"""Search a good noise schedule for WaveGrad for a given number of inferece iterations""" import argparse from itertools import product as cartesian_product import numpy as np import torch from torch.utils.data import DataLoader from tqdm import tqdm from TTS.utils.audio import AudioProcessor from TTS.utils.io import load_config from TTS.vocoder.datasets.preprocess import load_wav_data from TTS.vocoder.datasets.wavegrad_dataset import WaveGradDataset from TTS.vocoder.utils.generic_utils import setup_generator parser = argparse.ArgumentParser() parser.add_argument("--model_path", type=str, help="Path to model checkpoint.") parser.add_argument("--config_path", type=str, help="Path to model config file.") parser.add_argument("--data_path", type=str, help="Path to data directory.") parser.add_argument("--output_path", type=str, help="path for output file including file name and extension.") parser.add_argument( "--num_iter", type=int, help="Number of model inference iterations that you like to optimize noise schedule for." ) parser.add_argument("--use_cuda", type=bool, help="enable/disable CUDA.") parser.add_argument("--num_samples", type=int, default=1, help="Number of datasamples used for inference.") parser.add_argument( "--search_depth", type=int, default=3, help="Search granularity. Increasing this increases the run-time exponentially.", ) # load config args = parser.parse_args() config = load_config(args.config_path) # setup audio processor ap = AudioProcessor(**config.audio) # load dataset _, train_data = load_wav_data(args.data_path, 0) train_data = train_data[: args.num_samples] dataset = WaveGradDataset( ap=ap, items=train_data, seq_len=-1, hop_len=ap.hop_length, pad_short=config.pad_short, conv_pad=config.conv_pad, is_training=True, return_segments=False, use_noise_augment=False, use_cache=False, verbose=True, ) loader = DataLoader( dataset, batch_size=1, shuffle=False, collate_fn=dataset.collate_full_clips, drop_last=False, num_workers=config.num_loader_workers, pin_memory=False, ) # setup the model model = setup_generator(config) if args.use_cuda: model.cuda() # setup optimization parameters base_values = sorted(10 * np.random.uniform(size=args.search_depth)) print(base_values) exponents = 10 ** np.linspace(-6, -1, num=args.num_iter) best_error = float("inf") best_schedule = None total_search_iter = len(base_values) ** args.num_iter for base in tqdm(cartesian_product(base_values, repeat=args.num_iter), total=total_search_iter): beta = exponents * base model.compute_noise_level(beta) for data in loader: mel, audio = data y_hat = model.inference(mel.cuda() if args.use_cuda else mel) if args.use_cuda: y_hat = y_hat.cpu() y_hat = y_hat.numpy() mel_hat = [] for i in range(y_hat.shape[0]): m = ap.melspectrogram(y_hat[i, 0])[:, :-1] mel_hat.append(torch.from_numpy(m)) mel_hat = torch.stack(mel_hat) mse = torch.sum((mel - mel_hat) ** 2).mean() if mse.item() < best_error: best_error = mse.item() best_schedule = {"beta": beta} print(f" > Found a better schedule. - MSE: {mse.item()}") np.save(args.output_path, best_schedule)