File size: 47,746 Bytes
91692a4 ab45a22 9fc7496 ab45a22 d36ec1d 91692a4 d36ec1d d6ec1f3 91692a4 d36ec1d f9a730b 91692a4 f9a730b d36ec1d 91692a4 d36ec1d f9a730b d36ec1d 91692a4 d36ec1d b09510c ab45a22 b09510c 91692a4 b09510c 91692a4 ab45a22 d6ec1f3 ab45a22 d6ec1f3 b09510c ab45a22 b09510c ab45a22 b09510c ab45a22 b09510c ab45a22 b09510c ab45a22 b09510c ab45a22 b09510c ab45a22 b09510c ab45a22 f9a730b b09510c ab45a22 b09510c f9a730b b09510c 91692a4 ab45a22 91692a4 ab45a22 91692a4 ab45a22 b09510c 91692a4 b09510c ab45a22 b09510c ab45a22 91692a4 ab45a22 91692a4 b09510c ab45a22 b09510c ab45a22 91692a4 ab45a22 91692a4 b09510c ab45a22 b09510c ab45a22 b09510c ab45a22 b09510c f9a730b b09510c 5e01175 b09510c 7e4c438 b09510c 7e4c438 b09510c ab45a22 b09510c ab45a22 b09510c ab45a22 b09510c d6ec1f3 b09510c ab45a22 8cfcefe ab45a22 8cfcefe ab45a22 b09510c 8cfcefe b09510c d6ec1f3 b09510c d6ec1f3 ab45a22 b09510c 91692a4 ab45a22 b09510c ab45a22 b09510c ab45a22 b09510c 0c6f1b3 ab45a22 7e4c438 ab45a22 b09510c 91692a4 b09510c ab45a22 7e4c438 ab45a22 d6ec1f3 b09510c ab45a22 91692a4 b09510c ab45a22 9fc7496 b09510c ab45a22 b09510c 7e4c438 b09510c 91692a4 b09510c 91692a4 b09510c dafeec2 9fc7496 dafeec2 9fc7496 b09510c d6ec1f3 b09510c ab45a22 91692a4 b09510c 7e4c438 91692a4 7e4c438 b09510c 91692a4 ab45a22 91692a4 ab45a22 91692a4 9fc7496 91692a4 ab45a22 91692a4 ab45a22 91692a4 ab45a22 91692a4 ab45a22 5e01175 f9a730b ab45a22 f9a730b ab45a22 91692a4 ab45a22 91692a4 6f31d02 ab45a22 f9a730b ab45a22 91692a4 ab45a22 91692a4 ab45a22 91692a4 ab45a22 91692a4 9fc7496 91692a4 6f31d02 9fc7496 ab45a22 6f31d02 91692a4 ab45a22 91692a4 9fc7496 ab45a22 9fc7496 91692a4 dafeec2 91692a4 ab45a22 91692a4 8cfcefe f9a730b ab45a22 91692a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 |
import os
import pickle
import warnings
import logging
from collections import defaultdict
from typing import Literal, List, Tuple, Optional
import urllib.request
import joblib
import optuna
from optuna.samplers import TPESampler
import h5py
import pandas as pd
import numpy as np
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit import DataStructs
from jsonargparse import CLI
from tqdm.auto import tqdm
from imblearn.over_sampling import SMOTE, ADASYN
from sklearn.preprocessing import OrdinalEncoder, StandardScaler, LabelEncoder
from sklearn.model_selection import (
StratifiedKFold,
StratifiedGroupKFold,
)
from sklearn.base import ClassifierMixin
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import pytorch_lightning as pl
from torch.utils.data import Dataset, DataLoader
from torchmetrics import (
Accuracy,
AUROC,
Precision,
Recall,
F1Score,
MetricCollection,
)
# Ignore UserWarning from Matplotlib
warnings.filterwarnings("ignore", ".*FixedLocator*")
# Ignore UserWarning from PyTorch Lightning
warnings.filterwarnings("ignore", ".*does not have many workers.*")
protac_df = pd.read_csv('../data/PROTAC-Degradation-DB.csv')
# Map E3 Ligase Iap to IAP
protac_df['E3 Ligase'] = protac_df['E3 Ligase'].str.replace('Iap', 'IAP')
def is_active(DC50: float, Dmax: float, oring=False, pDC50_threshold=7.0, Dmax_threshold=0.8) -> bool:
""" Check if a PROTAC is active based on DC50 and Dmax.
Args:
DC50(float): DC50 in nM
Dmax(float): Dmax in %
Returns:
bool: True if active, False if inactive, np.nan if either DC50 or Dmax is NaN
"""
pDC50 = -np.log10(DC50 * 1e-9) if pd.notnull(DC50) else np.nan
Dmax = Dmax / 100
if pd.notnull(pDC50):
if pDC50 < pDC50_threshold:
return False
if pd.notnull(Dmax):
if Dmax < Dmax_threshold:
return False
if oring:
if pd.notnull(pDC50):
return True if pDC50 >= pDC50_threshold else False
elif pd.notnull(Dmax):
return True if Dmax >= Dmax_threshold else False
else:
return np.nan
else:
if pd.notnull(pDC50) and pd.notnull(Dmax):
return True if pDC50 >= pDC50_threshold and Dmax >= Dmax_threshold else False
else:
return np.nan
# ## Load Protein Embeddings
# Protein embeddings downloaded from [Uniprot](https://www.uniprot.org/help/embeddings).
#
# Please note that running the following cell the first time might take a while.
download_link = "https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/embeddings/UP000005640_9606/per-protein.h5"
embeddings_path = "../data/uniprot2embedding.h5"
if not os.path.exists(embeddings_path):
# Download the file
print(f'Downloading embeddings from {download_link}')
urllib.request.urlretrieve(download_link, embeddings_path)
protein_embeddings = {}
with h5py.File("../data/uniprot2embedding.h5", "r") as file:
uniprots = protac_df['Uniprot'].unique().tolist()
uniprots += protac_df['E3 Ligase Uniprot'].unique().tolist()
for i, sequence_id in tqdm(enumerate(uniprots), desc='Loading protein embeddings'):
try:
embedding = file[sequence_id][:]
protein_embeddings[sequence_id] = np.array(embedding)
except KeyError:
print(f'KeyError for {sequence_id}')
protein_embeddings[sequence_id] = np.zeros((1024,))
## Load Cell Embeddings
cell2embedding_filepath = '../data/cell2embedding.pkl'
with open(cell2embedding_filepath, 'rb') as f:
cell2embedding = pickle.load(f)
print(f'Loaded {len(cell2embedding)} cell lines')
emb_shape = cell2embedding[list(cell2embedding.keys())[0]].shape
# Assign all-zero vectors to cell lines that are not in the embedding file
for cell_line in protac_df['Cell Line Identifier'].unique():
if cell_line not in cell2embedding:
cell2embedding[cell_line] = np.zeros(emb_shape)
## Precompute Molecular Fingerprints
fingerprint_size = 224
morgan_fpgen = AllChem.GetMorganGenerator(
radius=15,
fpSize=fingerprint_size,
includeChirality=True,
)
smiles2fp = {}
for smiles in tqdm(protac_df['Smiles'].unique().tolist(), desc='Precomputing fingerprints'):
# Get the fingerprint as a bit vector
morgan_fp = morgan_fpgen.GetFingerprint(Chem.MolFromSmiles(smiles))
smiles2fp[smiles] = morgan_fp
# Count the number of unique SMILES and the number of unique Morgan fingerprints
print(f'Number of unique SMILES: {len(smiles2fp)}')
print(f'Number of unique fingerprints: {len(set([tuple(fp) for fp in smiles2fp.values()]))}')
# Get the list of SMILES with overlapping fingerprints
overlapping_smiles = []
unique_fps = set()
for smiles, fp in smiles2fp.items():
if tuple(fp) in unique_fps:
overlapping_smiles.append(smiles)
else:
unique_fps.add(tuple(fp))
print(f'Number of SMILES with overlapping fingerprints: {len(overlapping_smiles)}')
print(f'Number of overlapping SMILES in protac_df: {len(protac_df[protac_df["Smiles"].isin(overlapping_smiles)])}')
# Get the pair-wise tanimoto similarity between the PROTAC fingerprints
tanimoto_matrix = defaultdict(list)
for i, smiles1 in enumerate(tqdm(protac_df['Smiles'].unique(), desc='Computing Tanimoto similarity')):
fp1 = smiles2fp[smiles1]
# TODO: Use BulkTanimotoSimilarity for better performance
for j, smiles2 in enumerate(protac_df['Smiles'].unique()):
if j < i:
continue
fp2 = smiles2fp[smiles2]
tanimoto_dist = DataStructs.TanimotoSimilarity(fp1, fp2)
tanimoto_matrix[smiles1].append(tanimoto_dist)
avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()}
protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto)
smiles2fp = {s: np.array(fp) for s, fp in smiles2fp.items()}
class PROTAC_Dataset(Dataset):
def __init__(
self,
protac_df,
protein_embeddings=protein_embeddings,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
use_smote=False,
oversampler=None,
active_label='Active',
include_mol_graphs=False,
):
""" Initialize the PROTAC dataset
Args:
protac_df (pd.DataFrame): The PROTAC dataframe
protein_embeddings (dict): Dictionary of protein embeddings
cell2embedding (dict): Dictionary of cell line embeddings
smiles2fp (dict): Dictionary of SMILES to fingerprint
use_smote (bool): Whether to use SMOTE for oversampling
use_ored_activity (bool): Whether to use the 'Active - OR' column
"""
# Filter out examples with NaN in active_col column
self.data = protac_df # [~protac_df[active_col].isna()]
self.protein_embeddings = protein_embeddings
self.cell2embedding = cell2embedding
self.smiles2fp = smiles2fp
self.active_label = active_label
self.include_mol_graphs = include_mol_graphs
self.smiles_emb_dim = smiles2fp[list(smiles2fp.keys())[0]].shape[0]
self.protein_emb_dim = protein_embeddings[list(
protein_embeddings.keys())[0]].shape[0]
self.cell_emb_dim = cell2embedding[list(
cell2embedding.keys())[0]].shape[0]
# Look up the embeddings
self.data = pd.DataFrame({
'Smiles': self.data['Smiles'].apply(lambda x: smiles2fp[x].astype(np.float32)).tolist(),
'Uniprot': self.data['Uniprot'].apply(lambda x: protein_embeddings[x].astype(np.float32)).tolist(),
'E3 Ligase Uniprot': self.data['E3 Ligase Uniprot'].apply(lambda x: protein_embeddings[x].astype(np.float32)).tolist(),
'Cell Line Identifier': self.data['Cell Line Identifier'].apply(lambda x: cell2embedding[x].astype(np.float32)).tolist(),
self.active_label: self.data[self.active_label].astype(np.float32).tolist(),
})
# Apply SMOTE
self.use_smote = use_smote
self.oversampler = oversampler
if self.use_smote:
self.apply_smote()
def apply_smote(self):
# Prepare the dataset for SMOTE
features = []
labels = []
for _, row in self.data.iterrows():
features.append(np.hstack([
row['Smiles'],
row['Uniprot'],
row['E3 Ligase Uniprot'],
row['Cell Line Identifier'],
]))
labels.append(row[self.active_label])
# Convert to numpy array
features = np.array(features).astype(np.float32)
labels = np.array(labels).astype(np.float32)
# Initialize SMOTE and fit
if self.oversampler is None:
oversampler = SMOTE(random_state=42)
else:
oversampler = self.oversampler
features_smote, labels_smote = oversampler.fit_resample(features, labels)
# Separate the features back into their respective embeddings
smiles_embs = features_smote[:, :self.smiles_emb_dim]
poi_embs = features_smote[:,
self.smiles_emb_dim:self.smiles_emb_dim+self.protein_emb_dim]
e3_embs = features_smote[:, self.smiles_emb_dim +
self.protein_emb_dim:self.smiles_emb_dim+2*self.protein_emb_dim]
cell_embs = features_smote[:, -self.cell_emb_dim:]
# Reconstruct the dataframe with oversampled data
df_smote = pd.DataFrame({
'Smiles': list(smiles_embs),
'Uniprot': list(poi_embs),
'E3 Ligase Uniprot': list(e3_embs),
'Cell Line Identifier': list(cell_embs),
self.active_label: labels_smote
})
self.data = df_smote
def fit_scaling(self, use_single_scaler=False, **scaler_kwargs) -> dict:
""" Fit the scalers for the data.
Returns:
dict: The fitted scalers.
"""
if use_single_scaler:
scaler = StandardScaler(**scaler_kwargs)
embeddings = np.hstack([
np.array(self.data['Smiles'].tolist()),
np.array(self.data['Uniprot'].tolist()),
np.array(self.data['E3 Ligase Uniprot'].tolist()),
np.array(self.data['Cell Line Identifier'].tolist()),
])
scaler.fit(embeddings)
return scaler
else:
scalers = {}
scalers['Smiles'] = StandardScaler(**scaler_kwargs)
scalers['Uniprot'] = StandardScaler(**scaler_kwargs)
scalers['E3 Ligase Uniprot'] = StandardScaler(**scaler_kwargs)
scalers['Cell Line Identifier'] = StandardScaler(**scaler_kwargs)
scalers['Smiles'].fit(np.stack(self.data['Smiles'].to_numpy()))
scalers['Uniprot'].fit(np.stack(self.data['Uniprot'].to_numpy()))
scalers['E3 Ligase Uniprot'].fit(np.stack(self.data['E3 Ligase Uniprot'].to_numpy()))
scalers['Cell Line Identifier'].fit(np.stack(self.data['Cell Line Identifier'].to_numpy()))
return scalers
def apply_scaling(self, scalers: dict, use_single_scaler=False):
""" Apply scaling to the data.
Args:
scalers (dict): The scalers for each feature.
"""
if use_single_scaler:
embeddings = np.hstack([
np.array(self.data['Smiles'].tolist()),
np.array(self.data['Uniprot'].tolist()),
np.array(self.data['E3 Ligase Uniprot'].tolist()),
np.array(self.data['Cell Line Identifier'].tolist()),
])
scaled_embeddings = scalers.transform(embeddings)
self.data = pd.DataFrame({
'Smiles': list(scaled_embeddings[:, :self.smiles_emb_dim]),
'Uniprot': list(scaled_embeddings[:, self.smiles_emb_dim:self.smiles_emb_dim+self.protein_emb_dim]),
'E3 Ligase Uniprot': list(scaled_embeddings[:, self.smiles_emb_dim+self.protein_emb_dim:self.smiles_emb_dim+2*self.protein_emb_dim]),
'Cell Line Identifier': list(scaled_embeddings[:, -self.cell_emb_dim:]),
self.active_label: self.data[self.active_label]
})
else:
self.data['Smiles'] = self.data['Smiles'].apply(lambda x: scalers['Smiles'].transform(x[np.newaxis, :])[0])
self.data['Uniprot'] = self.data['Uniprot'].apply(lambda x: scalers['Uniprot'].transform(x[np.newaxis, :])[0])
self.data['E3 Ligase Uniprot'] = self.data['E3 Ligase Uniprot'].apply(lambda x: scalers['E3 Ligase Uniprot'].transform(x[np.newaxis, :])[0])
self.data['Cell Line Identifier'] = self.data['Cell Line Identifier'].apply(lambda x: scalers['Cell Line Identifier'].transform(x[np.newaxis, :])[0])
def get_numpy_arrays(self):
X = np.hstack([
np.array(self.data['Smiles'].tolist()),
np.array(self.data['Uniprot'].tolist()),
np.array(self.data['E3 Ligase Uniprot'].tolist()),
np.array(self.data['Cell Line Identifier'].tolist()),
]).copy()
y = self.data[self.active_label].values.copy()
return X, y
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
elem = {
'smiles_emb': self.data['Smiles'].iloc[idx],
'poi_emb': self.data['Uniprot'].iloc[idx],
'e3_emb': self.data['E3 Ligase Uniprot'].iloc[idx],
'cell_emb': self.data['Cell Line Identifier'].iloc[idx],
'active': self.data[self.active_label].iloc[idx],
}
return elem
def train_sklearn_model(
clf: ClassifierMixin,
train_df: pd.DataFrame,
val_df: pd.DataFrame,
test_df: Optional[pd.DataFrame] = None,
active_label: str = 'Active',
use_single_scaler: bool = True,
) -> Tuple[ClassifierMixin, nn.ModuleDict]:
""" Train a classifier model on train and val sets and evaluate it on a test set.
Args:
clf: The classifier model to train and evaluate.
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
test_df (Optional[pd.DataFrame]): The test set.
Returns:
Tuple[ClassifierMixin, nn.ModuleDict]: The trained model and the metrics.
"""
# Initialize the datasets
train_ds = PROTAC_Dataset(
train_df,
protein_embeddings,
cell2embedding,
smiles2fp,
active_label=active_label,
use_smote=False,
)
scaler = train_ds.fit_scaling(use_single_scaler=use_single_scaler)
train_ds.apply_scaling(scaler, use_single_scaler=use_single_scaler)
val_ds = PROTAC_Dataset(
val_df,
protein_embeddings,
cell2embedding,
smiles2fp,
active_label=active_label,
use_smote=False,
)
val_ds.apply_scaling(scaler, use_single_scaler=use_single_scaler)
if test_df is not None:
test_ds = PROTAC_Dataset(
test_df,
protein_embeddings,
cell2embedding,
smiles2fp,
active_label=active_label,
use_smote=False,
)
test_ds.apply_scaling(scaler, use_single_scaler=use_single_scaler)
# Get the numpy arrays
X_train, y_train = train_ds.get_numpy_arrays()
X_val, y_val = val_ds.get_numpy_arrays()
if test_df is not None:
X_test, y_test = test_ds.get_numpy_arrays()
# Train the model
clf.fit(X_train, y_train)
# Define the metrics as a module dict
stages = ['train_metrics', 'val_metrics', 'test_metrics']
metrics = nn.ModuleDict({s: MetricCollection({
'acc': Accuracy(task='binary'),
'roc_auc': AUROC(task='binary'),
'precision': Precision(task='binary'),
'recall': Recall(task='binary'),
'f1_score': F1Score(task='binary'),
'opt_score': Accuracy(task='binary') + F1Score(task='binary'),
'hp_metric': Accuracy(task='binary'),
}, prefix=s.replace('metrics', '')) for s in stages})
# Get the predictions
metrics_out = {}
y_pred = torch.tensor(clf.predict_proba(X_train)[:, 1])
y_true = torch.tensor(y_train)
metrics['train_metrics'].update(y_pred, y_true)
metrics_out.update(metrics['train_metrics'].compute())
y_pred = torch.tensor(clf.predict_proba(X_val)[:, 1])
y_true = torch.tensor(y_val)
metrics['val_metrics'].update(y_pred, y_true)
metrics_out.update(metrics['val_metrics'].compute())
if test_df is not None:
y_pred = torch.tensor(clf.predict_proba(X_test)[:, 1])
y_true = torch.tensor(y_test)
metrics['test_metrics'].update(y_pred, y_true)
metrics_out.update(metrics['test_metrics'].compute())
return clf, metrics_out
class PROTAC_Model(pl.LightningModule):
def __init__(
self,
hidden_dim: int,
smiles_emb_dim: int = fingerprint_size,
poi_emb_dim: int = 1024,
e3_emb_dim: int = 1024,
cell_emb_dim: int = 768,
batch_size: int = 32,
learning_rate: float = 1e-3,
dropout: float = 0.2,
join_embeddings: Literal['beginning', 'concat', 'sum'] = 'concat',
train_dataset: PROTAC_Dataset = None,
val_dataset: PROTAC_Dataset = None,
test_dataset: PROTAC_Dataset = None,
disabled_embeddings: list = [],
apply_scaling: bool = False,
):
super().__init__()
self.poi_emb_dim = poi_emb_dim
self.e3_emb_dim = e3_emb_dim
self.cell_emb_dim = cell_emb_dim
self.smiles_emb_dim = smiles_emb_dim
self.hidden_dim = hidden_dim
self.batch_size = batch_size
self.learning_rate = learning_rate
self.join_embeddings = join_embeddings
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.test_dataset = test_dataset
self.disabled_embeddings = disabled_embeddings
self.apply_scaling = apply_scaling
# Set our init args as class attributes
self.__dict__.update(locals()) # Add arguments as attributes
# Save the arguments passed to init
ignore_args_as_hyperparams = [
'train_dataset',
'test_dataset',
'val_dataset',
]
self.save_hyperparameters(ignore=ignore_args_as_hyperparams)
# Define "surrogate models" branches
if self.join_embeddings != 'beginning':
if 'poi' not in self.disabled_embeddings:
self.poi_emb = nn.Linear(poi_emb_dim, hidden_dim)
if 'e3' not in self.disabled_embeddings:
self.e3_emb = nn.Linear(e3_emb_dim, hidden_dim)
if 'cell' not in self.disabled_embeddings:
self.cell_emb = nn.Linear(cell_emb_dim, hidden_dim)
if 'smiles' not in self.disabled_embeddings:
self.smiles_emb = nn.Linear(smiles_emb_dim, hidden_dim)
# Define hidden dimension for joining layer
if self.join_embeddings == 'beginning':
joint_dim = smiles_emb_dim if 'smiles' not in self.disabled_embeddings else 0
joint_dim += poi_emb_dim if 'poi' not in self.disabled_embeddings else 0
joint_dim += e3_emb_dim if 'e3' not in self.disabled_embeddings else 0
joint_dim += cell_emb_dim if 'cell' not in self.disabled_embeddings else 0
elif self.join_embeddings == 'concat':
joint_dim = hidden_dim * (4 - len(self.disabled_embeddings))
elif self.join_embeddings == 'sum':
joint_dim = hidden_dim
self.fc0 = nn.Linear(joint_dim, joint_dim)
self.fc1 = nn.Linear(joint_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, 1)
self.dropout = nn.Dropout(p=dropout)
stages = ['train_metrics', 'val_metrics', 'test_metrics']
self.metrics = nn.ModuleDict({s: MetricCollection({
'acc': Accuracy(task='binary'),
'roc_auc': AUROC(task='binary'),
'precision': Precision(task='binary'),
'recall': Recall(task='binary'),
'f1_score': F1Score(task='binary'),
'opt_score': Accuracy(task='binary') + F1Score(task='binary'),
'hp_metric': Accuracy(task='binary'),
}, prefix=s.replace('metrics', '')) for s in stages})
# Misc settings
self.missing_dataset_error = \
'''Class variable `{0}` is None. If the model was loaded from a checkpoint, the dataset must be set manually:
model = {1}.load_from_checkpoint('checkpoint.ckpt')
model.{0} = my_{0}
'''
# Apply scaling in datasets
if self.apply_scaling:
use_single_scaler = True if self.join_embeddings == 'beginning' else False
self.scalers = self.train_dataset.fit_scaling(use_single_scaler)
self.train_dataset.apply_scaling(self.scalers, use_single_scaler)
self.val_dataset.apply_scaling(self.scalers, use_single_scaler)
if self.test_dataset:
self.test_dataset.apply_scaling(self.scalers, use_single_scaler)
def forward(self, poi_emb, e3_emb, cell_emb, smiles_emb):
embeddings = []
if self.join_embeddings == 'beginning':
if 'poi' not in self.disabled_embeddings:
embeddings.append(poi_emb)
if 'e3' not in self.disabled_embeddings:
embeddings.append(e3_emb)
if 'cell' not in self.disabled_embeddings:
embeddings.append(cell_emb)
if 'smiles' not in self.disabled_embeddings:
embeddings.append(smiles_emb)
x = torch.cat(embeddings, dim=1)
x = self.dropout(F.relu(self.fc0(x)))
else:
if 'poi' not in self.disabled_embeddings:
embeddings.append(self.poi_emb(poi_emb))
if 'e3' not in self.disabled_embeddings:
embeddings.append(self.e3_emb(e3_emb))
if 'cell' not in self.disabled_embeddings:
embeddings.append(self.cell_emb(cell_emb))
if 'smiles' not in self.disabled_embeddings:
embeddings.append(self.smiles_emb(smiles_emb))
if self.join_embeddings == 'concat':
x = torch.cat(embeddings, dim=1)
elif self.join_embeddings == 'sum':
if len(embeddings) > 1:
embeddings = torch.stack(embeddings, dim=1)
x = torch.sum(embeddings, dim=1)
else:
x = embeddings[0]
x = self.dropout(F.relu(self.fc1(x)))
x = self.dropout(F.relu(self.fc2(x)))
x = self.fc3(x)
return x
def step(self, batch, batch_idx, stage):
poi_emb = batch['poi_emb']
e3_emb = batch['e3_emb']
cell_emb = batch['cell_emb']
smiles_emb = batch['smiles_emb']
y = batch['active'].float().unsqueeze(1)
y_hat = self.forward(poi_emb, e3_emb, cell_emb, smiles_emb)
loss = F.binary_cross_entropy_with_logits(y_hat, y)
self.metrics[f'{stage}_metrics'].update(y_hat, y)
self.log(f'{stage}_loss', loss, on_epoch=True, prog_bar=True)
self.log_dict(self.metrics[f'{stage}_metrics'], on_epoch=True)
return loss
def training_step(self, batch, batch_idx):
return self.step(batch, batch_idx, 'train')
def validation_step(self, batch, batch_idx):
return self.step(batch, batch_idx, 'val')
def test_step(self, batch, batch_idx):
return self.step(batch, batch_idx, 'test')
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=self.learning_rate)
def predict_step(self, batch, batch_idx):
poi_emb = batch['poi_emb']
e3_emb = batch['e3_emb']
cell_emb = batch['cell_emb']
smiles_emb = batch['smiles_emb']
if self.apply_scaling:
if self.join_embeddings == 'beginning':
embeddings = np.hstack([
np.array(smiles_emb.tolist()),
np.array(poi_emb.tolist()),
np.array(e3_emb.tolist()),
np.array(cell_emb.tolist()),
])
embeddings = self.scalers.transform(embeddings)
smiles_emb = embeddings[:, :self.smiles_emb_dim]
poi_emb = embeddings[:, self.smiles_emb_dim:self.smiles_emb_dim+self.poi_emb_dim]
e3_emb = embeddings[:, self.smiles_emb_dim+self.poi_emb_dim:self.smiles_emb_dim+2*self.poi_emb_dim]
cell_emb = embeddings[:, -self.cell_emb_dim:]
else:
poi_emb = self.scalers['Uniprot'].transform(poi_emb)
e3_emb = self.scalers['E3 Ligase Uniprot'].transform(e3_emb)
cell_emb = self.scalers['Cell Line Identifier'].transform(cell_emb)
smiles_emb = self.scalers['Smiles'].transform(smiles_emb)
y_hat = self.forward(poi_emb, e3_emb, cell_emb, smiles_emb)
return torch.sigmoid(y_hat)
def train_dataloader(self):
if self.train_dataset is None:
format = 'train_dataset', self.__class__.__name__
raise ValueError(self.missing_dataset_error.format(*format))
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=True,
# drop_last=True,
)
def val_dataloader(self):
if self.val_dataset is None:
format = 'val_dataset', self.__class__.__name__
raise ValueError(self.missing_dataset_error.format(*format))
return DataLoader(
self.val_dataset,
batch_size=self.batch_size,
shuffle=False,
)
def test_dataloader(self):
if self.test_dataset is None:
format = 'test_dataset', self.__class__.__name__
raise ValueError(self.missing_dataset_error.format(*format))
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=False,
)
def train_model(
train_df: pd.DataFrame,
val_df: pd.DataFrame,
test_df: Optional[pd.DataFrame] = None,
hidden_dim: int = 768,
batch_size: int = 8,
learning_rate: float = 2e-5,
dropout: float = 0.2,
max_epochs: int = 50,
smiles_emb_dim: int = fingerprint_size,
join_embeddings: Literal['beginning', 'concat', 'sum'] = 'concat',
smote_k_neighbors:int = 5,
use_smote: bool = True,
apply_scaling: bool = False,
active_label:str = 'Active',
fast_dev_run: bool = False,
use_logger: bool = True,
logger_name: str = 'protac',
disabled_embeddings: List[str] = [],
) -> tuple:
""" Train a PROTAC model using the given datasets and hyperparameters.
Args:
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
test_df (pd.DataFrame): The test set. If provided, the returned metrics will include test performance.
hidden_dim (int): The hidden dimension of the model.
batch_size (int): The batch size.
learning_rate (float): The learning rate.
max_epochs (int): Th e maximum number of epochs.
smiles_emb_dim (int): The dimension of the SMILES embeddings.
smote_k_neighbors (int): The number of neighbors for the SMOTE oversampler.
fast_dev_run (bool): Whether to run a fast development run.
disabled_embeddings (list): The list of disabled embeddings.
Returns:
tuple: The trained model, the trainer, and the metrics.
"""
oversampler = SMOTE(k_neighbors=smote_k_neighbors, random_state=42)
train_ds = PROTAC_Dataset(
train_df,
protein_embeddings,
cell2embedding,
smiles2fp,
use_smote=use_smote,
oversampler=oversampler if use_smote else None,
active_label=active_label,
)
val_ds = PROTAC_Dataset(
val_df,
protein_embeddings,
cell2embedding,
smiles2fp,
active_label=active_label,
)
if test_df is not None:
test_ds = PROTAC_Dataset(
test_df,
protein_embeddings,
cell2embedding,
smiles2fp,
active_label=active_label,
)
logger = pl.loggers.TensorBoardLogger(
save_dir='../logs',
name=logger_name,
)
callbacks = [
pl.callbacks.EarlyStopping(
monitor='train_loss',
patience=10,
mode='min',
verbose=False,
),
pl.callbacks.EarlyStopping(
monitor='val_loss',
patience=5,
mode='min',
verbose=False,
),
pl.callbacks.EarlyStopping(
monitor='val_acc',
patience=10,
mode='max',
verbose=False,
),
# pl.callbacks.ModelCheckpoint(
# monitor='val_acc',
# mode='max',
# verbose=True,
# filename='{epoch}-{val_metrics_opt_score:.4f}',
# ),
]
# Define Trainer
trainer = pl.Trainer(
logger=logger if use_logger else False,
callbacks=callbacks,
max_epochs=max_epochs,
fast_dev_run=fast_dev_run,
enable_model_summary=False,
enable_checkpointing=False,
enable_progress_bar=False,
devices=1,
num_nodes=1,
)
model = PROTAC_Model(
hidden_dim=hidden_dim,
smiles_emb_dim=smiles_emb_dim,
poi_emb_dim=1024,
e3_emb_dim=1024,
cell_emb_dim=768,
batch_size=batch_size,
join_embeddings=join_embeddings,
dropout=dropout,
learning_rate=learning_rate,
apply_scaling=apply_scaling,
train_dataset=train_ds,
val_dataset=val_ds,
test_dataset=test_ds if test_df is not None else None,
disabled_embeddings=disabled_embeddings,
)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
trainer.fit(model)
metrics = trainer.validate(model, verbose=False)[0]
if test_df is not None:
test_metrics = trainer.test(model, verbose=False)[0]
metrics.update(test_metrics)
return model, trainer, metrics
# Setup hyperparameter optimization:
def objective(
trial: optuna.Trial,
train_df: pd.DataFrame,
val_df: pd.DataFrame,
hidden_dim_options: List[int] = [256, 512, 768],
batch_size_options: List[int] = [8, 16, 32],
learning_rate_options: Tuple[float, float] = (1e-5, 1e-3),
smote_k_neighbors_options: List[int] = list(range(3, 16)),
dropout_options: Tuple[float, float] = (0.1, 0.5),
fast_dev_run: bool = False,
active_label: str = 'Active',
disabled_embeddings: List[str] = [],
) -> float:
""" Objective function for hyperparameter optimization.
Args:
trial (optuna.Trial): The Optuna trial object.
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
hidden_dim_options (List[int]): The hidden dimension options.
batch_size_options (List[int]): The batch size options.
learning_rate_options (Tuple[float, float]): The learning rate options.
smote_k_neighbors_options (List[int]): The SMOTE k neighbors options.
dropout_options (Tuple[float, float]): The dropout options.
fast_dev_run (bool): Whether to run a fast development run.
active_label (str): The active label column.
disabled_embeddings (List[str]): The list of disabled embeddings.
"""
# Generate the hyperparameters
hidden_dim = trial.suggest_categorical('hidden_dim', hidden_dim_options)
batch_size = trial.suggest_categorical('batch_size', batch_size_options)
learning_rate = trial.suggest_float('learning_rate', *learning_rate_options, log=True)
join_embeddings = trial.suggest_categorical('join_embeddings', ['beginning', 'concat', 'sum'])
smote_k_neighbors = trial.suggest_categorical('smote_k_neighbors', smote_k_neighbors_options)
use_smote = trial.suggest_categorical('use_smote', [True, False])
apply_scaling = trial.suggest_categorical('apply_scaling', [True, False])
dropout = trial.suggest_float('dropout', *dropout_options)
# Train the model with the current set of hyperparameters
_, _, metrics = train_model(
train_df,
val_df,
hidden_dim=hidden_dim,
batch_size=batch_size,
join_embeddings=join_embeddings,
learning_rate=learning_rate,
dropout=dropout,
max_epochs=100,
smote_k_neighbors=smote_k_neighbors,
apply_scaling=apply_scaling,
use_smote=use_smote,
use_logger=False,
fast_dev_run=fast_dev_run,
active_label=active_label,
disabled_embeddings=disabled_embeddings,
)
# Metrics is a dictionary containing at least the validation loss
val_loss = metrics['val_loss']
val_acc = metrics['val_acc']
val_roc_auc = metrics['val_roc_auc']
# Optuna aims to minimize the objective
return val_loss - val_acc - val_roc_auc
def hyperparameter_tuning_and_training(
train_df: pd.DataFrame,
val_df: pd.DataFrame,
test_df: pd.DataFrame,
fast_dev_run: bool = False,
n_trials: int = 50,
logger_name: str = 'protac_hparam_search',
active_label: str = 'Active',
disabled_embeddings: List[str] = [],
study_filename: Optional[str] = None,
) -> tuple:
""" Hyperparameter tuning and training of a PROTAC model.
Args:
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
test_df (pd.DataFrame): The test set.
fast_dev_run (bool): Whether to run a fast development run.
n_trials (int): The number of hyperparameter optimization trials.
logger_name (str): The name of the logger.
active_label (str): The active label column.
disabled_embeddings (List[str]): The list of disabled embeddings.
Returns:
tuple: The trained model, the trainer, and the best metrics.
"""
# Define the search space
hidden_dim_options = [256, 512, 768]
batch_size_options = [8, 16, 32]
learning_rate_options = (1e-5, 1e-3) # min and max values for loguniform distribution
smote_k_neighbors_options = list(range(3, 16))
# Set the verbosity of Optuna
optuna.logging.set_verbosity(optuna.logging.WARNING)
# Create an Optuna study object
sampler = TPESampler(seed=42, multivariate=True)
study = optuna.create_study(direction='minimize', sampler=sampler)
study_loaded = False
if study_filename:
if os.path.exists(study_filename):
study = joblib.load(study_filename)
study_loaded = True
print(f'Loaded study from {study_filename}')
if not study_loaded:
study.optimize(
lambda trial: objective(
trial,
train_df,
val_df,
hidden_dim_options=hidden_dim_options,
batch_size_options=batch_size_options,
learning_rate_options=learning_rate_options,
smote_k_neighbors_options=smote_k_neighbors_options,
fast_dev_run=fast_dev_run,
active_label=active_label,
disabled_embeddings=disabled_embeddings,
),
n_trials=n_trials,
)
if study_filename:
joblib.dump(study, study_filename)
# Retrain the model with the best hyperparameters
model, trainer, metrics = train_model(
train_df,
val_df,
test_df,
use_logger=True,
logger_name=logger_name,
fast_dev_run=fast_dev_run,
active_label=active_label,
disabled_embeddings=disabled_embeddings,
**study.best_params,
)
# Report the best hyperparameters found
metrics.update({f'hparam_{k}': v for k, v in study.best_params.items()})
# Return the best metrics
return model, trainer, metrics
def main(
active_col: str = 'Active (Dmax 0.6, pDC50 6.0)',
n_trials: int = 50,
fast_dev_run: bool = False,
test_split: float = 0.2,
cv_n_splits: int = 5,
):
""" Train a PROTAC model using the given datasets and hyperparameters.
Args:
use_ored_activity (bool): Whether to use the 'Active - OR' column.
n_trials (int): The number of hyperparameter optimization trials.
n_splits (int): The number of cross-validation splits.
fast_dev_run (bool): Whether to run a fast development run.
"""
## Set the Column to Predict
active_name = active_col.replace(' ', '_').replace('(', '').replace(')', '').replace(',', '')
# Get Dmax_threshold from the active_col
Dmax_threshold = float(active_col.split('Dmax')[1].split(',')[0].strip('(').strip(')').strip())
pDC50_threshold = float(active_col.split('pDC50')[1].strip('(').strip(')').strip())
protac_df[active_col] = protac_df.apply(
lambda x: is_active(x['DC50 (nM)'], x['Dmax (%)'], pDC50_threshold=pDC50_threshold, Dmax_threshold=Dmax_threshold), axis=1
)
## Test Sets
test_indeces = {}
### Random Split
# Randomly select 20% of the active PROTACs as the test set
active_df = protac_df[protac_df[active_col].notna()].copy()
test_df = active_df.sample(frac=test_split, random_state=42)
test_indeces['random'] = test_df.index
### E3-based Split
encoder = OrdinalEncoder()
protac_df['E3 Group'] = encoder.fit_transform(protac_df[['E3 Ligase']]).astype(int)
active_df = protac_df[protac_df[active_col].notna()].copy()
test_df = active_df[(active_df['E3 Ligase'] != 'VHL') & (active_df['E3 Ligase'] != 'CRBN')]
test_indeces['e3_ligase'] = test_df.index
### Tanimoto-based Split
n_bins_tanimoto = 200
tanimoto_groups = pd.cut(protac_df['Avg Tanimoto'], bins=n_bins_tanimoto).copy()
encoder = OrdinalEncoder()
protac_df['Tanimoto Group'] = encoder.fit_transform(tanimoto_groups.values.reshape(-1, 1)).astype(int)
active_df = protac_df[protac_df[active_col].notna()].copy()
# Sort the groups so that samples with the highest tanimoto similarity,
# i.e., the "less similar" ones, are placed in the test set first
tanimoto_groups = active_df.groupby('Tanimoto Group')['Avg Tanimoto'].mean().sort_values(ascending=False).index
test_df = []
# For each group, get the number of active and inactive entries. Then, add those
# entries to the test_df if: 1) the test_df lenght + the group entries is less
# 20% of the active_df lenght, and 2) the percentage of True and False entries
# in the active_col in test_df is roughly 50%.
for group in tanimoto_groups:
group_df = active_df[active_df['Tanimoto Group'] == group]
if test_df == []:
test_df.append(group_df)
continue
num_entries = len(group_df)
num_active_group = group_df[active_col].sum()
num_inactive_group = num_entries - num_active_group
tmp_test_df = pd.concat(test_df)
num_entries_test = len(tmp_test_df)
num_active_test = tmp_test_df[active_col].sum()
num_inactive_test = num_entries_test - num_active_test
# Check if the group entries can be added to the test_df
if num_entries_test + num_entries < test_split * len(active_df):
# Add anything at the beggining
if num_entries_test + num_entries < test_split / 2 * len(active_df):
test_df.append(group_df)
continue
# Be more selective and make sure that the percentage of active and
# inactive is balanced
if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6:
if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6:
test_df.append(group_df)
test_df = pd.concat(test_df)
# Save to global dictionary of test indeces
test_indeces['tanimoto'] = test_df.index
### Target-based Split
encoder = OrdinalEncoder()
protac_df['Uniprot Group'] = encoder.fit_transform(protac_df[['Uniprot']]).astype(int)
active_df = protac_df[protac_df[active_col].notna()].copy()
test_df = []
# For each group, get the number of active and inactive entries. Then, add those
# entries to the test_df if: 1) the test_df lenght + the group entries is less
# 20% of the active_df lenght, and 2) the percentage of True and False entries
# in the active_col in test_df is roughly 50%.
# Start the loop from the groups containing the smallest number of entries.
for group in reversed(active_df['Uniprot'].value_counts().index):
group_df = active_df[active_df['Uniprot'] == group]
if test_df == []:
test_df.append(group_df)
continue
num_entries = len(group_df)
num_active_group = group_df[active_col].sum()
num_inactive_group = num_entries - num_active_group
tmp_test_df = pd.concat(test_df)
num_entries_test = len(tmp_test_df)
num_active_test = tmp_test_df[active_col].sum()
num_inactive_test = num_entries_test - num_active_test
# Check if the group entries can be added to the test_df
if num_entries_test + num_entries < test_split * len(active_df):
# Add anything at the beggining
if num_entries_test + num_entries < test_split / 2 * len(active_df):
test_df.append(group_df)
continue
# Be more selective and make sure that the percentage of active and
# inactive is balanced
if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6:
if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6:
test_df.append(group_df)
test_df = pd.concat(test_df)
# Save to global dictionary of test indeces
test_indeces['uniprot'] = test_df.index
## Cross-Validation Training
# Make directory ../reports if it does not exist
if not os.path.exists('../reports'):
os.makedirs('../reports')
report = []
for split_type, indeces in test_indeces.items():
if split_type != 'tanimoto':
continue
active_df = protac_df[protac_df[active_col].notna()].copy()
test_df = active_df.loc[indeces]
train_val_df = active_df[~active_df.index.isin(test_df.index)]
if split_type == 'random':
kf = StratifiedKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
group = None
elif split_type == 'e3_ligase':
kf = StratifiedKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
group = train_val_df['E3 Group'].to_numpy()
elif split_type == 'tanimoto':
kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
group = train_val_df['Tanimoto Group'].to_numpy()
elif split_type == 'uniprot':
kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
group = train_val_df['Uniprot Group'].to_numpy()
# Start the CV over the folds
X = train_val_df.drop(columns=active_col)
y = train_val_df[active_col].tolist()
for k, (train_index, val_index) in enumerate(kf.split(X, y, group)):
print('-' * 100)
print(f'Starting CV for group type: {split_type}, fold: {k}')
print('-' * 100)
train_df = train_val_df.iloc[train_index]
val_df = train_val_df.iloc[val_index]
leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(val_df['Uniprot'])))
leaking_smiles = list(set(train_df['Smiles']).intersection(set(val_df['Smiles'])))
stats = {
'fold': k,
'split_type': split_type,
'train_len': len(train_df),
'val_len': len(val_df),
'train_perc': len(train_df) / len(train_val_df),
'val_perc': len(val_df) / len(train_val_df),
'train_active_perc': train_df[active_col].sum() / len(train_df),
'train_inactive_perc': (len(train_df) - train_df[active_col].sum()) / len(train_df),
'val_active_perc': val_df[active_col].sum() / len(val_df),
'val_inactive_perc': (len(val_df) - val_df[active_col].sum()) / len(val_df),
'test_active_perc': test_df[active_col].sum() / len(test_df),
'test_inactive_perc': (len(test_df) - test_df[active_col].sum()) / len(test_df),
'num_leaking_uniprot': len(leaking_uniprot),
'num_leaking_smiles': len(leaking_smiles),
'train_leaking_uniprot_perc': len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df),
'train_leaking_smiles_perc': len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df),
}
if split_type != 'random':
stats['train_unique_groups'] = len(np.unique(group[train_index]))
stats['val_unique_groups'] = len(np.unique(group[val_index]))
# Train and evaluate the model
model, trainer, metrics = hyperparameter_tuning_and_training(
train_df,
val_df,
test_df,
fast_dev_run=fast_dev_run,
n_trials=n_trials,
logger_name=f'protac_{active_name}_{split_type}_fold_{k}_test_split_{test_split}',
active_label=active_col,
study_filename=f'../reports/study_{active_name}_{split_type}_fold_{k}_test_split_{test_split}.pkl',
)
hparams = {p.strip('hparam_'): v for p, v in stats.items() if p.startswith('hparam_')}
stats.update(metrics)
report.append(stats.copy())
del model
del trainer
# Ablation study: disable embeddings at a time
for disabled_embeddings in [['e3'], ['poi'], ['cell'], ['smiles'], ['e3', 'cell'], ['poi', 'e3', 'cell']]:
print('-' * 100)
print(f'Ablation study with disabled embeddings: {disabled_embeddings}')
print('-' * 100)
stats['disabled_embeddings'] = 'disabled ' + ' '.join(disabled_embeddings)
model, trainer, metrics = train_model(
train_df,
val_df,
test_df,
fast_dev_run=fast_dev_run,
logger_name=f'protac_{active_name}_{split_type}_fold_{k}_disabled-{"-".join(disabled_embeddings)}',
active_label=active_col,
disabled_embeddings=disabled_embeddings,
**hparams,
)
stats.update(metrics)
report.append(stats.copy())
del model
del trainer
report_df = pd.DataFrame(report)
report_df.to_csv(
f'../reports/cv_report_hparam_search_{cv_n_splits}-splits_{active_name}_test_split_{test_split}_tanimoto.csv',
index=False,
)
if __name__ == '__main__':
cli = CLI(main) |