import streamlit as st import numpy as np import joblib import pickle from PIL import Image from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.applications.mobilenet_v2 import preprocess_input, MobileNetV2 from tensorflow.keras.models import Model # Constants IMAGE_SIZE = (128, 128) # Load the trained KNN model knn_model = joblib.load("knn_animal_classifier.pkl") # Load class labels with open("class_labels.pkl", "rb") as f: class_labels = pickle.load(f) # Load the MobileNetV2 feature extractor base_model = MobileNetV2(weights="imagenet", include_top=False, input_shape=(128, 128, 3), pooling="avg") feature_extractor = Model(inputs=base_model.input, outputs=base_model.output) # Streamlit UI st.title("🐾 Animal Image Classifier (KNN + MobileNetV2)") st.write("Upload an image of an animal to classify it.") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file).convert("RGB") st.image(image, caption="Uploaded Image", use_column_width=True) # Preprocess image img = image.resize(IMAGE_SIZE) img_array = img_to_array(img) img_array = preprocess_input(img_array) img_array = np.expand_dims(img_array, axis=0) # Extract features and predict features = feature_extractor.predict(img_array) prediction = knn_model.predict(features)[0] st.success(f"🧠 Predicted Animal: **{prediction}**")