import torch import numpy as np import cv2 import PIL from groundingdino.models import build_model as build_grounding_dino from groundingdino.util.slconfig import SLConfig from groundingdino.util.utils import clean_state_dict from groundingdino.util.inference import annotate, load_image, predict import groundingdino.datasets.transforms as T from torchvision.ops import box_convert class Detector: def __init__(self, device): config_file = "src/groundingdino/groundingdino/config/GroundingDINO_SwinT_OGC.py" grounding_dino_ckpt = './ckpt/groundingdino_swint_ogc.pth' args = SLConfig.fromfile(config_file) args.device = device self.deivce = device self.gd = build_grounding_dino(args) checkpoint = torch.load(grounding_dino_ckpt, map_location='cpu') log = self.gd.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) print("Model loaded from {} \n => {}".format(grounding_dino_ckpt, log)) self.gd.eval() def image_transform_grounding(self, init_image): transform = T.Compose([ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) image, _ = transform(init_image, None) # 3, h, w return init_image, image def image_transform_grounding_for_vis(self, init_image): transform = T.Compose([ T.RandomResize([800], max_size=1333), ]) image, _ = transform(init_image, None) # 3, h, w return image def transfer_boxes_format(self, boxes, height, width): boxes = boxes * torch.Tensor([width, height, width, height]) boxes = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy") transfered_boxes = [] for i in range(len(boxes)): box = boxes[i] transfered_box = [[int(box[0]), int(box[1])], [int(box[2]), int(box[3])]] transfered_boxes.append(transfered_box) transfered_boxes = np.array(transfered_boxes) return transfered_boxes @torch.no_grad() def run_grounding(self, origin_frame, grounding_caption, box_threshold, text_threshold): ''' return: annotated_frame:nd.array transfered_boxes: nd.array [N, 4]: [[x0, y0], [x1, y1]] ''' height, width, _ = origin_frame.shape img_pil = PIL.Image.fromarray(origin_frame) re_width, re_height = img_pil.size _, image_tensor = self.image_transform_grounding(img_pil) # img_pil = self.image_transform_grounding_for_vis(img_pil) # run grounidng boxes, logits, phrases = predict(self.gd, image_tensor, grounding_caption, box_threshold, text_threshold, device=self.deivce) annotated_frame = annotate(image_source=np.asarray(img_pil), boxes=boxes, logits=logits, phrases=phrases)[:, :, ::-1] annotated_frame = cv2.resize(annotated_frame, (width, height), interpolation=cv2.INTER_LINEAR) # transfer boxes to sam-format transfered_boxes = self.transfer_boxes_format(boxes, re_height, re_width) return annotated_frame, transfered_boxes if __name__ == "__main__": detector = Detector("cuda") origin_frame = cv2.imread('./debug/point.png') origin_frame = cv2.cvtColor(origin_frame, cv2.COLOR_BGR2RGB) grounding_caption = "swan.water" box_threshold = 0.25 text_threshold = 0.25 annotated_frame, boxes = detector.run_grounding(origin_frame, grounding_caption, box_threshold, text_threshold) cv2.imwrite('./debug/x.png', annotated_frame) for i in range(len(boxes)): bbox = boxes[i] origin_frame = cv2.rectangle(origin_frame, bbox[0], bbox[1], (0, 0, 255)) cv2.imwrite('./debug/bbox_frame.png', origin_frame)