFhYqOKaMMYYY4yx2ir7Tlf2HY+xusSjtTNWC+rq6pDJZLh16xaAp3N0qqmpqbhWjDHGGGPseRARCgsLcevWLchkMqirq6u6SuwtxAPCMVZLRIQbN27w3MWMMcYYY685mUwGU1NTftjCVIIb54y9ICUlJSguLlZ1NRhjjDHGWA1oamryE3OmUtw4Z4wxxhhjjDHGVIwHhGOMMcYYY4wxxlSMG+eMMcYYY4wxxpiKceOcMcYYY4wxxhhTMW6cM8YYY4wxxhhjKsaNc8YYY4wxxhhjTMW4cc4YY4wxxhhjjKkYN84ZY4wxxhhjjDEV+z91vAsUJDdchwAAAABJRU5ErkJggg==",
- "text/plain": [
- "