import streamlit as st from streamlit import session_state import joblib from io import StringIO import json import os import pandas as pd import numpy as np import matplotlib.pyplot as plt def find_optimal_price(data, model, buying_price): start_price = data.PRICE.min() - 1 # start price end_price = data.PRICE.min() + 10 # end price test = pd.DataFrame(columns = ["PRICE", "QUANTITY"]) # choose required columns test['PRICE'] = np.arange(start_price, end_price,0.01) test['QUANTITY'] = model.predict(test['PRICE']) # make predictions test['PROFIT'] = (test["PRICE"] - buying_price) * test["QUANTITY"] plt.plot(test['PRICE'],test['QUANTITY']) # plot the results plt.plot(test['PRICE'],test['PROFIT']) plt.show() ind = np.where(test['PROFIT'] == test['PROFIT'].max())[0][0] values_at_max_profit = test.iloc[[ind]] return values_at_max_profit model = joblib.load("burger_model.sav") uploaded_file = st.file_uploader("Choose a file") if uploaded_file: # Read data from file df = pd.read_csv(uploaded_file) # Clean data df = df[df['PRICE'].notna()].reset_index(drop=True) buying_price = st.slider("Select buying price", min_value=9, max_value=15, value=1, step=1) result = find_optimal_price(df,model,buying_price) st.text_area("PRICE Should be to achive maximum profit", value=list(result.to_dict()['PRICE'].values())[0])