import math import torch.nn as nn import pdb # 파이썬 디버거 # Conv2D (3,3) def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) # Conv2D (1,1) + BatchNorm2D def downsample_basic_block( inplanes, outplanes, stride ): return nn.Sequential( nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(outplanes), ) # AvgPool2D + Conv2D (1,1) + BatchNorm2D def downsample_basic_block_v2( inplanes, outplanes, stride ): return nn.Sequential( nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False), nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(outplanes), ) # 기본 블럭 2D class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, relu_type = 'relu' ): super(BasicBlock, self).__init__() # relu_type 변수 값이 'relu','prelu' 인지 확인, 아니면 AssertionError 메시지를 띄움 assert relu_type in ['relu','prelu'] # 원하는 조건의 변수값을 보증하기 위해 사용 self.conv1 = conv3x3(inplanes, planes, stride) # Conv2D (3,3) self.bn1 = nn.BatchNorm2d(planes) # BatchNorm2D # type of ReLU is an input option if relu_type == 'relu': # ReLU self.relu1 = nn.ReLU(inplace=True) self.relu2 = nn.ReLU(inplace=True) elif relu_type == 'prelu': # PReLU self.relu1 = nn.PReLU(num_parameters=planes) self.relu2 = nn.PReLU(num_parameters=planes) else: raise Exception('relu type not implemented') # 에러 발생시키기 # -------- self.conv2 = conv3x3(planes, planes) # Conv2D (3,3) self.bn2 = nn.BatchNorm2d(planes) # BatchNorm2D self.downsample = downsample self.stride = stride # 모델이 학습데이터를 입력받아서 forward propagation 진행 def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu2(out) return out # 레즈넷 2D class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, relu_type = 'relu', gamma_zero = False, avg_pool_downsample = False): self.inplanes = 64 self.relu_type = relu_type self.gamma_zero = gamma_zero self.downsample_block = downsample_basic_block_v2 if avg_pool_downsample else downsample_basic_block # AvgPool2D 적용하면 v2 아니면 v1 super(ResNet, self).__init__() self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d(1) # default init for m in self.modules(): if isinstance(m, nn.Conv2d): # Conv2D 인스턴스인가 n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): # BatchNrom2D 인스턴스인가 m.weight.data.fill_(1) m.bias.data.zero_() #nn.init.ones_(m.weight) #nn.init.zeros_(m.bias) if self.gamma_zero: for m in self.modules(): if isinstance(m, BasicBlock ): # 기본 블럭 인스턴스인가 m.bn2.weight.data.zero_() # 레이어 생성 def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = self.downsample_block( inplanes = self.inplanes, outplanes = planes * block.expansion, stride = stride ) # (AvgPool2D) + Conv2D (1,1) + BatchNorm2D layers = [] layers.append(block(self.inplanes, planes, stride, downsample, relu_type = self.relu_type)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, relu_type = self.relu_type)) return nn.Sequential(*layers) # 설정한 레이어 반환 # 모델이 학습데이터를 입력받아서 forward propagation 진행 def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) return x